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ON L, FOURIER MULTIPLIERS
ON CERTAIN SYMMETRIC SPACES

LARS VRETARE

1. Introduction

Let G be a connected semisimple Lie group with finite centre and K
a maximal compact subgroup of @. We consider the spherical Fourier
transform on the symmetric space G/K where G either is complex or
has real rank one. A function F is said to be a L, Fourier multiplier if

(L) 1 Fly = suPgyper, 1Pl Iz, < 00, 1= S oo,

F being the inverse Fourier transform of F. We wish to give sufficient
conditions for F to be a multiplier (cf. [8]). As an example of our results
we mention that the m, norm of (1+ u/N?)~# cos(u/N?} is uniformly
bounded in N = N, if 8> (n/2)|1/p—3}|. Here —pu is the eigenvalue of the
radial part of the Laplace-Beltrami operator on G/K, n=dim@/K and
N, some constant. (Cf. the classical case of the Fourier series

2:‘;1 n—ﬁein"‘eim .

See [12, p. 201].) Our method (cf. [7], [10]) makes heavy use of a recur-
rence formula for the elementary spherical functions (Lemma 2.1).

I want to thank my teacher prof. Jaak Peetre for valuable advice and
great interest in my work.

2. Preliminaries on semisimple Lie groups.

General references for this section are [5], [6] and [11].

Let @=KAN be an Iwasawa decomposition of ¢ and let g, a and n
be the Lie algebras of ¢, 4 and N respectively. Then n=3,,_,.g* where
A+ is a positive root system of the pair (g,a) and g* the root subspace
corresponding to «. Put m,=dimg*, m=3, 4 m,, I=dima=rankG/K
and n=dimG/K. Then n=m +1. We regard a as a Euclidean space with
the norm || = ({(h,h))}, (X,Y) being the Killing form of g.

A function f on @ is called spherical if f(k,gk,) =f(g) for all &,, kye K
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and g € G. For such functions we formally define the spherical Fourier
transform

Fa) = Saf(@)w-i(9)dg .
Here a* is the (real) dual of a and ¢,(g) is the elementary spherical func-
tion
a(g) = Sxe™ OHDdE, o =33, pme, g = kexpH(gn

defined for any A in a,*=a* +¢a*. Then holds

(fixfa)” = flfz .
We also define the inverse of the spherical Fourier transform

F(g) = §u F(Dpi(g)le(2)|-2d2,
where ¢(1) is the c-function of Harish—Chandra which was completely
determined by Gindikin and Karpelevi¢ [4]:
C(l) — Hzxed"’ ﬂ(ma/z’ma/2/4 + <i}'? (X>/<0€, 0‘>)
].—.[ocEA+ :B(ma/2’ ma/2/4 + <@’ (X>/<(X, (X>) ’

where f(z,y) is the Euler beta function. From this formula an estimate
for (¢c(4))-%, A € a* may be deduced (see [11, vol. IT p. 357])

(2.1) le(A)]~t £ C(L+|A|)™2, Aea*.
Putting

D(h) = TTscs+ (sinha(h))™,

the following integral formula holds for spherical functions

$of(g)dg = C.f(exph)D(h)dh .

C is here a normalizing constant.

We now come to the recurrence formula for ¢, which is the point
where we have to make restrictions on G. Let W be the Weyl group of
(g,a). We define the spherical function w on 4 by

w(exph) = Doy (eSM—-1), hea,

where o € a* is some linear form such that a* is spanned by the set
{So ; 8 € W} and there exists a § € W with So= — 0. Clearly » may also

be written as
w = 2 ZSEW SinhZ%SO' .

Lemma 2.1, If G is complex or of real rank one it s possible to choose
o € a* such that the following recurrence formula holds for the spherical
Junctions ¢,
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. B S
P2 SeW (A —1i0) Pa—is-10~ 28w (Sh—i0) Pa -

Proor. In the rank one case suitable identifications give explicite
expressions for ¢, and ¢(4) (see [2], [5])

@i(h) = F((o+14)/2,(0—12)/2,n[2,—sinh?h), AeC, heR,
c(A) = 2= (n[2)I(2)[T((n—o0+14)[2)((0 +14)/2), Ae€C.
Choosing ¢ =2 the recurrence formula reduces to a well-known property

(see [I, p. 103, (32) and (37)]) of the hypergeometric function
F(a,b,c,z), namely the relation:

_ (b—c)a
ZF(az,b,C,Z) = m—l‘jﬁ’(a'i- ].,b— l,C,Z)+
(a—c)b c(l—a—>b)+2ab
+%(b—a)(b—a+ 1)F(a— 1’b+i’c’z)—(b—a—l)(b—a+ 0 F(a,b,c,z?) .

In the case of complex G we note that the elementary spherical func-
tions on G/K and the characters of K are formally related by (see [5,
p. 304])

(c(0))'pi(exph) = yur—gra(2k) = (D(R)) ey detT T4®,  hea.
For any oca* we get since SgpelS =gpe°=w+|W| is inde-
pendent of T'

(2.2)  Ssew (€(A—18710)) gy _is-1, = D Dy, gy det T i 74750
= Dt 3y det T €73 Tg €757 = (o)) Ppi(e0 + | W) -
By use of the relation ¢(SA)=detS ¢(1) valid for complex G (see [5,

p- 304]) the desired formula then follows. (Note that this also implies
that |W|=3gc(S1)[c(SA—10).)

Let us introduce the difference operator

AW = Ag# ... Asp"f’, p= (g, s lp) »
where
As’.F(A) = F(A—-1i8;70)-F(4),
8y,...,8, being a fixed denumeration of the elements of W, and also
the translation operator

™ = 1M TP =g o ty)
where

Math. Scand. 37 — 8
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5 F(A) = F(2—i8;70) .

Denoting by 4¥ any difference operator of order K we have the following
Leibniz’ rule for taking differences of a product.

AKF1F2 = EJsK CKJAK—JTJFIAJFZ .

From Lemma 2.1 we now deduce

CoroLLARY 2.2. If G is complex or of real rank one, then for L >0

(2.3) olp, = Docpiser, ju=1 Crl(A) AP,
where C,,L(A) has the following properties

(2.4) C, E(A)(c(A)™t 1is nonsingular on a*
(2.5) G, EAeW) ] S O(L+ A2 on o .

Proor. To handle the complex case first consider formula (2.2). By
assumption there is a § € W such that S¢= —¢. This implies that (2.2)
remains valid if we replace ¢ by —o¢. Adding these two formulas together
we get :

w(e(D) g = ¥ Zsew As*ts7[(c(A)) il -

Tteration yields

0™(c(2)) s = 2= ,ACOTR(c(2)) 1] -

After expansion of the differences to the right according to Leibniz’ rule
this gives (2.3) with

C,E(c(A) = ¢, A@-7e=i(c(2))1 .

Since (c(4))~ is a polynomial of degree 4m in the complex case, (2.4) and
(2.5) are obvious.

Assume now that rank G/K =1. The identifications made allow us to
write the recurrence formula as

0@y = Jko—1 GHAPsir -
Or in terms of differences
0Py = Jioq 6 HA) A% vt gy
writing 4 and v for 4;3 and 74 respectively. Here
d(2) = (n—o+1A)(o+14)/(1+144)id ,
d_}(4) = d}(-12),



ON L, FOURIER MULTIPLIERS ON CERTAIN SYMMETRIC SPACES 115

do'(2) = —d}(A)—d}(-7),
¢t (4) = d(4),
() = di{(A)=d}(=2) .

After L iterations we get
wlg; = EL - G Paaik
wly, = Eiﬁl cxt(2) A% v=L g,

with inductively determined coefficients. By induction over L it may
now be proved that (c(1))~'d,Z(1) is nonsingular on a*. ¢,Z(1) being
linear combinations of d_,X(4)...d (1) then clearly satisfy (2.4). Fin-
ally the last expression for wZe, above is used to prove the induction
hypothesis:

and

lex(2)] < C|ReA[-2E

for large values of ReA. This proves (2.5) in this case.

3. Estimates of the multiplier norm.

In this section we proceed as follows: The estimation will be carried
out in three steps of which the first one is the inequality

(3.1) 1Flly < Iz, »

which is an obvious consequence of the definition of m,, (1.1). Next step,
Lemma 3.1 below involves estimates of the L; norm in terms of the
norms in the interpolation spaces

B, = (Ly, W) y0r,4» 2L >8>0,
where W,L is the space corresponding to the norm

1flhwpz = l0Efl, -

For a review of the real interpolation method (K-method) see [7]. In
the last step Parseval’s formula and the recurrence formula for ¢, are
used to obtain estimates for the m, norm in terms of differences of F
(Lemma 3.2).

Lrmma 3.1. For a sufficiently large integer K we have

B2 ia WK < L, .

ProoF. By assumption a* is spanned by the linear forms So, Se€ W.
Therefore Yg. (So)? is a positive definite quadratic form on a and
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w(exph) = 2 Yy sinh?(so(h)/2) = 3 > (So(h))? 2 Clh2.
If 7 belongs to the unit ball of a we also have
|D(r)| = T Isinh(R)[™ < CTT la(R)™* = ClhI™.
We define a partition U, I, of the unit ball in a by setting
I, ={hea; 27*%1<|h| 227},

From the estimates of w and D above it follows by Schwarz’ inequality
that
$1.1f(exph)|D(h)dh < (§y, [for™2DdR)H(y,0—2MDdh)t

=<
<O f”Wz u2-kn/2—2M)

Consider now any decomposition f=f;+f,. On applying this to f, and f,
with M =0 and L respectively we get

$11fIDdR < C27%n/%(| foll, + 2245 fillyr, ) 5

or after taking inf over all such decompositions
(|fIDdh < C2-Fn2K (22%L)

where K(t)=K(t,f, Ly, W4L) is the K-functional of [7]. Summing up over
all =0 we obtain if 4L >n

S]h[gl |[fIDdh = C zkgo 2-kn/2 (224 L)
< O \RERR D)t S Ollfla, watpmr -

It remains to prove that

S|h|21 |fIDdh < O||fllw,x -

This follows again from Schwarz’ inequality and the fact that { w-2KDdh
is convergent if K is sufficiently large.

Let a,* be the convex hull of the points Sg, S€ W and denote the
interior of the tube a* +eq,* by F*, ¢>0. We say that a function F(1)
which is invariant under the Weyl group, i.e. F(S1)=F(4) for all Se€ W,
belongs to Z(F*) or is rapidly decreasing in the tube F* if

SUP;c e | PF(2)] < 00

for all holomorphic differential operators P with polynomial coefficients.
It follows from the work of Trombi and Varadarajan [9], where a
complete characterization of the inverse Fourier transform of Z(F*)is
obtained, that if F(1) € Z(F*) then for all 1 € F*

F(3) = {Fg)p_i(9)dg .
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This together with Corollary 2.2 and Parseval’s formula
WFllzy = IPllz, = Seo F(DI2le(h)]~2dA

give us the last step in the estimation of the multiplier norm.

Lrmma 3.2. Keep L fixed and choose ¢>0 such that Zjﬁlsjaee-ao*
for all possible choices of 8,,...,8y€ W and M < L. Then

”F”WQL = zMgzL, 1ul=L Gy H(—= AP0 F(2)|z,
if F(A) € Z(F?).

4. Multiplier theorems.

Consider the complex z-plane, z=xz+14y. The interior of a parabola
y2=a(x+b) with positive constants ¢ and b will be called a parabolic
neighbourhood of the positive real axis or shorter a p.n. Fix an e¢>1
and a function y(z) holomorphic in some p.n. and let —u(d)= —{4,1)—
{p,0) be the eigenvalue corresponding to ¢, of the Casimir operator of
G. Clearly 4 maps F* into some p.n. so we see that a sufficient condi-
tion on y to make yy(1)=vy(u(1)/N?) to a holomorphic function in F*
for large N say N >N, is that p is holomorphic in a p.n.

First we prove:

THEOREM 4.1. The two conditions

i) y(z) s holomorphic in a p.n.
ii) sup, . [2/%|Diy(z)| < oo for all k,j=0,1,...

implies that there exist a number No such that |lyyll,,<C uniformly in
Nz=N,.
Proor. In view of the convexity property
Fllcaq, apo,g = CIF|Lag* I F L4, »
Lemma 3.1 and (3.1) it suffices to prove that

9wz, < C-N"/2
[Pnlw,z < ON®2-2L, ]2 < 2L < nf2+2,

IIA

and
”17’N”W3K =0

for some fixed but arbitrarily large integer K.
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To get the L, estimate we use Parseval’s formula and split the integral
into two parts

allzs? = S [on(A)E (AR + §j31 v lpa(A) 2 [c(2)| 22 .

Since X is large we have by assumption

if 2|
lyn(3) = M=
C-(|A|/[N)-2 if |A|=2 N, g arbitrarily large ,

and hence, taking also (2.1) into account,
[9xllze? £ C Sy (1+ 12)ymdA+
+ON% ;o v (1+|A)™A|%dd £ CN™.
We now treat the W, norm. Fix an ¢ such that Lemma 3.2 holds true

for our specific integer L. Conditions i) and ii) on y imply that yy € Z(F*)
if N> N, so we have

lonlw,z < C Dmszr, ul=r G, E(—= A9 =Pyy(A), -

If we can prove that
C-N-M((L+]A])/N)2-#  if |A|ISN

4.1 A(V)T(—l‘) S
(4.1) | ynl = G-N""((1+|/1I)/N)"’"’I if A|ZN,

we obtain by virtue of (2.5) in the same way as above

[0, (=) ATyl iz2 < CN-4§); <y (1+|A])+m—4Ld] +
+ON% ;o v (1+|4])-2a4m-4Ld),
< CN—-44 CNmH-AL < C-Nnr—-4L

Thus except for the verification of (4.1) the desired estimate of the W,
norm of ¢, is proved. Moreover the W,K estimate is derived in exactly
the same way.

It remains to prove (4.1). A difference A* may be estimated by the
corresponding derivative D®=Dg" ... Dg’ where Dg, is differention
in the §; direction i.e.

.DS’F(}») = (d/dt)F(A—itS;0)|;=p -
In fact we have
|[A9F(2)| = supyy<pp o) [DOF (A +17)| .

To express Dy, in terms of derivatives of y we use the formula for
differentiation of composite functions.

DMf(F(2)) = 3, Cay( DF()Y2 ... (DMF(R))4f®(F(2)) .
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Here D™ denotes any derivative of order M and f® the kth derivative
of f. The sum is extended over the integers k=1,2,...,M and all multi-
indices j such that Y  j, =k and X 4, -n=M. Since obviously

[DMu(A+1n)| = C(1+[4])*-M
we get when applying all this to ypy
|49y (2)]
S OSUPy <o)+ [uplo] MBX 1z, [PF(0(A+ i)/ N?)| N-2(1 + |2])2%-b1

The first part of (4.1) now follows from the fact that all derivatives of y
are bounded. By assumption we can choose an arbitrarily large constant
q such that for |A|= N

[y®(u(A+in)[N?)| = Clu(A+in)/N2|7-e2 < C((1+]A])|N)-*.
This completes the proof of (4.1) as well as the whole theorem.

Next we prove a more refined result in the same sense.

THEOREM 4.2. Let y be holomorphic in a p.n. and suppose that
SUPy 5, (1+ [2])/ 7D+ [DIy(2)| < oo
for all J and some & and B satisfying f>nx|2 and 0= x < §. Then |pyllm, <C
for N> N,.
Proor. Choose an integer M >+ L and put
G(z) = (1 (M —1)!)zMe—2, 2>0,
z) GQ(zft), t>N,

and
Hy(2) = 1-\3G(2)t-1dt = St (1/k!)(2/NY*- e~/
The function @ give rise to a partition of yy
vy = Hyyy+\y Goytdt,
where ||H yyyll,,, < C since Hyyy fulfils the assumptions of Theorem 4.1.
To handle ||Gyll,, We proceed as in the proof of Theorem 4.1 trying

to prove
(4.2) (Grpn) 7z, S CNt-204n2

(4.3) (Gapw) Iyt S CNW-ALap-284n/2420L2e-D)
from which we get

”(GWN)VHB,”Iﬂ,l s 0||(Gﬂl’zv)v”z,,l_”“LH(Gﬁ’N)v”W,L"/u' = C(t/N yna=28

IIA
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This implies that
IS% Gwnt~2dtl| g = 3 1Gwyllpneat=dt < C
and, since it will also be seen during the proof that
I$% Gpntdtll,x < C,

our theorem will folow from Lemma 3.1 and (3.1).

Thus it remains to prove (4.2) and (4.3). Again we fix an ¢, choose IV
so large that Gyyy € Z(F*) and consider |C, LAY -»Gyy|. Put |[v|=1 and
write O;r instead of C,, L. By Leibniz’ rule we have

AIT—LG"VJN = ZJSIOIJAI“JTJ“LG,AJT’L’(/JN .
The estimates of the differences to the right are obtained as before but

under other conditions on the derivatives of y and @. We also assume
that 9(0)=0. This time we get

—-2M oM —I+J .
|AI—JTJ—LG,|§[0‘ (L |A2M-I+7 i 2] <t

th(l-l—'}»])_q—l-h’ if MIZJ,
|47z Lypy| < CN-2(1+[A])*~ L=y
0= ove-2ra(1 4 a))20rieen) if 42N

Furthermore we know from (2.5) that

[(¢(2))1CE(A)| £ (L4 |A|ym/2+I-2L
Hence

[CEAT-T e LG AT v Tyy||p2 < Ct-SMN-4§, v (1+ |4]ym+a+4M-4Ld 4
+ Ct—M N18-4J« SNslzlgt (14 |A])ym+aM-AL—46+4T () 4
+ Ct2aN4-4T s s.llzt (1 + Ml)m—tlL—2q—4ﬂ+4Jadl
é Ct—AMN—4 + Ct—4MNn+4M—4L + Otn—QL—wMJaNdﬁ—4Ja .

Since tz N, n<4L<n+4 and M > g+ L these three terms are less than
Ctn—4L-45+8L« N4p—8Lx which is the desired estimate in (4.3). To obtain
(4.2) and the W,K estimate we have only to replace L and I by 0 re-
spectively L by K.

ReMARK 4.3. All properties of the spherical Fourier transform used
in this paper and hence also the multiplier theorems also holds for the
Fourier-Jacobi transform (see [2], [3]) obtained from the rank one case
by formally letting the integers m, assume arbitrary positive real values.
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REMARK 4.4. Under the same conditions on y as in Theorem 4.2 but
with 8> n«|1/p—3}| holds ||sz|{mp§C'. This is obtained by interpolation
between the m, result in Theorem 4.2 and the trivial m, result if 1<p=<2
and by duality if p = 2. In particular follows now the case of the multi-
plier (14 x/N2%)-f cos(u/N?) mentioned in the introduction.

REMARK 4.5. It has come to my attention that the subject of this pa-
per is also treated by E.M. Stein and J. L. Clerc in a paper appearing
in Trans. Amer. Math. Soc.
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