ON MULTIVALENT FUNCTIONS OF LARGE GROWTH IN TWO DIRECTIONS

B. G. EKE

1.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be an areally mean p-valent function in |z| < 1 normalized so that $\max_{0 \le n \le [p]} |a_n| = 1$. If $z_1 = \varrho_1 e^{i\theta_1}$, $z_2 = \varrho_2 e^{i\theta_2}$ are two distinct points in |z| < 1 and $|f(z_1)| \ge |f(z_2)|$ then Lucas [3] has proved that

$$(1) \qquad |f(z_1)|^{1/2p}|f(z_2)|^{(\gamma^2+2\gamma)/2p} \ < \ A(p,\gamma)(1-\varrho_1)^{-1}(1-\varrho_2)^{-\gamma^2}|z_1-z_2|^{-2\gamma} \ ,$$

where γ is positive and $A(p,\gamma)$ is a positive constant depending only on p,γ . (Pommerenke [4] established an analogous result for k points and univalent f.) In [3] it was observed that (1) contains all inequalities of the type

$$|f(z_1)|^a|f(z_2)|^b\,<\,A(p,a,b,c,d,e)(1-\varrho_1)^{-c}(1-\varrho_2)^{-d}|z_1-z_2^{-e}\;,$$

which hold subject to $|f(z_1)| \ge |f(z_2)| \ge 1$ and $|z_1 - z_2| \ge \frac{1}{2} \max(1 - \varrho_1, 1 - \varrho_2)$. It is possible to prove that (1) remains sharp (for appropriate choice of γ) even under the additional restriction that $|z_1| = |z_2|$ (unpublished).

We shall assume that $|z_1|=|z_2|=\varrho_1$ and that $0<\delta<|\theta_1-\theta_2|<2\pi-\delta$. If we assume further that

$$|f(z_2)| > A(1-\varrho_1)^{-p\beta}$$

for some $\beta \in (0,1]$, then, taking $\gamma = \beta/(2-\beta)$ in (1) we find

$$|f(z_1)| \; < \; A(p,\delta,\beta)(1-\varrho_1)^{-p\alpha(\beta)}, \quad \; \alpha(\beta) \; = \; (4-2\beta-\beta^2)/(2-\beta) \; .$$

Note that $\alpha(1) = 1$ and $\alpha(\beta) \uparrow 2$ as $\beta \downarrow 0$ as expected.

In the same way, the assumption that

$$|f(z_1)| > A(1-\varrho_1)^{-p\alpha(\beta)}$$

leads to

$$|f(z_2)| \ < \ A(p,\delta,\beta)(1-\varrho_1)^{-p\beta}$$
 ,

a remark we shall need in Section 4.

Received December 20, 1974.

¹ Throughout A will denote some positive absolute constant not necessarily the same at each occurrence.

106 B. G. EKE

2.

Given $\beta \in (0, 1]$, it is natural for a fixed positive p to introduce a class $C(\beta)$ of areally mean p-valent functions f in the unit disk for which it is possible to find sequences $\{r_n\}$, $\{\theta_{n1}\}$, $\{\theta_{n2}\}$ with

$$r_n \uparrow 1 \ (n \to \infty), \quad \delta < |\theta_{n1} - \theta_{n2}| < 2\pi - \delta \ (\text{all } n)$$

and having the properties

$$(2) |f(r_n e^{i\theta_{n1}})| > A(1-r_n)^{-p\alpha(\beta)}, |f(r_n e^{i\theta_{n2}})| > A(1-r_n)^{-p\beta} (\text{all } n).$$

In [1] this was done for $\beta = 1$ and certain smoothness criteria obtained for the growth of f, f' and the Taylor coefficients of f. We shall prove

THEOREM. $C(\beta)$ is empty if $0 < \beta < 1$.

The reason for this situation is something like this. In order that the left hand side and right hand side in (1) should have the same order of magnitude when ϱ_1, ϱ_2 are near 1 and $|z_1-z_2| \ge \delta$, it is necessary that the area of the image of w=f(z) lying in an annulus R<|w|< CR, where C is a large constant, arises roughly in a fixed proportion from points near z_1 and points near z_2 , if R is large, and $|f(z_1)|> CR$. On the other hand, if $|f(z_2)|< R< CR<|f(z_1)|$ the corresponding area must arise almost entirely from points near z_1 . This leads to a contradiction if there is a second such pair z_1', z_2' with

 $|f(z_1')| > C|f(z_2')|$,

and if

$$|f(z_2{}')| \; > \; C|f(z_1)| \ .$$

These conditions are satisfied in the class $C(\beta)$ if $\beta < 1$. If $\beta = 1$, we may have $|f(z_1)| = |f(z_2)|$ so that the contradiction fails. We now proceed to give details of the proof.

3.

We can assume that $\theta_{n1} \to \varphi_1$, $\theta_{n2} \to \varphi_2$ $(n \to \infty)$ where $\delta \le |\varphi_2 - \varphi_1| \le 2\pi - \delta$. If this is not so we extract appropriate subsequences and re-label. Let Δ_1, Δ_2 be disjoint open sectors in |z| < 1 having the origin as vertex and being symmetric about $\arg z = \varphi_1, \varphi_2$ respectively.

If n(w) is the number of solutions of f(z) = w in |z| < 1 counted according to multiplicity, we write

$$p(R) = (1/2\pi) \int_0^{2\pi} n(Re^{i\theta}) d\theta \qquad (R > 0).$$

Let $p_1(R), p_2(R)$ be the analogous functions relating to Δ_1, Δ_2 respectively so that

(3)
$$p_1(R) + p_2(R) \leq p(R)$$
. $(R > 0)$.

We denote by $M_k(r)$ (k=1,2) the supremum of |f(z)| for |z|=r, $z\in \Delta_k$ and consider, in the definition of $C(\beta)$, only those n for which $M_k(r)$ is attained nearer to $\arg z = \varphi_k$ than to the boundary of Δ_k (k=1,2). Then [2, Theorem 2.4] indicates that

(4)
$$\int_{R_0}^{M_1(r)} \frac{dR}{Rp_1(R)} < 2\log(1-r)^{-1} + A(\delta, p),$$

(5)
$$\int_{R_0}^{M_2(r)} \frac{dR}{Rp_2(R)} < 2\log(1-r)^{-1} + A(\delta, p),$$

where R_0 is any suitable fixed number. In fact an intermediate map of Δ_k onto the unit disk is needed to obtain (4), (5) from [2, Theorem 2.4]. Since such a map possesses an angular derivative at $e^{i\varphi_k}$ the application is legitimate provided we modify the additive constant in [2, Theorem 2.4] from A(p) to $A(p,\delta)$. We also need [2, Lemma 2.1] which says

(6)
$$\int_{R_0}^{R_2} \frac{dR}{Rp(R)} \ge p^{-1} \log(R_2/R_0) - \frac{1}{2},$$

for $R_2 > R_0 > |f(0)| = |a_0|$.

4.

Let c be a real parameter. Schwarz's inequality and (3) give

$$\left(\frac{1}{\sqrt{p_1}} \cdot \sqrt{p_1} + \frac{c}{\sqrt{p_2}} \cdot \sqrt{p_2}\right)^2 \, \leqq \, \left(\frac{1}{p_1} + \frac{c^2}{p_2}\right) \, \left(p_1 + p_2\right) \, \leqq \left(\frac{1}{p_1} + \frac{c^2}{p_2}\right) \, p \, \, .$$

We integrate

(7)
$$(1+c)^2/Rp(R) \leq 1/Rp_1(R) + c^2/Rp_2(R)$$

to $M_2(r_n)$ and use (5), (6) and

$$\log M_2(r_n) \ge \log |f(r_n e^{i\theta_{n2}})| \ge p\beta \log (1-r_n)^{-1} + A$$

to obtain

$$\int_{R_0}^{M_2(r_n)} \frac{dR}{Rp_1(R)} \, \geqq \, \left\{ (1+c)^2\beta - 2c^2 \right\} \log (1-r_n)^{-1} + A(\delta,p) \; .$$

108 B. G. EKE

Taking $c = \beta/(2-\beta)$, this gives

(8)
$$\int_{R_0}^{M_2(r_n)} \frac{dR}{Rp_1(R)} \ge 2\beta/(2-\beta) \log(1-r_n)^{-1} + A(\delta, p) .$$

We rewrite (8) as

(8)'
$$\int_{R_0}^{M_2(r_n)} \frac{dR}{Rp_1(R)} = 2\beta/(2-\beta)\log(1-r_n)^{-1} + K_n,$$

where $\{K_n\}$ is a sequence with finite infimum. We assume that the supremum is infinite and obtain a contradiction. Extract a subsequence which tends to $+\infty$ and re-label so that this subsequence is itself $\{K_n\}$. From (6),

$$\int_{M_2(r_n)}^{M_1(r_n)} \frac{dR}{Rp_1(R)} \ge \int_{M_2(r_n)}^{M_1(r_n)} \frac{dR}{Rp(R)} \ge p^{-1} \log \{M_1(r_n)/M_2(r_n)\} - \frac{1}{2} ,$$

and, adding this to (8)', we deduce

$$\begin{aligned} (9) \quad p^{-1} \log M_1(r_n) \\ & \leq \int_{R_0}^{M_1(r_n)} \frac{dR}{Rp_1(R)} + \tfrac{1}{2} + p^{-1} \, \log M_2(r_n) - K_n - 2\beta/(2-\beta) \, \log (1-r_n)^{-1} \; . \end{aligned}$$

At the end of Section 1, it was remarked that

$$M_1(r_n) > A(1-r_n)^{-p\alpha(\beta)}$$

implies

$$M_2(r_n)\,<\,A(p,\beta,\delta)(1-r_n)^{-p\beta}\;.$$

However, the assumption that

$$M_1(r_n) > A(1-r_n)^{-p\alpha(\beta)}$$

combined with (4), (9) yields

$$K_n + \left(\alpha(\beta) + 2\beta/(2-\beta) - 2\right) \log{(1-r_n)^{-1}} \, \leqq \, p^{-1} \log M_2(r_n) + A(\delta,p) \ ,$$

which contains the desired contradiction since $\alpha(\beta) + 2\beta/(2-\beta) - 2 = \beta$. Consequently the sequence $\{K_n\}$ in (8)' is bounded. The discussion also shows that

$$\int_{M_2(r_n)}^{M_1(r_n)} \left\{ 1/p_1(R) - 1/p(R) \right\} \frac{dR}{R} = O(1) \qquad (n \to \infty) ,$$

whence

(10)
$$\int_{M_2(r_n)}^{M_1(r_n)} \frac{p_2(R)dR}{Rv^2(R)} = O(1) \qquad (n \to \infty).$$

Inequalities (4), (5) are used in proving that $\{K_n\}$ is bounded and reasoning similar to the above establishes

(11)
$$\int_{R_0}^{M_1(r_n)} \frac{dR}{Rp_1(R)} = 2 \log(1 - r_n)^{-1} + O(1) ,$$

(12)
$$\int_{R_0}^{M_2(r_n)} \frac{dR}{Rp_2(R)} = 2 \log(1 - r_n)^{-1} + O(1) ,$$

as $n \to \infty$.

5.

We return to (7) with $c = \beta/(2-\beta)$ and integrate to find

$$(13) 4 \int_{R_0}^{R'} \frac{dR}{Rp(R)} \le (2-\beta)^2 \int_{R_0}^{R'} \frac{dR}{Rp_1(R)} + \beta^2 \int_{R_0}^{R'} \frac{dR}{Rp_2(R)}.$$

When $R' = M_2(r_n)$, we can use (8)', (12), to show that the right hand side of (13) is equal to

$$\begin{split} \big((2-\beta)^2 \cdot 2\beta/(2-\beta) + 2\beta^2 \big) \log (1-r_n)^{-1} + O(1) \\ &= 4\beta \log (1-r_n)^{-1} + O(1) \quad \text{ as } \ n \to \infty \ . \end{split}$$

But (6) with $R_2 = M_2(r_n)$ indicates that the left hand side of (13) is at least

$$4\beta \log (1-r_n)^{-1} - p^{-1} \log R_0 - 2$$

as $n \to \infty$. Thus

(14)
$$(2-\beta)^2 \int_{R_0}^{R'} \frac{dR}{Rp_1(R)} + \beta^2 \int_{R_0}^{R'} \frac{dR}{Rp_2(R)} - 4 \int_{R_0}^{R'} \frac{dR}{Rp(R)}$$

is a non-negative function of R' which is bounded above on the sequence $\{M_2(r_n)\}.$

Let $E(R_0, R')$ denote the expression (14). In view of (7) (with $c = \beta/(2-\beta)$) $E(R_0, R')$ increases with R'. Thus $E(R_0, R')$ is a bounded function of R' on $(R_0, +\infty)$.

Since (6) was used in the above discussion we have also shown that

(15)
$$\int_{R_0}^{R'} \frac{dR}{Rp(R)} = p^{-1} \log R' + O(1) \quad (as R' \to \infty).$$

6.

To complete the proof we use $E(R_0, M_1(r_n)) = O(1)$ as $n \to \infty$, which, with (11), (15) gives

110 B. G. EKE

(16)
$$\beta^2 \int_{R_0}^{M_1(r_n)} \frac{dR}{Rp_2(R)} = 4p^{-1} \log M_1(r_n) - 2(2-\beta)^2 \log(1-r_n)^{-1} + O(1)$$
$$= O(\log(1-r_n)^{-1}) \quad \text{as } n \to \infty,$$

since $M_1(r_n) = O(1 - r_n)^{-2p}$ ([2, Theorem 2.5]).

Now

$$M_1(r_n) > A(1-r_n)^{-p\alpha(\beta)}, \quad M_2(r_n) < A(1-r)^{-p\beta}$$

and so (6), (10), (16) combine to give

$$\begin{split} \left(\alpha(\beta) - \beta\right) \log (1 - r_n)^{-1} - O(1) & \leq \int_{M_2(r_n)}^{M_1(r_n)} \frac{dR}{Rp(R)} \\ & \leq \left(\int_{M_2(r_n)}^{M_1(r_n)} \frac{p_2(R)dR}{Rp^2(R)}\right)^{\frac{1}{4}} \left(\int_{M_2(r_n)}^{M_1(r_n)} \frac{dR}{Rp_2(R)}\right)^{\frac{1}{4}} \\ & = O(\{\log (1 - r_n)^{-1}\}^{\frac{1}{4}}) \qquad (n \to \infty) \end{split}$$

and unless $\alpha(\beta) = \beta$ (i.e. $\beta = 1$) this produces a contradiction for large enough n and establishes that the class $C(\beta)$ is empty if $\beta \in (0,1)$.

7.

Finally we remark that the following result can be established by arguing along the lines of the examples in [1].

Let $\beta \in (0,1)$ and suppose $\mu(r)$ is a positive function on (0,1) which decreases to 0 as $r \uparrow 1$. Then there is a univalent function f and a sequence $\{r_n\}$ with $r_n \uparrow 1$ $(n \to \infty)$ for which

$$|f(r_n)| > A(1-r_n)^{-\alpha(\beta)}, \quad |f(-r_n)| > \mu(r_n)(1-r_n)^{-\beta} \qquad (n=1,2,\dots) \ .$$

(The function μ could be associated with the sequence $\{r_n\}$ rather than with $\{-r_n\}$.)

The author acknowledge the referee's useful remarks.

REFERENCES

- B. G. Eke, The asymptotic behaviour of areally mean valent functions, J. Analyse Math. 20 (1967), 147-212.
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics 48, Cambridge University Press, 1958.
- K. W. Lucas, A two point modulus bound for areally mean p-valent functions, J. London Math. Soc. 43 (1968), 487–494.
- Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), 108-112.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SHEFFIELD ENGLAND