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ON MULTIVALENT FUNCTIONS OF LARGE
GROWTH IN TWO DIRECTIONS

B. G. EKE

1.

Let f(z)=35_,a,2" be an areally mean p-valent function in |z|<1
normalized so that maxy_, i@,/ =1. If z,=0,6", 2,=0,¢® are two
distinet points in |2| <1 and |f(z,)] = | f(2,)| then Lucas [3] has proved that

(1) If RV f (2)|* 42720 < A(p,y)(1— )1 — o) 7|21~ 2|,

where y is positive and A(p,y) is a positive constant depending only on
p,y. (Pommerenke [4] established an analogous result for k¥ points and
univalent f.) In [3] it was observed that (1) contains all inequalities of
the type

If(z0)|%f (z5)]° < A(p,a,b,c,d,e)(1—p;)%(1 —05) %2, —257¢,

which hold subject to |f(z,)| Z |f(25)| = 1 and |z, —2,| = $max (1 — gy, 1 —g,).
It is possible to prove that (1) remains sharp (for appropriate choice of y)
even under the additional restriction that |2,|=|z,| (unpublished).

We shall assume that |2,| =|2,| =p; and that 0<d < |0;— 0,| < 27w —6. If
we assume further that!

If(29)] > A(1—))7%#
for some g € (0,1], then, taking y=p8/(2—8) in (1) we find
If(z0)] < A(p,6,8)(1—01))7*®, «(f) = (4—26—p%/(2-5) .

Note that «(1)=1 and x(8) + 2 as §{0 as expected.
In the same way, the assumption that

|f(21)] > A(1—py)~P®

If(ze)l < A(p,8,8)(1—e1) 7",

a remark we shall need in Section 4.

leads to
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1 Throughout 4 will denote some positive absolute constant not necessarily the same
at each occurrence.



106 B. G. EKE

2.

Given § € (0,1], it is natural for a fixed positive p to introduce a class
C(B) of areally mean p-valent functions f in the unit disk for which it is
possible to find sequences {r,}, {0,,}, {0,2} With

rpatl (m—>00), 8 < [0,—0,,] < 27—06 (all n)
and having the properties
(@) If(rae®™)| > A(L=r,) 20, |f(r,e)] > A(1—r,)?F (all ).

In [1] this was done for =1 and certain smoothness criteria obtained
for the growth of f,f' and the Taylor coefficients of f. We shall prove

THEOREM. C(B) is empty if 0<f<1.

The reason for this situation is something like this. In order that the
left hand side and right hand side in (1) should have the same order of
magnitude when g,,0, are near 1 and |z, —2z,| =, it is necessary that the
area of the image of w=Ff(z) lying in an annulus R < |w| < CR, where C is
a large constant, arises roughly in a fixed proportion from points near z,
and points near z,, if R is large, and [f(z,)| > CR. On the other hand, if
|f(z5)] < R<CR<|f(2;)| the corresponding area must arise almost en-
tirely from points near z;,. This leads to a contradiction if there is a
second such pair z,’,2," with

f(z'I > Clf N1

If(z2)] > C|f(2)] -

These conditions are satisfied in the class C(f) if f<1. If =1, we may
have |f(z,)]=|f(2,)] so that the contradiction fails. We now proceed to
give details of the proof.

and if

3.

We can assume that 0,, > ¢;, 0,5 > @, (n > o©) where 6 < |p,—¢,| <
27 — . If this is not so we extract appropriate subsequences and re-label.
Let 4,,4, be disjoint open sectors in |z| <1 having the origin as vertex
and being symmetric about argz=¢,,p, respectively.

If n(w) is the number of solutions of f(z) =w in |z| < 1 counted according
to multiplicity, we write

p(R) = (1/27) {Z*n(Re®)d0  (R>0).
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Let p;(R),py(R) be the analogous functions relating to A4,,4, respecti-
vely so that

(3) D1(R) +po(R) = p(R). (B>0).

We denote by M,(r) (k=1,2) the supremum of |f(2)| for |z|=r, z€ 4,
and consider, in the definition of C(f), only those » for which M ,(r) is
attained nearer to argz =g, than to the boundary of 4, (k=1,2). Then
[2, Theorem 2.4] indicates that

M;(r) d.R

4 2log(l—r)-t

4) e Tprm) < 2logL-rr A0,
My) AR

5 2log(l—7)t

(5) oo Ty < Zlogl-ry+A0),

where R, is any suitable fixed number. In fact an intermediate map of
4, onto the unit disk is needed to obtain (4), (5) from [2, Theorem 2.4].
Since such a map possesses an angular derivative at €™ the application
is legitimate provided we modify the additive constant in [2, Theorem 2.4]
from A(p) to A(p,d). We also need [2, Lemma 2.1] which says

SRg dR

(®) o Bp(B)

z ptlog(R,y/Ry) -1,
for By>Ry>|f(0)] =|ay.

4.
Let ¢ be a real parameter. Schwarz’s inequality and (3) give

1 2 1 ¢
(-—+—) (Prtps) = (—+—) .
P11 D2 P11 P2

IIA

(ngmfﬁ-m)z

We integrate
(7) (1+¢)*/Bp(R) = 1/Rpy(R)+c?/Rpy(R)
to M,(r,) and use (5), (6) and
log My(r,) 2 log|f(rue®™)| 2 pplog(1—r,)"+A4
to obtain

SMz(fn) dR

N -—é;h(_R_) = {(1+c¢)?f—2c*} log(l—r,) 1+ A(d,p) .
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Taking ¢=p/(2—B), this gives

Myro) AR _
(®) o i 2 2P12=F) log(1=r. ) 1440,
We rewrite (8) as
, My dR _ N
®) e T = =B logU-r )14 K,

where {K,} is a sequence with finite infimum. We assume that the sup-
remum is infinite and obtain a contradiction. Extract a subsequence
which tends to + o and re-label so that this subsequence is itself {K,}.
From (6),

SMl(rn) dR SMm.) dR

st B B) = Aata Tip(R) = F 1B WO =

v

and, adding this to (8)’, we deduce

(9) ptlogM(r,)
< SMI("M) dR

= )&, RPI(R)+%+Z)—1 log My(r,) — K, — 2B/(2 — B) log(1 —r,)-1

At the end of Section 1, it was remarked that

My(ry) > A(1—1,) 2@
implies
Mz(/rn) < A(p’ﬂ’a)(l—rn)—pﬂ .
However, the assumption that
Ml(rn) > A(l_lrn)-p“(ﬁ) ’
combined with (4), (9) yields
Ky +(o(B) +26/(2—p) - 2) log (1 —r,)7" = p~tlog My(r,) +A(S,p)

which contains the desired contradiction since o(f)+28/(2—p)—2=4.
Consequently the sequence {K,} in (8)" is bounded. The discussion also
shows that

1m dR
Sj;;’n; {1/py(B)—1/p(R)} - o(1) (n - ),
whence
1 R)dR
(10) Sz;"z %)2()—12) = 0(1) (n - o).
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Inequalities (4), (5) are used in proving that {K,} is bounded and reason-
ing similar to the above establishes

Mo dR
11 = 2log(l—r,)1 1
an Voo T = LB 140,
Myrw) AR
12 = 2log(l1-r,)14+0(1),
(12) V. FprE) = 2817100
as n — oo,
5.
We return to (7) with ¢=p/(2— ) and integrate to find
R dR R dR R dR
13 < (2-8)2 2 .
(13) SRO pm = 2P Szeo ) P SRo Epy(R)

When R’ =M,(r,), we can use (8)’, (12), to show that the right hand side
of (13) is equal to

((2—B)*28/(2—B) +26%) log (1 —r,,)* + O(1)
= 4flog(l—7,) 1+ 0(1) as n—> oo.
But (6) with R,= M,(r,) indicates that the left hand side of (13) is at
least
48 log(1—r,)t—p~tlogR,—2
as n — oo. Thus

R dR R dR SR' dR

2 JE——- | _—
o T Vs, o

(14) -7 | 0 Tl

is a non-negative function of R’ which is bounded above on the sequence
{M Z(rn)}'

Let E(Ry, R') denote the expression (14). In view of (7) (with ¢=
B/(2—P)) E(Ry,R') increases with R’. Thus E(R,,R’) is a bounded func-
tion of R’ on (R, + o).

Since (6) was used in the above discussion we have also shown that

R dR
—_— = p-1 ' 1 R’ — o).
(15) SRO ) p~tlogR' +0(1) (as )

6.
To complete the proof we use E(Ry, M,(r,))=0(1) as n — oo, which,
with (11), (15) gives
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(16) = 4pt log M,(r,) — 2(2—B)? log (1—r,) 1 +0(1)

g2 SM1(rn) dR
Ro  Rpy(R)
= O(log(1-r,)™) as m - oo,
since M,(r,)=0(1—r,)~? ([2, Theorem 2.5]).
Now
My(rp) > A(L—r1,)220,  My(r,) < A(1—1)~P*

and so (6), (10), (16) combine to give

(x(8)—B) log (1 —r,)1—0(1) < SMl(rn) dR

Ma(rn) Rp(.R)
< (SMm) pz(R)dR)* (SMl(r,o dR )*

Myra) Rp?(R) M) Rpy(R)
O({log (1 —r,)~1}) (n —~ o)

and unless «(8)=p (i.e. B=1) this produces a contradiction for large
enough n and establishes that the class C(f) is empty if 8 € (0,1).

7.

Finally we remark that the following result can be established by
arguing along the lines of the examples in [1].

Let §e€(0,1) and suppose u(r) is a positive function on (0,1) which
decreases to 0 as r 4 1. Then there is a univalent function f and a se-
quence {r,} with r, 4 1 (n - oo) for which

|f(rn)l > A(l—r'n)—a(ﬂ)’ |f('-rn)l > /l‘(rn)(l'_rn)_ﬁ (7L= 1’2" . ) .

(The function u could be associated with the sequence {r,} rather than
with {—r,}.)

The author acknowledge the referee’s useful remarks.
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