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SUMS OF ROGTS OF UNITY

TIMO OJALA
1. Introduction.

Let B be a cyclotomic integer lying with its conjugates in a certain
circle |z| < R. Classically g can be represented as a sum of roots of unity.
If R is small, it is quite natural to suppose that § can be given as a
sum of only a few roots of unity. Indeed, according to a theorem of
J. W. S. Cassels [1], if BR2=5.01 then 8 can be represented as the sum of
at most two roots of unity excluding some exceptional cases.

If B lies with its conjugates in |z| <R, then the same is true of any
conjugate of § multiplied by any root of unity. Hence, for our problem,
we can consider two cyclotomic integers « and § as equivalent (x~p)
if & is a root of unity times a conjugate of 5. We denote as usual by Iﬁl
the maximum of the absolute values |§’| of the conjugates g’ of §.

The object of this paper is the following:

TrEOREM 1.1. Let R?<6. If f is a cyclotomic integer with l?.‘f] <R, then
one of the following conditions is satisfied:

I. B can be expressed as the sum of at most 3 roots of unity.
I1. B is equivalent to one of the numbers

(Es+ 51 + (Es2+Es%)e
T+ (1+&,+8%e
L+ (14 830+ 830"

for some root ¢ of unity, where {y=exp(2ni/N).
II1. B is equivalent to an element of a certain finite set E(R).

J. W. S. Cassels [1] has proved this theorem for E?=5.01. In this case
the two latter possibilities in II do not occur. By taking into account the
results of A. J. Jones [2] concerning the sums of three roots of unity,
we have immediately

THEOREM 1.2. Let R,2< (1 +l/§)2=5.8284 ... Suppose that B is a cyclo-

tomic integer. A mnecessary and sufficient condition that [ﬁ| < R, is that one
of the following conditions is satisfied:
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I. B can be expressed as the sum of at most 2 roots of unity.
II. B is equivalent to one of the numbers

1+o—p™!
(Cs+ 84 + (G2 + 80
for some root ¢ of unity.
II1. B s equivalent to an element of a certain finite set E(R,).

This corresponds to the conjecture 2 of R. M. Robinson [3] when
R,2=5. According to Cassels [1] this theorem is correct for R,2=5.01.
On the other hand we shall prove that Theorems 1.1 and 1.2 do not

hold if R2=6 and R2=(1+}/2)

In the proof of Theorem 1.1, methods similar to those in [1] will be
used. I am grateful to Professor Cassels for suggesting that Minkowski’s
linear forms theorem could be used in the proof of Theorem 1.1. This
will considerably shorten the proof. I am also very grateful to Professor
Ennola for many helpful comments.

2. Preliminaries.

The proofs of Lemmas 2.1-2.8 and 2.11 can be found in Cassels’ paper
[1].

For any algebraic number « we shall denote by .#(x) the mean of
|o’|2 taken over all the conjugates &’ of «. The function .# is particularly
easy to handle in a cyclotomic field, since then the conjugates of the
algebraic number |x|? are just the |«’|> where &’ runs through the conju-
gates of « and where each conjugate of |x|? occurs the same number of
times.

In the proof of Theorem 1.1 we can suppose that .#(f)< R? since

[B]2 = #(B).
If « is a non-zero algebraic integer, its norm is at least 1 in absolute value
and so M)z 1.

For any integer P> 1 we denote by Q(P) the cyclotomic field Q({p)
obtained by adjoining {,.=exp(2xi/P) to the rational field Q. We con-
sider two cases.

First casg. Suppose, first, that P =pP, where p is a prime and ptP;.
Let & be a primitive pth root of unity. Then any § € Q(P) may be written
in the shape

(2.1) B =358 (x5€Q(PY).
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This representation is not unique since the sum of the &/ vanishes. If g
is an integer the coefficients «; can be chosen as integers. The conjugates
of # over Q(P,) are obtained from g by letting & run through all the
primitive pth roots of unity in the representation (2.1).

The Corollary of Lemma 1 in [1] is as follows:

Lemma 2.1, If § € Q(P) is an integer with
A(B) < Hp+3),

then there 18 a representation

B = Zf;l 2

where 07, <r;<...<rx<p—1 and the y;+0 are integers in Q(P,) and
particularly
X = ¥p-1).

According to the calculations in [1] we have

LemMma 2.2. If B has a representation
B = Zﬁl vi€h (v, € Q(Py), ¥;%0)

where the r; are incongruent modp, then
[B]2 2 (p=X)/(p—1)) 3X, Iy,l?
AB) 2 (p-X)(p=1)) 3L, () .

AB) 2 (p—X)/(p—1))X

and
In particular,
if B is an integer.

SECOND CASE. Suppose that
P = p"P,, ptP,

where p is a prime and N > 2. Let L be an integer with

2L £ N.
Put
P, = PN-LP,
and let £ be a primitive pVth root of unity. Then every g e Q(P) is
uniquely of the shape

(2.2) B =3t (x€Q(Py))
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where the «; are integers if § is. The conjugates of g over Q(P,) are ob-
tained from g by replacing & with the primitive p¥th roots of unity

fkpN—L+1 (k: 1,2,. . '9pL) M

This time we have

Lemma 2.3. If B is as above, then
B2 2 3 loyl?

MB) = Z; M () -

and

In particular,
M) z X

if B is an integer and X of the x; are non-zero.

Let § be a cyclotomic integer, so g € Q(P) for some P =1, where P is
chosen as small as possible. We shall call 8 a minimal cyclotomic integer if

a~f, xeQP)= P =z P.

Since every cyclotomic integer is equivalent to a minimal cyclotomic
integer, we can restrict our attention to the minimal ones. If g is a
minimal cyclotomic integer and Q(P) is the least cyclotomic field con-
taining B, then at least two of the x; are non-zero in any representation
of the type (2.1) or (2.2).

In the following we shall express some estimates of ]ﬂ and #(f) when
B is a cyclotomic integer. On taking into account the proof of Lemma 2
in [1] we have

LeMMma 2.4. Suppose that 0 is a cyclotomic integer but not a root of
unity. Then
MAPB) =% if B~ 1+G5,

3
2
M(B) = 2 otherwise .
According to Lemma 3 we have

LemMma 2.5. Suppose that B is a cyclotomic integer which is neither a
root of unity nor representable as a sum of two roots of unity. Then

MP) 2z 2.
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The following Lemma and its Corollary originates from Robinson [3].

LemmA 2.6. Suppose that § is a cyclotomic integer with

s 4.
Then

B|? = 2+2 cos(2n/N)
for some integer N.

CoroLLARY. Suppose that f+0 is a cyclotomic integer but not a root of
unity. Then
B2z 2.

Lemma 5 in [1] can immediately be generalized into the following form
as Cassels has stated.

Lemma 2.7. Let N be an odd integer. If  is a cyclotomic integer with

!ﬁ|2:2+2 cos(2x/N), then
B~ 1+ly.

Lemma 6 in [1] implies

LemMmA 2.8. Suppose that B is a cyclotomic integer with |§|2=2. Then B
18 equivalent to one of the numbers

147 B
Lt Lyt ~ (14+3)/T))2
1 +Cao+53012 ~ (V5+il/3)/2 .

Lemma 2.9. Suppose that B is a cyclotomic unit but not equivalent to
any of the numbers 1, 1+, 14+, 1+&y, 1+E49. Then

[B]2 = 2+V/3.

Proor. According to Lemma 2.6 and its corollary it is enough to
show that none of the possibilities
[B]2 = 2+2cos(2n/N) (4sN<11)
can occur. By Lemma 2.7, N cannot be 5, 7, 9 or 11. On the other hand,
N cannot be 4, 6, 8 or 10 since none of the numbers 2, 3, 2+]/2 and
(5+)/5)/2 are units.
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Lemma 2.10. If n4= —1 48 a root of unity, then

MEB+n) 27,
MB+2) =T,

Proor. If =1 then the statement is correct. Let n be a primitive
kth root of unity with ¢(k)=2, where ¢ is the Euler ¢-function. If
coso;+1 sinay;, (j,k)=1, are the conjugates of 5, then

M (3+m) = (L/p(k)) X; {(3+ cosa;)? + (sino;)?}
10+ (6/p(k)) 3 cosa; = 10+ (6/2)(—1) = 17

It

since the sum of all the primitive kth roots of unity equals the value
u(k) of the Moebius u-function. The latter assertion is proved in a similar
way.

The following lemma introduced by Cassels is very useful when we
estimate the value of I—FI

Lemma 2.11. Let {c; | 1<j<T} be a finite set of nonnegative real num-
bers with mean u and variance o2 Then

maxc; = u+o%fu.

3. Lemma.
Let 8 be a minimal cyclotomic integer and Q(P) the least cyclotomic
field containing . In this section we are going to prove

LemMa 3.1. Let R2< 6. There is an ny with the following property. Sup-
pose that p 18 a prime and either

P = pPy, (p,Py) =1, p2m,
or
P = PNP,, (p,P,) =1, 2L £ N, p* 2 ny, P, = pN-LP,

where the notations are similar to those in Section 2. Then one of the follow-
tng conditions is satisfied:

L. B is representable as the sum of at most three roots of unity.
II. B ¢s equivalent to one of the following numbers

(Cs+C5%) + (Cs2+ CsPhe
14+ (148,483
1+ (14 {39+ C30™%)0
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Jfor some root g of unity, where {y=exp(2ni/N).

III. [B]2 = R2.

ProoF. According to Section 2, § has a representation

B = Zf;l ?i€7

where & is a primitive pth or pVth root of unity and the y; + 0 are integers
in Q(P,). By minimality we have X > 2. Suppose that X > 6. In the case
of the simple factor Lemmas 2.1 and 2.2 imply

B2 2 #() 2 (p-X)/(p-D)X 2 (p—6)[(p—1))-6 > B2

if p is large enough. In the case of the multiple factor Lemma 2.3 implies
A (B) 2 6 and we are finished. We shall discuss the remaining possibilities
X =2,3,4,5 one by one and all these cases are divided into several sub-
cases.

FIrsT casE. X =2 so that f=9,1+y,£2. By minimality r %7,
modulo p, thus on multiplying 8 by an appropriate power of £ we may
suppose that

B = votyié

where £ is a new primitive pth or p¥th root of unity.

First subcase. ygy, is not a root of unity. By the corollary of Lemma 2.6
we have |y0y1|2g 2.

1A, If [y0y1[2> 2 then Lemma 2.6 implies

yoya|? = 2+2 cos(2n/5) > 2.6 .

On applying a suitable automorphism of Q(P)/Q we may suppose that
lYey1]2>2.6 and

(Iyol +171])? = 4lyoyal > 6.4.

After a suitable automorphism of Q(P)/Q(P,) we have without restric-
tions

IIA

[arg (yo~1y18)I 27[ny .
Hence
[Yot+ 716l > 6 > R?

if n, is large enough.
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1B. If ly0y1|2= 2 then both of the y; cannot be roots of unity. We can

suppose that l?’_olz = 2.

a) If y0|2=2 then according to Lemma 2.8 y, is equivalent to one of
the numbers 1+, 14,4 ¢, and 1+ {50+ C3!2. Thus the condition I or
II of Lemma 3.1 is satisfied since, on the other hand, y; must be a root
of unity.

b) If [yo|2>2 then wz > 2.6 and, without restrictions,

(Iyol+ 1ya)? = lyol2+2V/2+2]y,|2 > 6.1.

The assertion is proved just as in the case 1A.

Second subcase. yqy; is a root of unity. If either y, or y, is a root of
unity, then so is the other and § is the sum of two roots of unity.

Suppose now that y, and y, are not roots of unity. Since p; is a unit
then according to Lemma 2.9 y, is equivalent to one of the numbers

145, L8y 148, 148y or [p222+)/3.

If y,~1+; we have the first possibility in condition IT.

If yy~148,, 144, 144y then [po|2=[y;|2>2+)/3. Thus we can
suppose that

(Iyol + Iyal)? = (2+V/3)+2+(2+)/3)1 = 6

and the assertion is proved just as above.

SECOND CASE. X =3 so that f=y,+p,&1+ 9,8
According to Minkowski’s linear forms theorem there exists a triplet
(u,v1,v5) %(0,0,0) of integers satisfying the inequalities

Iraw—plog] < {p*  (1=1,2)
lu| < 42+1

in the case of the multiple factor. Here w4+ 0. If p¥ is the exact power of
p dividing » then p*¥<42+1 and we can suppose that pl—* is large
enough. Let

u = pru’

ry = kgptF+r)  (i=1,2)

where 0=r,",r,’ <pL*. On replacing the representation of § by a new
one with L —k instead of L we have

B = pot (r 8P Y 4 (ppgt ey
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We may suppose that 0=%r,"+r,’+ 0 since otherwise we are reduced to
the case X =2. Moreover,

Iri'u’ — pEF(v;— k') < dpt* (1=1,2)
lw'| < 42+1.
Hence we may suppose (u,p)=1 originally if we change the notations
when needed. Thus we can apply the automorphism & — &* of Q(P)/Q(P,)
and after multiplying g by an appropriate power of & we may suppose
that
B = yof 0+ & 7", O=ro<ry<ry<iph.

In the case of the simple factor we can draw conclusions of the same
kind. Again (u,p)=1 if p is large enough. Consequently we may suppose
that the exponents satisfy the condition 0=r,<7r; <r,< ip.

If the y; are roots of unity we are finished. In the following at least
one of the y; is not a root of unity.

First subcase. All the r;—r; are distinct modulo p (or pL).

1A. Exactly one of the y; is not a root of unity. Without restrictions
this coefficient is at least }/2 in absolute value. As

BI2=38 = 2 yil2 =842 vi?s&",

we have according to Lemma 2.3

||l3|2‘3 22 (=82 Dy lyailP 2 14+ (40242 1) = 11
in the case of the multiple factor. Hence
[B]2 2 3+V11 > 6

so that III of the enunciation of Lemma 3.1 is satisfied. In the case of
the simple factor we have a slightly weaker estimate due to the differ-
ence between Lemmas 2.2 and 2.3. In the sequel the calculations will be
carried out only in the case of the multiple factor.

Let u and o2 denote the mean and the variance of the |§'|? where g’
runs through the conjugates of §, thus

n = M)
o® = M(|BIP-p) .
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1B. Exactly one of the y; is a root of unity. Lemma 2.4 implies that

po=3;My;) 2 142-15 = 4
0% 2 D MyF;) 2 41.5+2'1 =38

and on applying Lemma 2.11 we have
B> 2 u+o?lu z 6.

In the case of the simple factor |7§|2 = R? if p is large enough.

1C. None of the y; are roots of unity. Now yx>4.5, 0222-1.5+4-1=17
since all the y,7; cannot be roots of unity. The assertion is clear.

Second subcase. All the r;—r; are not distinct modulo p (or pL). The
only possible congruence is r, —r, =r; —7,, that is to say r,=2r, modulo p
(or pL). By minimality r, is prime to p and so we can suppose that

B = votyi&+y£:.
In the following we shall show that
(3.1) A = (lyol+yel)2+ 722 6
after applying a suitable automorphism of Q(P)/Q.

2A. If yyy17, is not a root of unity, we can suppose that |ysy,v./2=2
and so
A z 4lygysl +2[yeyal~ 2 6.

2B. If y4y,7, is a root of unity but yyy, is not, we may assume that
[yovsl?2 2 and so
A 2 4fyeysl+Ivoyal= > 6.

2C. If y4y1y, and yoy, are roots of unity but y, is not, we may suppose
Y022 2+ 2 cos (27/5) = ((J/ 5+ 1)/2)? according to Lemma 2.9. Hence

A Z (lyol +1yol)+1 2 6.

There are no other possibilities since at least one of the y; is not a
root of unity.

Once more a suitable automorphism of Q(P)/Q(P,) is applied so that

(3.2) larg (Faysd?)| < dofng,  larg(Foy:é)| < /2.
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It is geometrically obvious that according to the inequalities (3.1) and
(3.2) we have

181> =z R?
if n, is large enough.

THIRD cASE. X =4. Just as at the beginning of the case X =3 we have
B = Yot yiE° +y bttt pykotitu
where s, ¢, >0 and s+¢+u<}p (or }pL). Hence

1B = Ao+ Pe71E%+ Pryelt+ Payab™ + Fayob %+
+ oy af®H + FryaEt + Poyob S+ Pay Eu 4
+ PoyaE T+ Pryof 0+ Poyr 6T+ Py
=do+ Y A@FE+ Y  A@ES
I1Siss+t+u 1Si<s+i+u
A@G)+0 AG)+0
where the A(¢) are integers in Q(P,). In the following we shall consider
only the terms A (3)&¢; similar results hold for the terms of the latter sum.
It is clear that A(s+t+u)=Psy3+0. In the sum 3 A4(7)& there may
occur the following values of the index 4:

8 t u
(3.3) s+t t+u
s+t+u.

We say that two entries in a table such as (3.3) are companions if they
are egual.

First subcase. Suppose, first, that s+¢ has no companion in the table
(3.3).

1A. If t+u also is alone in the table, the same is true for one of the
values s, ¢, . Otherwise we should have s=t=wu contradicting s +££+ u.

In this case
u=MHAPp)z4, o= M(pF-u z8

and the assertion is clear according to Lemma 2.11.
1B. If ¢{+u has a companion in the table (3.3), the only possibility is

s=t+u. If t +u, we have 0% 2 8 and we are finished. Hence we can suppose
that t=w% and without restrictions

B = yot+vaEi+yaE2+y,t.
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In order to calculate the variance o2 we must consider the representation

BI2 = no+m&+ 75~ + ... +maft+ 7,6
where
Mo = [Vol®+ Yal®+ |yal>+ [yal?
Ny = PaV3+VsVa

Ny = PoV2+ VaVa
N3 = Po¥s + 0
Ny = Po¥a + 0.

a) If at most one of the y; is a root of unity, then the assertion is clear
since 2= 5.5 and ¢%22 4.

b) If exactly two of the y; are roots of unity, then 7, or 7, cannot be
a root of unity since either one or two of vy,, v;, ¥, are roots of unity.
Hence ¢2= 5 and on the other hand =5 implying r,8—|2 = 6.

c) If exactly three of the y; are roots of unity then u>4.5.

If either y, or y, is not a root of unity, then 7,0 and 7, is not a root
of unity. Hence 622> 7 and we are finished.

If y, is not a root of unity we can suppose that %, is a root of unity
since otherwise ¢22> 7. Furthermore we can suppose that |y,|?2= 2 which
implies

[1BE=3]2 = (no—3)>+2(Ims|2+ Imsl2+ Imal?) 2 10.
Hence
|—,l?|2 = 3+V1—0 >6.

If 5 is not a root of unity we have without restrictions |y;/2=2 and
again

[1BE=3] 2 (no—3)>+2(Inmsl*+Imal?) 2 10.

d) In the remaining case all the y; are roots of unity. We can suppose
that at least one of the coefficients #,,77, equals zero since otherwise
u=4 and o22=8.

In the sequel we shall consider the algebraic integer

0 = IBI*(18I*~5) .

The conjugates 0’ of 6 are

S

" = 1B'1*(1#'*— 5)

where ' runs through the conjugates of §. By means of Lemma 2.11
we shall show that
max6’ = 6
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which implies
[B]2 = 6.

The 0’ +25/4 are nonnegative and have the mean
(3.4) pw* = o2+ u%—5u+25[4.

This formula is needed later, too. As y=4 and ¢*24 we have now
u*=25/4. In order to calculate the variance of the 6’ +25/4 we consider

0+25/4—p* = Ag+ A E+ A E1+ ..+ A8+ AE8

where e.g.
Ay = 27ymg+ 20103 + 39y + 0,
As = 2iymy+ 305+ 27,
Ay = 34+ 2mms+n,?

) Ap = 2ngm, .

If ,=0 then
Ay = 503+ 270ys7sva
Ay = 5ny+ 2775y5°

and

0% = M(0+25/4— %) 2 AM(Ag)+M(4) + M (Ay)

v

29+9+4) = 44 .

On the other hand, if 1, =0, 7,+0, then 4,=>57, implying o*22 50. As
o*2 > 44 we have
max {0’ 4 25/4) = 25/4+i4—
= 25/4
and max 0’ > 6.

Second subcase. We now suppose that s+¢ has a companion in the
table (3.3). There are the possibilities s +t=wu, ¢t +u.

2A. If w=s+t, in the sum > A(7)& there may occur the following
values of the index i:

8 t s+t
S+t 2t4s
28+ 2t .

If s+t, then u =4, 622 8 and we are finished. If s=¢ we can suppose that
B = votyib+yafi+yuft ~ yatyal§TPHyiETP H (67

This corresponds to the case 1B.
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2B. If s+t=t+u the index ¢ may be

8 t 8
s+t t+s
28+t .

a) If t=s we can suppose

B = votyi&+vaE2+ysts.
Hence
1BI2 = mo+mé+inE+ ... +mE8 + 75678
where
N = |vol2+ ya®+ |val®+ lysl?
N = Vo¥1+V1V2+7eVs
Mg = PoV2+V1Vs
Mg = Po¥s + 0.

(i) If none of the y; are roots of unity then IFP; u=6.

(ii) If exactly one of the y, is a root of unity then u=5.5. We can sup-
pose that |8]2 =9, + 75£% + 732, where 7, is a root of unity, since otherwise
022 3. We first apply a suitable automorphism of Q(P)/Q in order to
have

Mo Z Mlye)+ M(y)+M(y)+ Mlyy) 2 5.5

After applying once again an automorphism of Q(P)/Q(P,) we can,
furthermore, suppose that |arg(n,£%)|~0 if n, is large enough. The asser-
tion is clear again.

(iii) If exactly two of the y; are roots of unity then xz5. Without
restrictions ¢2 < 5 so that we have to consider the following three cases:

n =1 =0
1, = 0; 7,, 15 roots of unity
Ny = 0; 1,, N5 roots of unity .
Let
IBI2 = mo+maé®+ 762 .

If %, is a root of unity we can suppose that 7y = 5, |arg(n3£%)|~0 and we
are finished. If 7, is not a root of unity we can suppose that |7;2=2
and |arg(n4£%)|~0. Now we have

N Z 2[ns| + |y12+ [7al® > 2V§+1 )

since at least one of y,,y, is a root of unity. The assertion is clear.
Let
1BI2 = Mo+ ol + g2+ 1af® + 7562 .
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Once again we can suppose that
(3.5) Mo Z 5, larg(nsé®)| ~ 0, |arg(n,é?)| < /3

which implies ﬂﬂz > 6.
The last case is proved likewise.
(iv) If exactly three of the y; are roots of unity then u=4.5 and #,,
73+ 0. It suffices to consider the following two possibilities with ¢2< 7.
It
B2 = no+mé+7ué +mab®+ 7of 2+ 1gé® + 7562

where #;, 1,, 15 are roots of unity, then we can suppose that (3.5) is
satisfied. Hence |§|2= R? if n, is large enough.

If %, =0 we consider such a conjugate of § that |7,| is as large as pos-
sible and (3.5) is satisfied.

(v) If all the y; are roots of unity then u=4. As yyn, —y1mas=717:2+0,
7, and 7, cannot both vanish. Let

0 = 1BI2(1BI2—5) = Ao+ A+ A f 1+ .. + A8+ Ayt
where
Ay = 2jans+ 27ame+ 30y = TN+ 2y671%y3+ 2P0y 5P
Ay = 20mg+3ny+1:® = 5na+mP+ 2P0y1757s
Az = 3ng+ 217,
Ay = 2nymg+n5?
A5 = 2nymg
Ag = ng®.
According to (3.4) the 6’ +25/4 have the mean u* 2> 25/4. It suffices to
show that the variance o*2 of the same numbers satisfies the condition
o*22>37.5.
If either 7, or 7, vanishes, it is easy to see that ¢*2 = 40. Thus we may
suppose that 7,,7,=%0.
If 7, is not a root of unity then Vll(Al)g(7l/f:5—4)2>20. Hence
¢*2> 40 as we required.
Let 7, be a root of unity. Then .#(4,)=9. We subdivide cases ac-
cording as the nonzero number 7, is or is not a root of unity. In each
case it is easy to verify the assertion.

b) Let t+s. As
B = o+ yi&®+peEst +patett,
we have
1BI2 = 1o+ & + 7155 + ol + 7726~ +
+ naésH + ,73{:-—3—4 + ,74523# + ﬁ4§—2s—t .

Math, Scand. 37 - 7
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In this representation the powers of & are distinct, since 4s+2t<3p
(or 3pL). Moreover,

Mo = [yol>+ [Pal*+lval>+ lysl®

N = Po¥1+ 72y

Mg = P12 + 0
fg = PoV2+ V1V
N = Poys + 0.

(i) If at most one of the y; is a root of unity then u=5.5 and 2= 4.
Thus [7312 > 6.

(ii) If exactly two of the y; are roots of unity then x> 5.

Let e.g. y, and y, be roots of unity. Then ¢2= 6 and we are finished.

Let e.g. v, and y; be roots of unity. Then 7, is not a root of unity or
N1,Ms =+ 0. Hence ¢22 5.

All the other possibilites correspond to one of the cases above.

(iii) If exactly three of the y; are roots of unity then #,,13=+ 0. There-
fore, 4 =4.5 and o2z 8.

(iv) Let all the y; be roots of unity. Now u=4. As 5, =y,7,7;, we can
suppose that 7, =7;=0 because otherwise ¢2= 8. Thus

B2 = 4478+ Fpf 4 1y £20H + 77,6 20

where 7, and 7, are roots of unity. Consider the cyclotomic integer

0 = |BI*(I1*—5)
— 7]42548+2l + 27]2"74523-'—2‘ + 1]22521 + 3n4£2s+t+ 2ﬁ27]4£28 + 31«'25[+ e

If ¢+ 2s, then all the powers of £ in the representation of 6 are distinct
gince t+s and 8s+4f<p (or pL). Then u*=25/4 and o*%2 56, which
implies max 6’ > 6.

Let t=2s so that

0 = 04255+ 2ngnab®e + (o® + 3na) 4 + (277amy + 3ma)E% + . . .
If 54+ —n,> then by Lemma 2.10 we have ¢*2>=38 which implies
max 0’ > 6. Let 7,= —n,2 so that
B = 4-+moft+pf~F — mp2E¥ — 2%

We can suppose that arg(n,&') ~x/2 and therefore |8|22 R?, if n, is large
enough.

FourTH cASE. X =5. Just as at the beginning of the case X =3 we

have
B = Vot yiEs+ pabtH 4 ypfotitu 4y fottruty
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where 8, t, , v>0 and s+¢+u+v<ip (or 1pL). Let
B2 = 4o+ 3 A@F+ ¥ A@E

1SiSs+i+u+v 1Si<s+i+u+v
A@)+0 A@®+0

where the A(7) are integers in Q(P;). Now A(s+t+u+v)=7y,=+0.

First subcase. If at most three of the y; are roots of unity then [ﬂ”g
pz6.

Second subcase. If exactly four of the y; are roots of unity then u > 5.5.
We can assume that

(3.6) 1Bz = A+ C&+Ct—<

where C& = A(s+1+u+v)EsH+u+v gince otherwise o%=4. Moreover, we
can suppose that

4,255, || 21, |arg(CE)| S /4
so that [B|2> 6.

Third subcase. Let all the y; be roots of unity. Now we have u=35.

If |B|2 is of the form (3.6), we have m2>6. Therefore, we can suppose
that

|BI2 = 5+ BE + BE-b 4 O+ CE—¢

where 0 <b<c< }p (or }pF) and furthermore B and C are roots of unity,
since otherwise 022 5. Once again we consider

0 = |62 5) )
= (282 2BCEY+e | B2g2b 4 5C & + bBEY 4+ 2BOE-0 + . . . .

If c 4 2b, 3b then ¢*2=120. If ¢ =2b or 3b, in the representation of § there
are equal powers of £ and we have only o*22> 60. The assertion is clear
since u* =4+ 25/4.

This completes the proof of Lemma 3.1 because we showed at the
beginning of the proof that it is enough to consider X <5.

4. Conclusion of the proofs.

Proor oF THEOREM 1.1. Let 8 be any cyclotomic integer with 'ﬂ < R.
Suppose that 8 does not satisfy any of the conditions I or II of Theorem
1.1. Let 8 be equivalent to a minimal cyclotomic integer g, in Q(P)

where P is as small as possible. Then m < R and g, does not satisfy any
of the conditions I or II.
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According to Lemma 3.1 there is no prime power P¥xn 2 (N2x1)
dividing P. Hence P|P* for some fixed integer P* independent of f.
It is trivial that g, is in Q(P*). On the other hand, in Q(P*) there are

only finitely many integers g, satisfying LBTO[ <R. Hence the proof is
complete.

Finally we are going to show that the values of R and R, in Theorems
1.1 and 1.2 are the best possible.

THEOREM 4.1. Theorem 1.2 does not hold if R,=1 +[/§.

Proor. Consider the cyclotomic integers

Br = 1+i+Clos (k=1,2,3,...).

]/5<}/71|<|ﬁ—:|<... <1+V§

so that the g, satisfy the condition m <1 +l/—2_. Furthermore the g, are
inequivalent and they cannot satisfy any of the conditions I or II in
Theorem 1.2, since the integers mentioned in these conditions lie with

their conjugates in the circle |z| g]/E.

‘We have

Also the integers 1+ (14 {,+;3)p or 1+ (14 {39+ C30'2)e mentioned in
Theorem 1.1 could be used instead of the integers 1+1%+¢ in the proof
of Theorem 4.1.

THEOREM 4.2. Theorem 1.1 does not hold if R=)/6.

Proor. We have to show that there are infinitely many inequivalent
cyclotomic integers which do not satisfy any of the conditions I or II
in Theorem 1.1.

Let
B = —L+V 200kt Lo (k=1,2,3,...).

It is easy to see that

1+V§<|_1'< ﬂ2<...<l/5.

Hence the 8, are inequivalent and they do not satisfy the condition II.
Moreover, all the conjugates 8, of the §; satisfy the inequality

1Bl > V2.
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We shall show that only finitely many of the g, can be expressed as
the sum of three roots of unity. The truth of Theorem 4.2 follows from
this since all the sums of at most three roots of unity can be expressed
as the sums of three roots of unity.

Suppose that infinitely many of the 8, are sums of three roots of
unity. Then these numbers ;. satisfy the equivalence relations

B ~ 1+83™+ A"

where (m,M)=(n,N)=1, M = N. The index M cannot be bounded since
the 8, are inequivalent. In the following we consider such a g, that the
corresponding M is large enough. As (m,M)=1, we can find integers =
and y satisfying 1=am+yM, (x,M)=1. Let r=(M —1)/2, M/2—1 or
M/2—2 according as M is odd, M =0 mod4 or M =2 mod4. Then r is
prime to M and 7 is about M/2. On applying an automorphism mapping
Car to {p™ we have

Bie ~ 1+ L™+ 4" ~ 140y +0 = 1+0y"+e

for some root p of unity. As {,," is about —1 then f;. has a conjugate
less than }/2 in absolute value, which is a contradiction.

Theorem 1.1 is perhaps correct for some R_Z_V—é if the cyclotomic

integers equivalent to the numbers —1 +V§Q+92 are excluded. In order
to improve Theorem 1.2 it is necessary to exclude the numbers equivalent
to 1+i+9, 14+ (144830 and 14 (14 50+ {5020 for some root ¢ of
unity. But there may be other exceptional integers to be excluded, too.
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