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CONGRUENCES FOR m-ARY PARTITIONS

GUNNAR DIRDAL

Let s, ,(n) denote the number of partitions of a natural number »
into non-decreasing powers of a given natural number m (m > 1) of which
m? is the maximum.

We put s, ,(n)=0 if n is not a non-negative integer and c,=1 or
2mink.9-1 gecording as m is odd or even. k is a positive integer and [a]
denotes the integral part of a.

The object of this paper is to prove the following two theorems;

THEOREM 1. If there exist k integers j, 0<j<gq, such that

[n/mi] = —1 (modm)
then
Sy, o(mm) = 0 (modmk/c,) .

THEOREM 2. Let q¢>0. Then

S, oM In—m) = 0 (modm¥/c,) .

The proof of Theorem 1 is based on Theorem 1 in Dirdal [3].
Let r,,...,r, denote the digits in the representation of >0 in the
base m,

n =2t rmi-l; 02 r; <m, [njmi-1] = r;(modm) .

Then the conditions in Theorem 1 are satisfied if and only if % of the ¢
first of these digits equal m —1.
In particular, if we for some ¢>1 put

rp=m—1 for j=14,041,... 44+k-1;1+k-1=gq,
then
n = mkH-Y[n/mk+i-14+ 1) —mi-1+¢,; 0=t <mi-1,
and
8y, g(mn) = 0 (modmk/c;) .
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Hence
(1.1) S, of(MEtin—mi+mt) = 0 (modmkcy),
forall m, 121, 0<t,<m* 1 and k+2—1=Zq.

If g=oc0 Theorem 2 is actually a corollary of Theorem 1 and can be
written

Sp(mktin) —s, (mkn) = 0 (modm¥/c;) ,

when using (2.1) and putting s,, ,=s,,.

This result for unrestricted partions (g= o) was first proved for m = p,
p an odd prime, by Rodseth [5]. Gupta [4] proved it later for m > 2.
Andrews [1] has also proved a result conserning unrestricted partitions,
but his result is slightly weaker than the above mentioned. However,
it was Churchhouse [2], discussing computer evidence, who first discovered
congruence properties for unrestricted partitions.

Put s, ,(0)=1 and
Gon,o®) = 270 Sm,o(R)2" (lzf<1).
The generating function of s, ,(n) is
G, (@) = TTo (1—am)1,
and from this it is easily seen that

Gm,q(x) = (l _x)_IGm,q-—l(xm) .

Hence

(21) sm,q(n)_sm,q(n_ 1) = Sm,q—l(n/m) ’
and from (2.1) we deduce

(22) Sm,q(mn) = z?=0 8m,q—1(l) .

Noticing that s, o(n)=1, (2.2) gives s,, ,(mn)=n+ 1, which proves Theo-
rem 1 and 2 for ¢=1. Suppose therefore that ¢>1 in the rest of this

paper.
Define the integers r;=r;(n) and n;=mn,(n) recursively by

np = M +7, My=n 071,y <m.
Hence [n/m/]=n; and since
[[n/m)fm?=1] = [n[mi+i-1],

we have r;(n;) =r;.4(n).
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Dirdal [3] has proved that there exist integers a,, ,(¢); k <q; depending
on m, such that
(2.3) Sm,q(mn) = 3¥_1 @y 168, il [nfmilm)  (modm¥)
where
(2.4) ay, (1) = 0 (mod 2¢M-1mi-1): (i) = mi-! (mod2), u(¢)=0,1,
O, 1(1) = r1+ 14+ 3705 @ 54 (1),
(2.5) | @ 1(6) = SPG @y pa(6) +om Zyryreme e trmTiolg , (6-1) -
—(r+ ) I a4 (6-1) 250k,
and
(2.6) @y 1(8) = ay (1) if ¢>1 and [n/m]=[n'/m] .

We put a,, ;(:)=0if i>k.
Now we have the

LeMMA. Let 12¢=k. If ry(n)=m—1 then
@y k(1) = 0 (mod 2¢)-1ypt) |
Proor. For the definition of u(k) see (2.4). We use induction on k.

By (2.5) we get
m(m+1) mk—1

(2.7) mdanl) = —o— .
Hence
r+1 if k=1
a, (1) = m(m+1) mk-1-1 .
m (1) r+1+ ( ) if k>1,
2 m—1

which proves the lemma for 7= 1. Specially we see that the lemma holds
for k=1. Assume the lemma for all 2,12k <K —1. (2.6) and (2.7) gives
m(m+1) mE-1—-1

_ .
ot ayg4() = [ 2 m—1

m 37 Gy g a(6) if i>1.

if =1

Hence from (2.4); 1<i<K;

N (modm?) if m is odd
2"0 &, g-1(1) = 0‘ (modm/[2) if m is even .
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Let 2<¢< K. If [{/mi-2]=m —1 then r,_,(t)=m —1, hence by the induc-
tion hypothesis

o g4(t—1) = 0 (mod 2#E-D-1jpi-1)

Now, r;,=m —1. Thus we have from (2.4) and (2.6) when 7> 2

rot...+rymi—2-1 mi—-3m—1)—1 rot... +rimi—2—1
> yrai—=1)=m 3 @ur,(i-1)+ > & x-1(t—1)
t=0 1=0 t=mi=(m—1)
(modmi-1) if m is odd

= (modmi-1/2)  if m is even .
If i=2

20t o, r1(1) = 30 4y g a(1) ~ @y, g a(1)
_ (modm) if m is odd
- (modm/2) if m is even .

Hence (2.5) gives when r,=m—1 and 25i2 K;

a, (6) = 0 (modm?) if m is odd
mEYLT T (modmi[2)  if m is even

which completes the proof of the lemma.

From (2.1) and (2.2) we obtain

8, o(mm) = (ry+1)s,, ,1(mn,) (modm) .
Hence
$mqlmm) = TIEZ4 ([nfmi]+1)  (modm) .

which proves Theorem 1 for k=1. Assume by induction Theorem 1 for
allk, 1sksK-1.

We note that [n/m/]=r,,, (modm). Put 1Si<K; K<q.

Suppose that A4, of the numbers r;; I=1,...,7; are equal to m—1,
hence K —1; < q—1 where K — 4; denotes the number of r;; I=:+1,...,q;
equal to m—1. If ¢—4>0 we thus have from the induction hypothesis
since 7y(n;) =r;.4(n);

(modm®~%lcy_,) if 2;,>0.

(2.8) 8, q-i(mn;) = 0 (modmE-cyk_,) if 4,=0

Note that ry;=m—1 if i=1; or 1=K =q. Let 1<¢<K. By means of
(2.4), (2.8) and the lemma we obtain

Ay, g (1)8pn, g—i(mm;) = 0 (modmE/[cyg) .
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Thus from (2.3)
Sm,g(mn) = @, g(1)8, g—1(mn;) (modmE/cy) .
Hence if ¢ denotes the smallest integer such that r,.=m—1; 1<0<gq;
we easily deduce
'gm,q(mn Hz =0 n, l)sm q—a(mn ) (mOde/cK) .
Now, since ry(n,_,)=r,(n)=m—1 the lemma gives

= (modm) if m is odd

Oy, (1) = (modm/2) if m is even,

and from the induction hypothesis
S, g—olmn,) = 0 (modmE-1fcp ).

This completes the proof of Theorem 1.

If k<q Theorem 2 follows immediately from (1.1) when ¢=1. It re-
mains to prove Theorem 2 in the case k>gq.
From (2.2) we have

sm,q(mn - m) = Z;‘L=1 8m,q—1(n _.7) .

By induction on k, it is now easily proved that there exist integers
bu(j); 0<k<q—1; depending on m, such that

(2'9) sm,q(mk+1n—m) z] 1 Sm, q—(k+1)( _.7) s
where

. 1 if k=0
(2:19) o)) = {2"’ byali) if £>0.

There exist integers g,(I); 1=k=<g—1; depending on m, such that

k11
(2.11) zl 10x(Dbs1(d) = ( )m( ),

where g,(1)=1.
From (2.10) we see that (2.11) holds for £=1. Assume by induction
that (2.11) holds for all k4, 1<k<K; K<g—1; then

. , K
1 S e aWti) = (g ) ),
and from (2.10)

S e a(Dbrarald) = (;{) m(K;l) +m(K) 3 ( K. l) VR,
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when observing that

(mj+ l)
K )
being a polynomial in j of degree K >2, can be written
mit1 . ) .
(2.12) ( 9K ) = (}{) mE + 3 (K’_l) Vi1

where v ; are integers depending on m. Since

K—-1 U (12{)_(K_2t+1) l— 1 b .
Qi1 2 m v 10—l =1+ 1)bg_4(J)
. K
tIiII (Kj—l) ”x,tm(Z)»

it is immediately seen that (2.11) holds for k=K and that

Ky _ (K—t+1
(2.13)  og(l+1) = eg(+1)-2i_; m(z) E )”K,tQK—t(l—'t‘i'l)y

for 15I<K-1.
We put og(l+1)=0 if K <l+ 1. Computing coefficients of -1 on the
two sides of (2.12)

g, = (K—1)mE— (K —-3)ym&-1,

From this and (2.13) we obtain

_ (modmX-1) if m is odd
ox(l+1) = pg,(I+1) { (modmXE-1/2) if m is even .
Hence
_ (modm?) if m is odd
(2.14) ex(l+1) =0 ! (modm/2) if m is even .

Now we can prove that
min _ (mod m¥+) if m is odd
(2.15) 2751b(y) = 0 { (modm*+/2k)  if m is even ,

when 0<k=<g-1.

This is immediately satisfied for £=0,1. Assume by induction that
(2.15) holds for all k, 1sk<K; K<q-—1.

If p is a prime we define the natural number y by

pUE+D;  prt (K+1)0.

Math. Scand. 37 — 6
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Hence
p = 35K +1/p] < 355t = (Ig)
Thus
mn+1\ (Y Kt
(2.16) ( K41 ) m =0 (modmKH),

From (2.11) we have
. K+1
S5 bl + 3 0x0) T8 i) = 33 (§) )

mn+1\ (551
( K+1 ) " )
Hence from (2.14), (2.16) and the induction hypothesis

n N (mod mE+t) if m is odd
2i-1bx(j) = (modmE+[2K) if m is even ,

which completes the proof of (2.15).
Now, let £>g. From (2.9) and (2.15) we obtain

S, g(MFIm—m) = 8, (MEDHpF—a-"Dy —m)

E—(—) _ o | (modmk) if m is odd
204 beal) = 0 = (modmk/2¢-1)  if m is even ,

which completes the proof of Theorem 2.

REFERENCES

1. G. E. Andrews, Congruence properties of the m-ary partition function, J. Number The-
ory 3 (1971), 104-110.

2. R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Cam-
bridge Philos. Soc. 66 (1969), 371-376.

3. G. Dirdal, On restricted m-ary partitions, Math. Scand. 37 (1975), 51-60.

4. H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972), 343-345.

5. O. Rodseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos.
Soc. 68 (1970), 447-453.

ROGALAND DISTRIKTSHUOGSKOLE, NORWAY



