CONGRUENCES FOR m-ARY PARTITIONS

GUNNAR DIRDAL

1.

Let $s_{m,q}(n)$ denote the number of partitions of a natural number n into non-decreasing powers of a given natural number $m \ (m > 1)$ of which m^q is the maximum.

We put $s_{m,q}(n) = 0$ if n is not a non-negative integer and $c_k = 1$ or $2^{\min(k,q)-1}$ according as m is odd or even. k is a positive integer and [a] denotes the integral part of a.

The object of this paper is to prove the following two theorems;

Theorem 1. If there exist k integers j, $0 \le j < q$, such that

$$\lceil n/m^j \rceil \equiv -1 \pmod{m}$$

then

$$s_{m,\,q}(mn) \, \equiv \, 0 \, \pmod{m^k/c_k} \; .$$

Theorem 2. Let q > 0. Then

$$s_{m,n}(m^{k+1}n-m) \equiv 0 \pmod{m^k/c_k}.$$

The proof of Theorem 1 is based on Theorem 1 in Dirdal [3].

Let r_1, \ldots, r_l denote the digits in the representation of n > 0 in the base m,

$$n \, = \, \textstyle \sum_{j=1}^l r_j m^{j-1}; \quad 0 \, \leqq \, r_j \, < \, m, \, \, [n/m^{j-1}] \, \equiv \, r_j \, (\bmod \, m) \, \, .$$

Then the conditions in Theorem 1 are satisfied if and only if k of the q first of these digits equal m-1.

In particular, if we for some $i \ge 1$ put

$$r_j = m-1$$
 for $j = i, i+1, \dots, i+k-1$; $i+k-1 \leq q$,

then

$$n \ = \ m^{k+i-1}([n/m^{k+i-1}]+1) - m^{i-1} + t_i \, ; \qquad 0 \le t_i < m^{i-1} \ ,$$

and

$$s_{m,q}(mn) \equiv 0 \pmod{m^k/c_k}$$
.

Received February 5, 1975.

Hence

(1.1)
$$s_{m,q}(m^{k+i}n - m^i + mt_i) \equiv 0 \pmod{m^k/c_k} ,$$

for all $n, i \ge 1, 0 \le t_i < m^{i-1}$ and $k+i-1 \le q$.

If $q = \infty$ Theorem 2 is actually a corollary of Theorem 1 and can be written

$$s_m(m^{k+1}n) - s_m(m^kn) \equiv 0 \pmod{m^k/c_k},$$

when using (2.1) and putting $s_{m,q} = s_m$.

This result for unrestricted partions $(q = \infty)$ was first proved for m = p, p an odd prime, by Rödseth [5]. Gupta [4] proved it later for m > 2. Andrews [1] has also proved a result conserning unrestricted partitions, but his result is slightly weaker than the above mentioned. However, it was Churchhouse [2], discussing computer evidence, who first discovered congruence properties for unrestricted partitions.

2.

Put $s_{m,q}(0) = 1$ and

$$G_{m,q}(x) = \sum_{n=0}^{\infty} s_{m,q}(n) x^n$$
 $(|x| < 1)$.

The generating function of $s_{m,q}(n)$ is

$$G_{m,q}(x) = \prod_{l=0}^{q} (1-x^{m^l})^{-1}$$
,

and from this it is easily seen that

$$G_{m,q}(x) = (1-x)^{-1}G_{m,q-1}(x^m)$$
.

Hence

$$(2.1) s_{m,q}(n) - s_{m,q}(n-1) = s_{m,q-1}(n/m),$$

and from (2.1) we deduce

$$(2.2) s_{m,q}(mn) = \sum_{l=0}^{n} s_{m,q-1}(l) .$$

Noticing that $s_{m,0}(n) = 1$, (2.2) gives $s_{m,1}(mn) = n+1$, which proves Theorem 1 and 2 for q = 1. Suppose therefore that q > 1 in the rest of this paper.

Define the integers $r_j = r_j(n)$ and $n_j = n_j(n)$ recursively by

$$n_j = m n_{j+1} + r_{j+1}, \quad n_0 = n, \quad 0 \le r_{j+1} < m.$$

Hence $[n/m^j] = n_j$ and since

$$[[n/m^i]/m^{j-1}] = [n/m^{i+j-1}]$$
 ,

we have $r_j(n_i) = r_{j+i}(n)$.

Dirdal [3] has proved that there exist integers $a_{n,k}(i)$; $k \leq q$; depending on m, such that

$$(2.3) s_{m,q}(mn) \equiv \sum_{i=1}^k a_{n,k}(i) s_{m,q-i}([n/m^i]m) \quad (\text{mod } m^k) ,$$

where

$$(2.4) \hspace{1cm} a_{n,\,k}(i) \, \equiv \, 0 \ (\operatorname{mod} 2^{\mu(i)-1} m^{i-1}) \, ; \hspace{0.5cm} \mu(i) \, \equiv \, m^{i-1} \ (\operatorname{mod} 2), \ \mu(i) = 0, 1 \, ,$$

$$(2.5) \quad \begin{cases} a_{n,k}(1) = r_1 + 1 + \sum_{t=0}^{m-1} a_{t,k-1}(1), \\ a_{n,k}(i) = \sum_{t=0}^{m^i-1} a_{t,k-1}(i) + m \sum_{t=0}^{r_2 + r_3 m + \dots + r_i m^{i-2} - 1} a_{t,k-1}(i-1) - (r_i + 1) \sum_{t=0}^{m^{i-1}-1} a_{t,k-1}(i-1) & 2 \le i \le k, \end{cases}$$

and

(2.6)
$$a_{n,k}(i) = a_{n',k}(i)$$
 if $i > 1$ and $\lfloor n/m \rfloor = \lfloor n'/m \rfloor$.

We put $a_{n,k}(i) = 0$ if i > k.

Now we have the

LEMMA. Let
$$1 \leq i \leq k$$
. If $r_i(n) = m-1$ then

$$a_{n,k}(i) \equiv 0 \pmod{2^{\mu(k)-1}m^i}.$$

PROOF. For the definition of $\mu(k)$ see (2.4). We use induction on k. By (2.5) we get

(2.7)
$$\sum_{n=0}^{m-1} a_{n,k}(1) = \frac{m(m+1)}{2} \frac{m^k - 1}{m-1}.$$

Hence

$$a_{n,\,k}(1) \,=\, \begin{cases} r_1+1 & \text{if } k=1 \\ r_1+1+\frac{m(m+1)}{2} \,\, \frac{m^{k-1}-1}{m-1} & \text{if } k>1 \,, \end{cases}$$

which proves the lemma for i=1. Specially we see that the lemma holds for k=1. Assume the lemma for all $k, 1 \le k \le K-1$. (2.6) and (2.7) gives

$$\sum_{t=0}^{m^{i}-1} a_{t,K-1}(i) = \begin{cases} \frac{m(m+1)}{2} \frac{m^{K-1}-1}{m-1} & \text{if } i=1\\ m \sum_{t=0}^{m^{i}-1-1} a_{ml,K-1}(i) & \text{if } i>1. \end{cases}$$

Hence from (2.4); $1 \le i \le K$;

$$\sum_{t=0}^{m^i-1} a_{t,K-1}(i) \equiv 0 \begin{cases} (\bmod m^i) & \text{if } m \text{ is odd} \\ (\bmod m^i/2) & \text{if } m \text{ is even} \end{cases}.$$

Let $2 \le i \le K$. If $[t/m^{i-2}] = m-1$ then $r_{i-1}(t) = m-1$, hence by the induction hypothesis

$$a_{t,K-1}(i-1) \equiv 0 \pmod{2^{\mu(K-1)-1}m^{i-1}}$$
.

Now, $r_i = m - 1$. Thus we have from (2.4) and (2.6) when i > 2

$$\begin{split} \sum_{t=0}^{r_2+\ldots+r_im^{i-2}-1} a_{t,K-1}(i-1) &= m \sum_{t=0}^{m^{i-3}(m-1)-1} a_{ml,K-1}(i-1) + \sum_{t=m^{i-2}(m-1)}^{r_2+\ldots+r_im^{i-2}-1} a_{t,K-1}(i-1) \\ &\equiv 0 \begin{cases} (\bmod\,m^{i-1}) & \text{if m is odd} \\ (\bmod\,m^{i-1}/2) & \text{if m is even} \end{cases}. \end{split}$$

If i=2

$$\begin{split} \sum_{t=0}^{r_2-1} a_{t,K-1}(1) &= \sum_{t=0}^{m-1} a_{t,K-1}(1) - a_{m-1,K-1}(1) \\ &\equiv 0 \begin{cases} (\bmod m) & \text{if } m \text{ is odd} \\ (\bmod m/2) & \text{if } m \text{ is even} . \end{cases} \end{split}$$

Hence (2.5) gives when $r_i = m - 1$ and $2 \le i \le K$;

$$a_{n,K}(i) \equiv 0 \begin{cases} (\bmod m^i) & \text{if } m \text{ is odd} \\ (\bmod m^i/2) & \text{if } m \text{ is even ,} \end{cases}$$

which completes the proof of the lemma.

From (2.1) and (2.2) we obtain

$$s_{m,q}(mn) \equiv (r_1+1)s_{m,q-1}(mn_1) \pmod{m}$$
.

Hence

$$s_{m,q}(mn) \equiv \prod_{i=0}^{q-1} ([n/m^i]+1) \pmod{m}$$
.

which proves Theorem 1 for k=1. Assume by induction Theorem 1 for all k, $1 \le k \le K-1$.

We note that $[n/m^j] \equiv r_{j+1} \pmod{m}$. Put $1 \le i \le K$; $K \le q$.

Suppose that λ_i of the numbers r_l ; $l=1,\ldots,i$; are equal to m-1, hence $K-\lambda_i \leq q-i$ where $K-\lambda_i$ denotes the number of r_l ; $l=i+1,\ldots,q$; equal to m-1. If q-i>0 we thus have from the induction hypothesis since $r_i(n_i)=r_{i+i}(n)$;

$$(2.8) s_{m,q-i}(mn_i) \equiv 0 \begin{cases} (\bmod m^{K-\lambda_i}/c_{K-\lambda_i}) & \text{if } \lambda_i > 0 \\ (\bmod m^{K-1}/c_{K-1}) & \text{if } \lambda_i = 0 \end{cases}.$$

Note that $r_i = m-1$ if $i = \lambda_i$ or i = K = q. Let $1 < i \le K$. By means of (2.4), (2.8) and the lemma we obtain

$$a_{n,K}(i)s_{m,q-i}(mn_i) \equiv 0 \pmod{m^K/c_K}$$
.

Thus from (2.3)

$$s_{m,q}(mn) \equiv a_{n,K}(1)s_{m,q-1}(mn_1) \pmod{m^K/c_K}$$
.

Hence if σ denotes the smallest integer such that $r_{\sigma} = m-1$; $1 \le \sigma < q$; we easily deduce

$$s_{m,q}(mn) \equiv \prod_{i=0}^{\sigma-1} a_{n_i,K}(1) s_{m,q-\sigma}(mn_{\sigma}) \pmod{m^K/c_K}$$
.

Now, since $r_1(n_{\sigma-1}) = r_{\sigma}(n) = m-1$ the lemma gives

$$a_{n_{\sigma-1},\,K}(1) \, \equiv \, 0 \begin{cases} (\bmod \, m) & \text{if } m \text{ is odd} \\ (\bmod \, m/2) & \text{if } m \text{ is even} \end{cases},$$

and from the induction hypothesis

$$s_{m,\sigma-\sigma}(mn_{\sigma}) \equiv 0 \pmod{m^{K-1}/c_{K-1}}.$$

This completes the proof of Theorem 1.

If $k \le q$ Theorem 2 follows immediately from (1.1) when i=1. It remains to prove Theorem 2 in the case k>q.

From (2.2) we have

$$s_{m,q}(mn-m) = \sum_{j=1}^{n} s_{m,q-1}(n-j)$$
.

By induction on k, it is now easily proved that there exist integers $b_k(j)$; $0 \le k \le q-1$; depending on m, such that

$$(2.9) \hspace{1cm} s_{m,\,q}(m^{k+1}n-m) \,=\, \sum_{j=1}^n \,b_k(j) s_{m,\,q-(k+1)}(n-j) \ ,$$

where

$$(2.10) b_k(j) = \begin{cases} 1 & \text{if } k = 0 \\ \sum_{i=1}^{mj} b_{k-1}(i) & \text{if } k > 0 \end{cases}.$$

There exist integers $\varrho_k(l)$; $1 \le k \le q-1$; depending on m, such that

(2.11)
$$\sum_{l=1}^{k} \varrho_{k}(l) b_{k+1-l}(j) = {j \choose k} m^{{k+1 \choose 2}},$$

where $\varrho_k(1) = 1$.

From (2.10) we see that (2.11) holds for k=1. Assume by induction that (2.11) holds for all k, $1 \le k < K$; $K \le q-1$; then

$$\textstyle \sum_{i=1}^{mj} \; \sum_{l=1}^{K-1} \varrho_{K-1}(l) b_{K-l}(i) \, = \, \binom{mj+1}{K} \, m^{\binom{K}{2}} \, ,$$

and from (2.10)

$$\textstyle \sum_{l=1}^{K-1} \varrho_{K-1}(l) b_{K+1-l}(j) \, = \, \binom{j}{K} \, m^{\binom{K+1}{2}} + m^{\binom{K}{2}} \, \sum_{l=1}^{K-1} \, \binom{j}{K-l} \, \nu_{K,l} \, ,$$

when observing that

$$\binom{mj+1}{K}$$
,

being a polynomial in j of degree $K \ge 2$, can be written

$$(2.12) \qquad {mj+1 \choose K} = {j \choose K} m^K + \sum_{l=1}^{K-1} {j \choose K-l} \nu_{K,l} ,$$

where $v_{K,l}$ are integers depending on m. Since

$$\begin{split} \sum_{l=1}^{K-1} \sum_{t=1}^{l} m^{\binom{K}{2} - \binom{K-t+1}{2}} \, \nu_{K,t} \varrho_{K-t} (l-t+1) b_{K-l}(j) \\ &= \, \sum_{l=1}^{K-1} \, \binom{j}{K-l} \, \nu_{K,l} m^{\binom{K}{2}}, \end{split}$$

it is immediately seen that (2.11) holds for k=K and that

$$\begin{array}{ll} (2.13) & \varrho_K(l+1) = \varrho_{K-1}(l+1) - \sum_{t=1}^l m^{\binom{K}{2}} - \binom{K-t+1}{2} \nu_{K,t} \varrho_{K-t}(l-t+1), \\ \text{for } 1 \leq l \leq K-1. \end{array}$$

We put $\varrho_K(l+1) = 0$ if K < l+1. Computing coefficients of j^{K-1} on the two sides of (2.12)

$$2\nu_{K-1} = (K-1)m^K - (K-3)m^{K-1}$$
.

From this and (2.13) we obtain

$$\varrho_K(l+1) \equiv \varrho_{K-1}(l+1) \begin{cases} (\operatorname{mod} m^{K-1}) & \text{if } m \text{ is odd} \\ (\operatorname{mod} m^{K-1}/2) & \text{if } m \text{ is even} \end{cases}.$$

Hence

$$\varrho_K(l+1) \equiv 0 \begin{cases} (\bmod m^l) & \text{if } m \text{ is odd} \\ (\bmod m^l/2) & \text{if } m \text{ is even} \end{cases}$$

Now we can prove that

$$(2.15) \sum_{j=1}^{m^{t_n}} b_k(j) \equiv 0 \begin{cases} (\operatorname{mod} m^{k+t}) & \text{if } m \text{ is odd} \\ (\operatorname{mod} m^{k+t}/2^k) & \text{if } m \text{ is even} \end{cases},$$

when $0 \le k \le q - 1$.

This is immediately satisfied for k = 0, 1. Assume by induction that (2.15) holds for all k, $1 \le k < K$; $K \le q - 1$.

If p is a prime we define the natural number ψ by

$$p^{\psi}|(K+1)!; \quad p^{\psi+1} \nmid (K+1)!$$
.

Hence

$$\psi = \sum_{i=1}^{K-1} [K+1/p^i] \le \sum_{i=1}^{K-1} i = {K \choose 2}.$$

Thus

(2.16)
$${m^{l}n+1 \choose K+1} m^{{K+1 \choose 2}} \equiv 0 \pmod{m^{K+l}}.$$

From (2.11) we have

$$\sum_{j=1}^{m^{t_n}} b_K(j) + \sum_{l=2}^{K} \varrho_K(l) \sum_{j=1}^{m^{t_n}} b_{K+1-l}(j) = \sum_{j=1}^{m^{t_n}} {j \choose K} m^{{K+1 \choose 2}}$$
$$= {m^{t_n} + 1 \choose K+1} m^{{K+1 \choose 2}}.$$

Hence from (2.14), (2.16) and the induction hypothesis

$$\sum_{j=1}^{m^{t_n}} b_K(j) \equiv 0 \begin{cases} (\operatorname{mod} m^{K+t}) & \text{if } m \text{ is odd} \\ (\operatorname{mod} m^{K+t}/2^K) & \text{if } m \text{ is even} \end{cases},$$

which completes the proof of (2.15).

Now, let k > q. From (2.9) and (2.15) we obtain

$$\begin{split} s_{m,\,q}(m^{k+1}n-m) &= s_{m,\,q}(m^{(q-1)+1}m^{k-(q-1)}n-m) \\ &= \sum_{l=1}^{m^{k-(q-1)}n} \, b_{q-1}(l) \equiv \, 0 \, \begin{cases} \, (\operatorname{mod} m^k) & \text{if m is odd} \\ \, (\operatorname{mod} m^k/2^{q-1}) & \text{if m is even ,} \end{cases} \end{split}$$

which completes the proof of Theorem 2.

REFERENCES

- G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory 3 (1971), 104-110.
- R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 (1969), 371-376.
- 3. G. Dirdal, On restricted m-ary partitions, Math. Scand. 37 (1975), 51-60.
- 4. H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972), 343-345.
- Ö. Rödseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453.