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ON THE CYCLOTOMIC INVARIANTS OF IWASAWA
TAUNO METSANKYLA

1. Introduction.

Let p be a prime and put g=p if p>2 and ¢=4if p=2. For each n 20,
denote by k, the cyclotomic field of ¢,th roots of unity, where ¢, =
megp™ with mg=1,(mg,p)=1. Let p“™ denote the highest power of p
dividing the class number A, of k,,.

The union k,, of all the fields k, is a so-called Z ,-extension (or I
extension) of k,. Thus a general theory of Iwasawa [3] gives the following
formula, valid for all sufficiently large =:

e(n) = An+up™+v,

where 4, u, and » are integers (4,u = 0) depending only upon p and m,,.
Numerical computations show that u=0 whenever my=1 and p < 30000
([61, [7], [9]); no case where x>0 is known.

Similarly, if e-(n) is the exponent of the p-part of %,—, the so-called
first factor of %,, we have

(1.1) e~(n) = A n+upr+v-

for all » large enough, where again the integers A-=21-(g,), u~=p"(g,),
v~ =»"(q,) are invariants of £, (0=A-<1,0= pu~ = pu). In [5] Iwasawa gave
a proof for this, based on the theory of p-adic L-functions. He also used
this theory to get information on the vanishing of A— and u- (see [5,
Pp- 94-96]). It is the purpose of the present paper to continue the investi-
gation of 1~ and p— by means of the theory of p-adic L-functions.

After the required preliminary material, presented in sections 2 and
3, we shall give a natural decomposition of A~ and x~ in section 4 and
derive some estimates for u~ in section 5. The main contents of the
following sections 6-9 consist of certain results related to the vanishing
of u~ (or, more precisely, the components of x~), and the last sections
10-11 include an application of these results. This application shows
that if u—(p)>0, then there exist Z -extensions k. /k, with arbitrarily
large u-.

In the special case where my=1 some of the subsequent results have
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62 TAUNO METSANKYLA

been known before. However, the new proofs often look simpler and,
in any case, may serve as an illustration of the power of the present
methods.

2. Some notation and basic results.

The notation presented in this section is adopted from Iwasawa’s
book [5]. For the proofs of the results in this and the following section,
we refer to the same book.

Let Q, and Z, denote the field of p-adic numbers and the ring of p-adic
integers, respectively, and let £, be a fixed algebraic closure of Q,. We
shall normalize the p-adic valuation |-| on 2, by choosing |p|=p~1.

Denote by U the unit group of Z,. For p>2, let ¥ be the subgroup
of U consisting of all (p — 1)st roots of unity, and for p=2, let V={+1}.
Each a in U has the unique decomposition

(2.1) a = w(a)ay,
where {(a) € 1 +¢Z, and w(a) is the following element of V:

(2.2) w(a) = limn»w“pn’ if p>2,
= (-1 for a = (—1*mod4, if p=2.

For n>0, denote by @, the multiplicative residue class group mod
¢,. For a rational integer a relatively prime to ¢,, let ¢,(¢) denote the
element of ¢, determined by a. Put

(2.3) T, = {o,(@) | @ = 1 modg,},
(2.4) 4, = {o,(a)| a?! = +1 modgp}.

Then @,=I,x4, (direct product). Corresponding to this decomposi-
tion, write o,(a)=y,(a)d,(a) with y,(a) e I, d,(a) € 4,.

Let K be a finite extension of Q, in £,. Denote by o the ring of
p-adic integers in K and by A =o[[x]] the formal power series algebra
over 0. For n >0, denote by E,=0o[I,] the group algebra of I', over o.

If m>=n2=0, the natural homomorphism G,, - @,, defined by o,,(a)
+ 0, (@), induces morphisms I',, > I,, B, - R,. Let I and R denote the
inverse limits of I', and R, with respect to these morphisms. The group
I’ can be imbedded in a natural way in the multiplicative group of the
p-algebra R, and there exists a unique p-algebra isomorphism v: 4 - R
such that 7(1+2)=limy, (1+¢,).

Denote by f, the conductor of a Dirichlet character y. (In what follows,
all characters are assumed to be primitive.) The number f, can be written
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in the form m, or mygp®, where m, is a natural number prime to p and
¢=0. The character y then has a unique decomposition y=0y, where
fo=mqy or myg, f, is a power of p and y(a)=y(b) whenever () =¢(b) mod
f,Z,- We call 6 the first factor of .

By B,(x),n=0, we mean generalized Bernoulli numbers defined by

S _xla)ted](e—1) = 37 (B, (x)t*/n! f=r)-

If y is the principal character %°, then B,(y) is the ordinary Bernoulli
number B, . For odd characters y we have

(2.5) By(z) = f 3@ (f=1f).

3. On p-adic L-functions and cyclotomic invariants.
For a fixed even character y, consider the p-adic L-function L,(s; x)
defined in a certain disk
{seQ,| |s—1] < r} (r > 1),
excluding s=1 in the case y=yx° By a fundamental result of Iwasawa,

(3.1) Ly(s; 2) = 2f(x(1+g0) (1 +g0)°—1; 6),

where 6 is the first factor of y and f(x; ) is a certain power series if
0=y% and a quotient of two power series if 6 =% (Recall that g,=mg,
where m, is now determined by y.)

To define f(x; 0) for 6=°, choose the field K appearing in the pre-
ceding section so that it contains the values of 6(a) for all a. For n=0,
put

an
(3.2) £y =§&"= —(2¢)7" 2 ab(a)oNa)y,(@).

a=1
(@, q0)=1

Then &, € B, and, moreover, there exists a £ ° in R such that & °=
lim§&,. Now, f(x; 0) is defined by the condition
(3.3) v fla; 0)pEL,

where 7 is the mapping mentioned in section 2.

The known connection between the generalized Bernoulli numbers and
the values of L,(s; ) at s=0, —1, —2,... implies, by (3.1), the equations
(3.4) 2f(x 1+q0 Y(1+go)'"—1; 0)

—(I=xu@)p" B, (xp)n (2 1),
where y,=yw~" (note that w, given in (2.2), defines a character with

fo=9)
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Next, let m, be fixed and consider %,~, the first factor of the class
number of the ¢,th cyclotomic field. Put

(3.5) A(x) = TToexf(=; 0) ,
where
X =X(q)=1{0] 0% 6(-1)=1, folqo}-

Then A(x) € Z,[[x]]. Starting from the well-known analytic expression
of h,~ and using (2.5) and then (3.4), for n=1, Iwasawa [5, pp. 90-95]
showed that .

(3.6) b~ = | ITLA(C=1)] (@™ =1,0" % 1),
and if my=1,
(3.7) k| = T, AC-1) (" =1),

whenever m2n 2 0.
Now the invariants 2-=21-(q,) and u~=pu~(g,) are the unique nonne-
gative integers such that

(3.8) A(@) = p b (b€ Zy),
b, =0modp for 0k < i,
b, = 0modp for k= 1",

where, as often in the sequel, modp stands for modpZ,,. (It should be
noted that the symbols A~ and x~ are denoted by 4 and u in [5].)
In [5] it is proved that the condition

(3.9) Am=pu" =0

is equivalent to (p,k,~/hy~) =1, and if my=1, this is equivalent to (p,%y~)
=1, i.e. to the fact that p is a regular prime. These results follow easily
from (3.6) and (3.7), for (3.9) holds if and only if |4({—1)|=1, where {
is any root of unity with p-power order.

4. Decomposition of the invariants.

In the following we shall assume that K/Q, is the extension generated
by all numbers 6(a), where 0 € X(g,) and a is an integer. We also fix a
prime element z of the local ring o.

Let 6 € X(q,). As f(x; 0) € o[[#]] and o is a unique factorization ring,
there exist unique nonnegative integers A,=14(q,) and uy=ue(q,) such
that
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(4.1) f@;0) = A3 Bk (fre),
B, =0modp for 0=k < 4,
Br = Omodp for k= 14,,

where p =no is the maximal ideal of o.
LemMmA 1. Let e be the ramification index of K[Q,,. Then
A= = Dex Ao poo= e ex Mo -

Proor. Set
TToex ZZZO Bk = 2210 Yk (yk€0).
vy =O0modp for 0=k <D},
v = O0modp for k=3 1,.

Then

On the other hand, combining (3.5) and (3.8) and using our new nota-
tions we see that

am ZZO=O yixk = eme” ZIT;O bk (m = E Hg)

where ¢ is a unit of o. Since the congruence b,=0 modp is equivalent
to b, =0 mody, it follows that the lemma is true.

REMARKS. (i) If my=1, then K=Q,, and s0 u~= 3 x¢4e-

(ii) Let us replace k,, for a moment, by an arbitrary imaginary abelian
field k,’, say, having g, as conductor. Let &, be the unique Z -extension
of k,’ contained in k_, and let k,’,n =1, be the subfield of k., cyclic of
degree p™ over k,'. Then we have for the first factor of the class number
of k,” a formula similar to (1.1). Now, if 6 belongs to a certain subset
of X, then the numbers 1, and u, (the latter multiplied by a constant)
defined above are components of the invariants 1~ and u- of k., too.
Thus many of the results to be presented in the following can actually
be applied to this more general kind of Z,-extensions.

5. Upper bounds for u-.
By using the theory of Z  -extensions, Iwasawa [4] proved that

(5.1) pm < e (0),

if my= 1. This can be shown simply by the present method, too. Indeed,
the formulas (3.7) and (3.8) imply that

lho~| = |A(0)] = [p*7] .

Math. Scand. 37 - 5
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Moreover, it is seen that if 2->0, then the inequality above (and so
that in (5.1)) is strict.

Note in passing that (5.1) implies the estimate u < (p—1)/2, because
p< 2p= and e~(0) < (p—1)/4 ([4],[13]).

The following theorem, concerning the general case where my=1,
gives a result of the same kind as (5.1).

THEOREM 1. We have (p—1)p—=<e~(1)—e~(0), the inequality being
strict ¢f A-> 0.

Proor. By (3.6) and (3.8),
|hy~[he~| = |TT; A(E—=1)] (r=127C=+«1)
with
[4¢-1)] = [p*.
As | —1| <1, the above inequality is strict if 1-> 0.

Turning again to the case m,=1, we shall prove an extension of the
result (5.1).

THEOREM 2. Let my=1 and denote by t the number of nonzero compo-
nents Ay in the decomposition of A=. Then
e(n) 2 wp"+H(n+1)
Jor all n 2 0.

Proor. Now the coefficients b, in (3.8) satisfy

(5.2) bl = Ip*] (0= k<),
Hence we get first
(53) [A(O)] = [P*"bol = [P,

so that e~(0) > u~+¢. Secondly, let m=1 and let { be a primitive p™th
root of unity. Then |{—1|=|p?| with z2=(p—1)-p-™, which together
with (5.2) implies

A1) s |pHe]

Substituting this and (5.3) into (3.7) we obtain the asserted inequality.

6. The first and second coefficient of f(x;6).
Throughout this section we shall suppose that m,=1 and p>3. Then

(6.1) X =X(p) = {o™| m =13,...,p—4}.
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For a fixed character o™+ in X, we put
flx; o™t = qg+a,x+ax2+ ... (az€Z)

and investigate the divisibility of a, and a, by p.

Lemma 2. The coefficient a, ts divisible by p if and only if B,,,;=0
modp, .e. (p,m+1) is an irregular pair.

Proor. Apply (3.4) for y=w™+! and n=1, and then (2.5) to get
ay = f(0; 0™1) = —}By(o™) = —(2p)7' 3] {0™(a)a.
By (2.2), w(a)=a? modp? Furthermore, it follows from a well-known
summation formula (see, e.g. [1, p. 384]) that
(6.2) P-la% = pB,, modp? (k2= 1, (p,2k+1) =1).

Hence we infer that ay= —4B,,,,; modp. But since mp+1l=m+1%0
modp—1, Kummer’s congruence modulo p [1, p. 385] shows that the
condition B,,, ;=0 modp is equivalent to B, ;=0 modp.

Lemma 3. If m>1, the coefficient a, is divisible by p if and only if
Bmp2+1 = %B(m—l)p2+2 mOdpz'

Proor. Because the Bernoulli numbers with odd indices > 1 vanish,
it is easy to see that (6.2) holds even mod p® provided that £> 2 and p—1
does not divide 2k —2. Thus a slight modification of the preceding ar-
gument yields, for m > 1,

(6.3) f(0; w™+l) = — 4B, ,,, modp?.
Imitating the proof of (2.5), presented in [5, p. 14], one can show that
(64)  Byy) =31 x@a* -3 x(@)e = F1 3 1(0)a?
(f=1)

for even nonprincipal characters y. Let ¢= —p(1 +p)~1. We apply (3.4)
for n=2 and then (6.4) obtaining

(6.5) 2f(c; @™*) = —}By(0™ ) = — 1 Bn_1pase modp?,
when m > 1. Now, as p|c, a necessary and sufficient condition for pla, is
a,c+agc?+ ... = 0 modp?
or
f(0;0m) = f(o; ™) modp?

Comparing this with (6.3) and (6.5) we see that the lemma is proved.
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LEMMA 4. For natural numbers ¢, put
4% = B2i+n(p-1)/(2i+n(p_ 1)) (n 2 0).
Then ay=a,=0 modp if and only if
(6.6) B, = 0modp, A1 = A,™+ modp?.

Proor. For a fixed irregular pair (p,m+1), set 4,=4,™+!. Note that
m>1 because B,=0 modp. By Kummer’s congruences modulo p and
modulo p? (see, e.g. [8]),

A, = Omodp (n = 0),

(6.7) A,—-24,.,+A4,,, = 0modp? (n = 0).
These imply easily
(6.8) 4, = A4,.y, modp? (n=0,kz0).

Now we find that lemma 4 is obtained by combining lemmas 2 and 3.
Indeed, the congruence of lemma 3 can be written in the form

Apivm = Apim-p modp?,

and by (6.8) and (6.7) this is equivalent to Ay= A4, modp?.

REMARKS. (i) As a first consequence of lemma 4 we state that if
u~(p)>0 then there is an odd index m,1<m=<p—4, such that the
conditions (6.6) are fulfilled. This result was proved also by Iwasawa
(see [2, p. 782]), who started from the congruences appearing below in
lemma 6 and derived an infinite sequence of congruences (of which
only these two were explicitly given), all being necessary conditions for

= (p)>0.
(ii) If (p,m +1) is an irregular pair for which

(6.9) Agmtl = A™+H modp?,

then lemmas 2 and 4 imply that u;=0 and 1,=1 for § = w™+'. By using
a computer, Johnson [8],[9],[10] showed that (6.9) holds for every irre-
gular pair with p <30000 and concluded that u—(p)=0 for these p. By
the above result these computations allow us to draw a further conclu-
sion, namely that A—(p) then equals the index of irregularity of p, i.e. the
number of irregular pairs (p,m+1). We remark that the latter result
was verified in [9] by another computational method, due to Iwasawa
and Sims [6].
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(iii) Looking at the proofs of lemmas 3 and 4 we see that p2|a,,p|a,
implies 4,™+'=0 modp? for all n>0. Again, it was shown by Johnson
[8],[9] that 4 m+1==0 mod p? for p < 30000.

7. A general criterion for u~ to vanish.

Let us consider the groups I',,n=0, given in (2.3). Denote by g,,
(k=0,...,p"—1) the elements of I', in some fixed arrangement. Then
the elements &,=¢,° of the group algebra R,=p[I,], defined in (3.2),
may be written in the form

& = Zizslsnkgnk
with
(7'1) Snk = Snk(e) = - (2qn)_1 Z(k) a‘o(a) w_l(a’) €0,
where >® denotes summation extended over the values of a satisfying

(7.2) 1 sa<gq, (a’QO) =1, yn(a)_l = Gnk +

Lemma 5. Let 0 € X(g,). A necessary and sufficient condition for p,>0
is that
(7.3) S,.:(0) = 0 modp (k=0,...,p"=1)
for all n20.

Proor. The definition (3.3) of f(x; 0) together with (4.1) shows that
U >0 if and only if £ =0 mod=R. Since &, °=1lim¢,’, it is immediately
seen that this congruence is equivalent to

£, = OmodnR, (n =0,1,...),

and the lemma follows.

REMARKS. (i) Choose a 0 € X(g,) so that the conductors of 6 and fw~!
are equal to ¢,. Then (fw—1)(p)=0, and arguing in the same way as in
the proof of lemma 2 we get

f(0;0) = —1By(fo~") = —(2g0)7" 202, a(Bo~")(a) = Seo(0) .
Thus the first congruence in lemma 5, Syo(6)=0 modp, holds in this
case if and only if at least one of the two numbers A, and u, does not
vanish. In particular, if my=1 and p>3, then Sy(w™t)=0modyp is
again equivalent to the fact that (p,m +1) is an irregular pair.

(i) We know that &,,,+ &, under the p-algebra homomorphism R, .,
— R, defined by o,,,(a) P 0,(a)(n 2 0). Therefore

Snk = zh Sn+1,h ’
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the sum being extended over those indices % for which g, 5+ gnx. Speci-
ally,
Soo = 236" Spe (0 2 0).

It follows also that if the congruences (7.3) hold for some n,=1, then
they hold for every n less than n,.

8. An equivalent form of the criterion in the special case.
We shall again suppose that my,=1 and p>3 and give another for-

mulation for lemma 5.
First a notation. If an element x in Z, has the p-adic representation

T = oo %p* (0=a<p),
then we set for each n = 0
sn(x) = EZ=0 xkpk .

LeEMMA 6. Let 0=w™+, where m is odd, 1<m < p—4. A necessary and
sufficient condition for us> 0 is that

(8.1) > vew Sp(uv)o™ = 0 mod pn+?

for all n20 and all units uw € 1+ pZ,,.

Proor. Using (2.1) we may write any rational integer a prime to p
in the form a=w(a){a), where w(a)eV and {(a)€l+pZ,. Let a run
through the values mentioned in (7.2). Since y,(a)=y,(b) if and only
if (a)=(b) modpn+!, we conclude that w(a) then runs through ¥V and
the value of (¢) mod p™+! is a constant depending on k. Now we have
a=8,(a)=8,(uv), where u is any p-adic number satisfying »=({a) mod
p*t and v=v(a)=w(a). It follows that

= 2p" 18 (™) = 2"" an™(@) = zveV&n(uv)'um :

Moreover, u € 1+ pZ,.

It remains to show that for every u in 1+ pZ, there exists a rational
integer a prime to p such that w={a) modp"+l. But this is easy: take
a=8,(u).

The following lemma is a supplement to lemma 6.

LemmA 7. Let n20 be fized. If (8.1) holds for all units uel+pZ,,
then it holds for all w € U.
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Proor. For an arbitrary u € U, let w=wu, modp(0<u,<p) and put
w=w(uy) € V. Then w=u, modp and so ww-'el+pZ, Accordingly,
(8.2) > vev Sp(uw=w)p™ = 0 mod pn+? .

We obtain the congruence (8.1) for # on multiplying (8.2) by w—™ and
noting that with v also w—1v runs through V.

REMARKS. (i) By using the theory of Z ,-extensions, [wasawa [2] proved
the criterion of lemma 6 in the form, where « is an arbitrary p-adic unit.
Johnson [11] proved lemma 7 in the special case where n=0.

(ii) Remark (i) in the preceding section shows that the condition (8.1)
for n=0 (and =1, say) is equivalent to the fact that (p,m+1) is an
irregular pair. Johnson [7], [9] showed by computation that there exist
no irregular pairs such that p <30000 and (8.1) holds for n=1 with the
units 1 and 1+ p simultaneously. This proves again that u—(p)=0 for
these values of p (cf. remark (ii) in section 6).

9. Another equivalent form.

We shall continue to discuss the case where my=1 and p=2s+1>3.

Let r be a primitive root modp®+! for all == 0. Denote by 7,(7) the
least positive residue of ¢ modp™*l. Moreover, let « be a primitive
(p—1)st root of unity such that

w(@) = «f for a = r*modp.
LemMmA 8. Let 0=w™t! (m odd, 1<m=p—4). A necessary and suffi-
cient condition for p,> 0 is that
(9.1) SPEr,(ip" + k)™ = 0 modpnt? (k= 0,...,p"—1)
or, equivalently,
(9.2) Diirn(ipt+k)am = prti(l—am) -l modp™t? (k= 0,...,p"—1)
for all n2 0.

Proor. We may write the group 4,,, defined in (2.4), in the form
n = {on(a) l a = Tn(@pn)’ t=0,.. -,p"2} .
After a suitable rearrangement of the elements g,,; of I', we thus get
—2p"H18, = 3P aw™a) = P51, (ip" + k)amE+h

Hence (7.3) is in this case equivalent to (9.1).
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By using the equations o™= —1 and
r((E+8)pr+k) = prtl—r, (ip"+k)
we can express the left hand side of (9.1) in the form
2520 [2ra(ip™ + k)omi — pr+tomi]
= 2 350 ra(ipm + K)omt — 2pmat(1 —om)~t

Thus the proof of the lemma is complete.

REMARK. If the congruences (9.1) and (9.2) hold for the values
0,...,p"—1 of k (with a fixed n), then they hold for any integral value,
say h, of k. One can verify this easily by writing

h = ip*+kymodp™(p—1) (054X p—2,0=ky <pn-1)
and applying (9.1) for k =k,.

10. The case where m,, is a prime.

We shall apply preceding results to obtain information on the rela-
tionship between u—(p) and p—(Ip), where p=2s+1 and I=2t+1 are
primes >3,lsp. To this end, we shall let ¢, =Ip"*' and deal with the
numbers 8,,,(6), where 0 € X (Ip).

Let g be a primitive root modl. For n = 0, denote by c,(7,5) the rational
integer satisfying

0 < ¢,(4,9) < ¢y €ul%,7) = r* modpnt!,
= ¢/ modl.

Let 8 be a primitive (I—1)st root of unity, so that the condition
yp(@) = p# for a = ¢/ modl

defines a generating character p of the character group modulo !. Then
the characters

(10.1) o™ty m=1,3,...,p—4; u=0,2,...,1-3,
belong to the set X (Ip).

LeMMA 9. Let n 20 and let 0 be any character given in (10.1). Then
Sur(0) = Su(@™+1y) = —(29,)71 385 Z)2 0ulip™ + ks flom+0ped

(k=0,...,p"—1), provided the elements g,, of I, are suitably ordered.
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Proor. Use the same argument as in the proof of lemma 8, observing
that now

n={om(@) ] a =c,(ip~j); 1 =0,...,p-2; j=0,...,01-2}.

The following lemma, whose proof is quite computational, gives a
connection between the cases where my=1[ and my=1. Here we shall
use some ideas from [12].

LeMMA 10. Let the assumptions of lemma 9 be satisfied. If, in addition,
I=1 modp and wu is restricted to the set {x(I—1)[p| x=1,...,p—1}, then

Smtiy) = —pn-t S [, (ip" + k) — 7, (ip* + b —d,)]a™+0 mod p
(k=0,...,p"—1), where d,, is defined by
(10.2) l = r,(d,) modpnt!.
Proor. For simplicity we shall here omit subscripts and set r(z)=
r.(2),¢(¢,7) =c,(¢,5). Moreover, put ¢’ =ip®+£.

We apply first the equations a™$= — 1 and %=1 and write the double
sum appearing in lemma 9 in the form

Sazs Dhsb e, g) — e’ +sp™ ,.7)+c( 7] j ) — (3’ + 8p™, j + ) |omki-+h) gud
= 23770 2iso [e(@,5) + (", j +8) — g Jomci+igus

Next we use the fact that g satisfies also the equation z'-!+a'-2+
...+1=0. Then we arrive at

nk(o) = _q'n—l z O(i’j)“m(i+k)ﬂuj s
where
C@,7) = c(¢',j)+c(@,j+t)—c(s',t—1)—c(i’,26— 1) = 0 modg,, .

Observe now that f* is a root of unity whose order is p. Therefore
f*=1modyp and so

(10.3) S,u(0) = —q,71 Xiz5 Ciom@+ mod p
with
(10.4) C; = XZhe(’,j)—tle(@,t—1)+e(@’,2t—1)] (2 = 0,...,8—1).

The definition of d=d, implies that Ir(s' —d)=r(i") mod p»+1. Hence
we can deduce that

SE2e(i',) = Db [r(@) +ap ] = (s —d) = Upr L+ Ur(i) —r(s' ~d)]

Furthermore, the sum c(¢’,t —1)+¢(i’,2t — 1), being divisible by ! and
congruent to 2r(i') modp™+!, must be of the form 2Ir(:' —d)+ N lp™*1,
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where IV, is an integer. Substituting these results into (10.4) and noting
that =0 modp we get

C; = l[r(@')—r(@’' —d)]—2ltr(i' —d) mod pn+2 .
From this and (10.3) it is seen that one has only to show that
(10.5) iz (@ —d)a™ = 0 modpntl.
To prove (10.5), observe that the congruence w(a)=a modp yields

ot = rhmodp; ot = a®" = 1h" mod pr+t
for any integer k. Thus we obtain

Yooy rivtamt = Fe-1pmiDis® = 0 modpntt,

and the desired congruence follows.

REMARK. If [=1 modp”t!, lemma 10 enables us to conclude that
8,%(0) = 0 modyp (k=0,...,p7—1)

for the characters 0 in question. Consequently, the situation in this case
seems quite different from the case where m,=1: when [ is suitably
chosen the congruences of lemma 5 are satisfied for 0<n <N with an
arbitrarily large N (cf. remark (ii) in section 8).

11. Relationship between u~(p) and u-(Ip).
We shall prove the following

THEOREM 3. Let p and I be primes, =1 modp. If u,(p)>0 for some 6
€ X(p), then there is a character ¢ in X(Ip) with f,=1p such that u.(Ip)> 0.

Proor. The assumption py(p)>0 implies that p is irregular and so,
in particular, p >3 and 7> 3. Let 6 =w™+1. Using the preceding notations
we may then state, by lemma 8 and the remark at the end of section 9,
that
(11.1) i r (ip™ + h)am = pr+l(1 —am)-1 mod pn+2

for all n >0 and all integers .
Denote the left hand side of (11.1) by 7',,(%). It follows from lemma 10
that if p =w™+y* with certain values of u, then

Surlp) = — P'”'I(Tn(k) —T,(k—d,))am modyp
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for all =0 and all £,0<% < p"—1. Comparing this with (11.1) we infer
that
Spx(p) = 0 modyp

(for these 7 and k) and accordingly, by lemma 5, u,(lp)>0. As f, =Ip,
the theorem is proved.

CorOLLARY. Let u~(p)>0. If my is divisible by N different primes
=1 modp, then u—(myp)>N.

Proor. Obviously, it suffices to prove that u—(Ip) > 1 when I =1 mod p.
But this is an immediate consequence of the above theorem, because
lemma 1 gives us the estimate

p=(Ip) Z u=(P)+et s _pue(lp) -
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