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THE NORMAL DECOMPOSITION OF LATTICES AND
THE KRULL-SCHMIDT THEOREM

JULIUSZ BRZEZINSKI

The concept of divisibility of modules is essential for many considera-
tions concerning lattices over orders. This concept was introduced by
Roiter [3] and can be formulated as follows (see [2, Chapter IX, (4.8),
(4,9)]): We say that a A-lattice M covers (divides) a A-lattice N if there
is an epimorphism M@ — N — 0 for some natural number . We note
this by M > N. We say that a A-lattice M is normally decomposable if
M>~M,®M, where M,, M, are A-lattices, M,=0 and M,> M,. We shall
consider normal decompositions M =@ M ; such that M;> M for i <j and
the lattices M, are not normally decomposable (i.e. they are normally
indecomposable). It is natural to ask when the normal decompositions
are unique in the following sense: if

ie1 My = @y N;

are two normal decompositions with 3 ;, N; normally indecomposable,
then r=s and M,;~N,. This problem was suggested by H. Jacobinski.
The aim of the paper is to give an answer to this question.

We know the other important decomposition in the category of lat-
tices over an order — the decomposition of lattices into indecomposable
lattices that is, M =@ M, where the lattices M; can not be represented
as a direct sum of A-lattices. We say that the Krull-Schmidt theorem is
valid for A-lattices if the last decomposition is unique up to isomorphism
and permutation of the direct summands. We shall show that if A is
an order over a Dedekind ring R in a separable K-algebra A4, where K
is the field of fractions of R, and the Krull-Schmidt theorem is valid for
A-lattices, then the normal decomposition of lattices over A is unique
(Theorem 1). At the end of the paper we shall construct two examples:
the first shows that the converse implication is not true and the second
shows that there are orders for which the normal decomposition is not
unique even in the case of the hereditary orders over local rings.
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We shall use the following notations: R is a Dedekind ring, K its
field of fractions, 4 a separable K-algebra and A an R-order in 4. By
a /-lattice we shall mean always a left finitely-generated A-module
projective over RB. We say that M and N are normally associated if
M>N and N>M. A is an order with cancelation if XM ~XPN
implies M ~ N for any A-lattices X, M,N.

ProrosrrioN 1. If A is an order with cancelation then the normal de-
composition of A-lattices is unique if and only if two normally indecomposable
and normally associated lattices are A-isomorphic.

Proor. If M,N are normally indecomposable and normally associated
then MPN = N®M implies M ~ N if the normal decomposition is unique.
On the other hand if we have two decompositions:

MO®...0M, ~ N\®...®N,

where M,,N; are normally indecomposable and M;>M,,,, N;>N;,,,
then M,> N, and N,>M,. Hence M,~N,. Since the concelation is
valid for A-lattices we can proceed by induction and we get r=s, M, ~ N,.

We shall prove now two results which we need to go from the local
case to the global case and conversely.

ProrosrrioN 2. If for every prime ideal p in R the normal decomposi-
tion of the A, -lattices is unique then a A-lattice M is normally indecompos-
able if and only if M, is normally indecomposable over A, for every p.

Proor. Let M be a A-lattice. We shall assume that M and all its
localizations M, are contained in a K-module V. If p is a prime ideal
in R then M,=X*®X," where X* is a A, -lattice normally indecompos-
able and X*>M,. The lattice X* is uniquely determined by M, since
if Y? is another lattice with these properties then X*> ¥Y* and Y* > X*.
Hence by the uniqueness of the normal decomposition over 4, we get
that X~ Y*. Let

ep: M, - M,

be the idempotent /,-homomorphism such that XP=Me,. Since the
homomorphism e, is defined over some open neighbourhood of
p € Spec(R) we can choose such neighbourhood U and a direct summand
XU of My=N,cy M, (defined by the extended e,) which is normally
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indecomposable over A =M, A4, and covers My, . Since X* is defined
by M, up to an isomorphism we can define

Jf: Spec(R) - Z

to be the function such that f(p)=the rank of X* over R. Since this
function is continuous it must be constant. Now if X’ is a A-lattice such
that X '=X9 for g e U, then there is only a finite number of points p
outside U and we can choose a A-lattice X such that X =X for every
q € Spec(R). The lattice X is normally indecomposable since its localiza-
tions have this property. Since X, is a direct summand of M, for every
prime ideal p there is a direct summand M’ of M such that X and M’
belong to the same genus over A (see [4, Corollary 6.13]). Hence X®
M'®™ for some natural number r. Since X,> M, for every p we have
X>M. Hence M'> M. Now if M is normally indecomposable over A
then M ~ M’ and the isomorphisms M, ~ X, for every p show that M,
is normally indecomposable for every p. The converse implication (M,
normally indecomposable for every p implies M normally indecompos-
able) is trivial.

ProrosritioN 3. (a) If the normal decomposition of lattices is unique for
A then it is unique for A, for every prime ideal p in R.

(b) If the Krull-Schmidt theorem is valid for A then it is valid for A,
for every prime ideal p in R.

Proor. (a) Let X,,...,X, be all simple non-isomorphic 4-modules
and let X,=Ae; where e, are primitive idempotents in 4. Let

MPD...®M> ~ NP®...®N?

be two normal decompositions over A, where M,*, N are normally in-
decomposable over A, and M> M? ,, NP> N7 ;. If

KMp = _Xl(a“)@ ce @Xn(a‘”), %20,
KNp = Xbvg... @Xﬂ@n}, b;.20,

then we can define a A-lattice M, in the following way:

(M), = (), %D . .. D(de,),*® for q+p
and
(M'i)p = Mih .

Let N; be a A-lattice defined analogical with b,;, N,* in place of a;,, M.
The existence of M,,N; follows from the fact that

(Ae))®0D ... D(de,)% and (Ae))®D ... D(Ae,)b™
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are /-lattices and the modification in a finite number of points of
Spec(R) (in this case in one point) is possible. Since

KMPD... M) ~ KN ®... ONY)

i1 Gy = Z§=1 bjx

we get that

This means that
M=M>..dM, and N =NO@...®BN,

belong to the same genus over A since M, =N, for q+p by the definition
and M,=N, by the assumption. This implies that there is a natural ¢
such that MO~ N®,
Now if
X, 9@... X, > X "p... X,

over A then a;+0 implies a;+0. Hence M,°> M7, ,, N>N¥, , and
the definition of M,;,N; imply that M;>M,,;, and N;>N,,, (see [2,
Chapter 9, (4.14)]). Moreover M, N; are normally indecomposable over
A since M;*, N’ have this property over A,. The isomorphism M®x N®
implies now that

M. OM,®.. OM,®...®M,~2N,®...ON,®D...
®N®D...®N,

are two normal decompositions of the same module over 4. By the
assumption that the normal decompositions are unique we get r=s and
M,~N,fori=1,...,r. Hence M, ~ N’ and the normal decomposition
over A, is unique.

(b) Exactly the same idea of the proof applies (but we need not think
about the covering relation).

We shall agsume now that R is a discrete valuation ring and 4 is a
simple K-algebra where K is the field of fractions of R. Let I" be a
maximal R-order in 4 that contains the order /. We shall denote by RB*
the completion of R and by A4*, I'*, A* the completions of 4, I', A.
If X is a module over A, I" or A then X* will denote its completion as
a module over A*, I'* or A* respectively.

If 1 is a simple A-module and A*=B,®...@®B;, then

1* = Ll(a1)@ @ Lk(ak)

where B, are simple K*-algebras and L, is a simple B;-module. If I is a
A*-lattice then we shall write

sgn(M) = (by,. . ;b)) = Ophgjsk
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if K¥M=L,"®...pL%. sgn(M) is called the signature of M (see
[2, Chapter 9, (5.5]).

If X is a A*-lattice then there is an uniquely determined (up to an
isomorphism) I™*-lattice ¢(X) such that X@c¢(X)~ M* where M is a
A-lattice and ¢(X) is a direct summand in every I'*-lattice Y such that
XPY ~ M'* for some A-lattice M’ (see [1]).

Lemma 1. If the Krull-Schmidt theorem is valid for A then we can
choose a module L;, such that for every A*-lattice M that does not have a
I'*-lattice as direct summand

sgn(M) = (by,. - .,b,) = (Bj)1<j=r
where a; |b; and qy =0, [a; =max ([b;/a;]) ([x] denotes the integral part

of ). We can and we shall assume that iy=1.

Proor. Let M be a A-lattice and let b;=a;q;+r; where 0=r;<a;
and g=max(g;) (¢;=[b;/a;]). If £> 0 is an integer then

(1) sgn (MO) = (tb;)1<j<n
and if [b;/a;]> [b;/a;] then [tb;/a,]> [tb;/a;]. This shows that if
I, = {i: [th;/a;] =max([th;/a;])}

then I, I, for ¢|t’. Since I, are finite, non-empty sets and I,nI, 21,
we get that
I=N2 4

is not empty (one can use also the argument that the inverse limit of
finite and non-empty sets is non-empty). Let ¢ € I, that is,

[tb;/a;] = max([th;/a;]) for everyt>0.
We shall show that r;=0, that is, a,|b;. By Proposition 1 in [1]
(M®) = c(M)®

if M satisfies the assumptions of the Lemma. It is easy to see that if
t el and 7,0 then

sgn(c(M)) = ((g—g))a;+a;—1)15<k
th; = (aq;+1;)(tla;)a;
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and by our assumption tb,/a;=max ([tb;/a,]). This means that all i-coor-
dinates where ¢ € I in sgn(M®) are 0. But (1) shows that

sgn(c(M®)) = t sgn(c(M)) .

Therefore if 7,40 the i-coordinate is ¢{(a;—r;)+0 and we get a contra-
diction. Now let us note that I=1I,. Indeed, if ¢ € then ¢;=b,/a;=
max(g;). Hence if 4; € I;, that is, ¢; =max(g;) then

q‘l:l = [b’l:lla'i]_] =4
and
tbil/azi1 2 tq; = max ([th;/a;])

for every ¢> 0. This shows that
[tbil/ail] = max ([th;/a,])

for every ¢> 0, that is, i, € I. We shall denote max(g;) by gy.

Now let N be another A*-lattice that does not have a I'*-lattice as
direct summand and let sgn(N)=(c;);<;<;- By Proposition 1 in [1]
(2) ¢(MDN) = c(M)Dc(N) .
Let p=max([c;/a;]) and c¢;=p;a;+s;, 0=<s;<a;. The first part of our
considerations shows that

sgn(c(M)) = ((9—g;— V)a;+a;—7;)1<i<k
and

sgn(c(N)) = ((p—p;—1)a;+a;— 8;)1<5<p -
By (2)
(8)  sgn(c(M®N)) = ((p+9—p;—;—2)a;+ 20;— (7;+8;)) 1<k -
But
(4) sgn(M@N) = ((pj+Qj)aj+(7‘j+Sj))1§jgk-
Let

_]o if r;+s;<a; f = 1ifr;j+s8=5a

%= 11 if 4820 77 |0 ifr+s>0

Now (4) and the first part of our considerations show that
sgn(c(MON)) = ((t—p;—5—&;— 1)a;+ (2~ 1)) )rgjzn
where ¢ =max (p;+g;+¢;) and ¢;=7;+s;—e;a;. Hence (3) and (4) give

t—p;—q—¢;—1 = p+q—p;—¢—2+J;,
that is,

(5) max (p; +¢;+e;) = max(p;)+max(g;)+(e;+f;—1).
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We want to show that there is an 4, such that
P;, = max(p;) and 4y = max (g;) .

Let us suppose that this is not true, that is, if p,)=max(p;) and ¢, =
max (g;) then 4,+14,". We have three cases:

— If ¢;=0 then f;=1 and (5) shows that
P;+qite; = Pi+q; < Piytqiy = max(p;)+max(g;)+(e;+f;—1).

'—If e,;= 1, r]-+85=a/j, f’-:]. then
pi+git+e; = pi+qi+1 < P+ +1
= max (p;) + max(g;) + (e;+f;— 1) .

—1If ¢;=1, f;=0 (that is r;+s;>a;) then r;4+0+s;, that is, p;<p,,,
q; < ¢4y and

Pi+qite; = Pi+q;+1<py+q; = max(p;)+max(g;)+(e;+f;—1) .

In every case we get a contradiction with (5). Hence there is a common
coordinate ¢, such that p, =max(p;) and g, =max(g;). Of course we
can assume that ¢y=1. This proves the Lemma.

REMARK. If 4 is a separable K-algebra then we can generalize Lemma
1 in the following way. If A=4,® ... @4, where A, are simple algebras
and 4 is an R-order in 4 such that the Krull-Schmidt theorem is valid
for A then for every A*-lattice M which does not have a I'*-lattice as
direct summand
sgn (M) = (sgny (M), .., sgn, (M)

has the properties described in Lemma 1 on every component sgn,, (M)
(sgn, (M) is defined by the decompositions of K*M and l,* over 4*
where [, is a simple 4,-module). We shall always assume that the first
coordinate in sgn,, (M) has the maximal property described in Lemma 1.

CoRrOLLARY. Let A be an arbitrary separable K-algebra, A an R-order
such that the Krull-Schmidt theorem is valid for A-lattices and I' a maximal
R-order that contains A. Let F be an indecomposable I'*-lattice such that
the only not equal to O coordinate in sgn(F') is not the first coordinate in
any sgn, (F). If M is a A-lattice and Hom 4« (M, F)+ 0 then M >F.

Proor. If f: M — F and f=+0 then f(M) is an indecomposable A*-lat-
tice and by Lemma 1 it must be a I'*-lattice since sgn(f(M))=sgn(F).
Since F is I'*-indecomposable and I'™* is maximal we get f(M)xF.
Hence there is an epimorphism of M onto F.
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We shall prove now the main result of the paper.

TorOREM 1. Let A be an order in a separable K-algebra A, where R is a
Dedekind ring and K is the field of fractions of R. If the Krull-Schmidt
theorem 1is valid for A then the normal decomposition of the lattices over A
8 umique.

Proor. Let R be a discrete valuation ring and let I" be a maximal order
that contains A. Let M be a normally indecomposable A-lattice and let

MxM®...OM0F®...®F,

where M, are indecomposable -lattices which are not I-lattices and
F; are indecomposable I'-lattices. By the proof of Proposition 1 in [1]

(6) M* =~ X,Dc(X;)

where X, is an indecomposable A*-lattice which is not a I'*-lattice and
c(X;) is a I™-lattice. Let
M* ~ XY

where X is a A*-lattice normally indecomposable and X > Y. We shall
show that all X;, ¢=1,...,r, are direct summands of X.
We can assume that

X =X®...0X,0X’
where X' is a I™*-lattice and X > X, for i+1,...,f. Between the in-

decomposable I'*-lattices which are direct summands of X’ may appear
the lattices of three types:

— direct summands of ¢(X;) for ¢=1,...,¢,
— direct summands of F;* for j=1,...,s,
— direct summands of ¢(X;) for ¢%1,...,t.

Since X > M* > M,* we can complete X by some ['*-lattices of the first
two types in the way such that

(*) M*®... OMFOF*® ... F F@X" >M*

where X'’ is a direct summand of X’ and a direct sum of I'*-lattices
of the third type which are not of the first two types. We shall show
that X'’ =0. Let Z be an indecomposable direct summand of X'’ that is
a direct summand in ¢(X;) for some ¢=1,...,t. sgn(Z) has exactly one
coordinate equal to 1 (the only coordinate that is not 0). If this coor-
dinate is in sgn, (Z) (see Remark), then it is not the first coordinate by
Lemma 1 (Z completes X; and the first coordinate in sgn, (X,) is maxi-
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mal). The relation (*) shows that the first coordinate in sgn,, (M;*) for
some ¢=1,...,t or in sgn,(¥,;*) for some j=1,...,s is not 0 (we can
look at this relation after the tensoring with K*). But we must have
the first possibility since Z is not a direct summand of F;* forj=1,...,s.
Hence sgn, (M,*) for some ¢=1,...,t and sgn,(Z) have a common co-
ordinate #+0. This shows that Hom . (M;*,Z)+0 and by the Corollary
M*>Z. Hence

MF*®...OM*® F*®... ®F * > M>* .

This contradicts the fact that M is normally indecomposable over A.
Hence if M is an indecomposable A-lattice such that

M*=X®7Y

where X is normally indecomposable and X > Y then all A*-indecom-
posable direct summands of M* that are not I'*-lattices are direct sum-
mands of X.

Let M,N be two normally indecomposable and normally associated
A-lattices. To prove that the normal decomposition of A-lattices is unique
we have to prove that M ~ N (Proposition 1). By the assumption that
M and N cover each other if one of these lattices is a I'-lattice then the
other is too. In such a case the exact sequence

MO N0

splits and by the Krull-Schmidt theorem (over A or I') we get M ~N.
Let us suppose that M and N are not lattices over I". By Proposition 5
in [3] there is an A*-lattice X such that

M* ¥ XDY,, N*x XPYy
where X is normally indecomposable over A* and X > Y,,, X> Y. Let
M* ~ M *®Mp*, N* =~ N j*ONp*

where M ,,N, have not direct summands which are I“lattices and
M, N, are I-lattices. Now if M, is an indecomposable direct summand
of M, and

M* ~ X;@o(X))

where X, is A*-indecomposable and ¢(X,) is a I™*-lattice (see (6)), then
X, is a direct summand of X by the first part of the proof. The Krull-
Schmidt theorem over A* and the fact that ¢(X,;) is uniquely determined
by X, give that M, is isomorphic with a direct summand of N ,. Hence
every direct summand of M, is isomorphic with some direct summand
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of N, (the direct summands M, of M are not isomorphic since M is
normally indecomposable). By symmetry we get M ,~N,. Now if F is
an indecomposable I™lattice that is a direct summand of M, and there
is no direct summand of N which is isomorphic with F, then

Hom, (N, F) =0

and the relation N> M implies that N, > F. Therefore M ,>F (since
M, ~N,) and we get a contradiction. Hence every I-indecomposable
direct summand of M is isomorphic with a direct summand of N and
conversely. This shows that also M.~ N,. Hence M ~N.

Now let R be an arbitrary Dedekind ring. By Proposition 3 the Krull-
Schmidt theorem is valid for every E,-order A, where p is a prime ideal
in R. The first part of the proof gives that the normal decomposition of
A,-lattices is unique for every p. Hence if M, N are normally indecom-
posable and normally associated A-lattices then M,,N, are normally
indecomposable (Proposition 2) and normally associated for every p. By
the uniqueness of the normal decomposition over A, we get M ~N,
for every p. Hence M and N belong to the same genus over /. Since the
Krull-Schmidt theorem is valid for A-lattices this implies that M ~ N
and the proof is complete.

We shall construct two examples:

1) An order such that the Krull-Schmidt theorem is not valid for it
but the normal decomposition of lattices is unique.

2) A hereditary order over a discrete valuation ring such that the
normal decomposition of lattices over it is not unique.

In both examples we use the considerations of Roggenkamp in [2,
Chapter IX, (2.29)]. Let R be a discrete valuation ring and 4A=D a
finite dimensional central skewfield over K, where K is the field of frac-
tions of R. Let R* be the completion of R and D*=R* Qp D=(K*),
where K*=R* @ K (that is, K* is a splitting field of D). Let A be a
non-maximal herditary R-order in D. We shall show that if r=2 then A
has the properties mentioned in 1) and if r=3 those mentioned in 2).

ExampLE 1. That the Krull-Schmidt theorem is not valid for A fol-
lows from [2, Chapter IX, (2.29)]. We shall show that the normal decom-
position of A-lattices is unique. Since A* is hereditary but not maximal
there are exact two classes of non-isomorphic and indecomposable A*-
lattices (r=2). Let M *, M,* represent these classes. Let M be a A-in-

Math. Scand. 37 — 4
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decomposable lattice. The completion M* is a A*-lattice and is isomorphic
with a direct sum of some number of M,* and M,*. But there are A-in-
decomposable lattices M,,, My, M,, such that

My* = MP*OM*, Myp* ~ My*OMy*, Myp* ~ My*@My*

and we get that there are only three classes of /-indecomposable lattices.
But at the same time the lattices My,, M,,, M,, represent all classes of
normally indecomposable lattices. To show this let M be a normally
indecomposable A-lattice. Then M is a direct sum of A-indecomposable
lattices and any two of direct summands of M can be isomorphic. But

'M12 >' Mll’ M12 > M22’ 'Mll@M22 = 12®M12

since this is true for completions. This means that M can not be a direct
sum of two (or more) indecomposable lattices. Now any of M, M,,
covers the other and they do not cover M,, (since A* is hereditary and
the Krull-Schmidt theorem is valid for A*) and by Proposition 1 we
get that the normal decomposition over A is unique.

ExawmpLE 2. The idea of this example is the same as in [2, Chapter IX,
(2.29]). Let M,*, M,* be two non-isomorphic and indecomposable A*-
lattices. Then there are A-indecomposable (hence A4-normally indecom-
posable) A-lattices N,,N,, N, such that

N* = M*QM*OMy*, Npy* ~ M*OM *OM.*,
N* ~ M *@M*OM* .
We have
N,®N, =~ N;®N,

where N,>N, and N;>N, (since this is true for completions). But
N,2=N, and we get two various normal decompositions of the same lat-
tice over .
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