A NOTE ON PG-MODULES

M. I. JINNAH

In this note, we prove that PG-modules of finite G-dimension are projective.

R denotes a commutative noetherian ring with unity. R-modules will be finitely generated and unitary. For an R-module M, M^* denotes $\text{Hom}_R(M,R)$.

In [1], H-B. Foxby defines an R-module M to be a PG-module if $\text{Hom}_R(M,M)$ is projective and $\text{Ext}_R^i(M,M) = 0$ for all $i > 0$. Let M be a PG-module of finite G-dimension (For definition, see [2, § 3.2.2]. We shall prove that M is projective.

We can assume R to be local. If x is a non-zero divisor for R and $M, M/xM$ are both PG-module and of finite G-dimension as R/x-modules [1, Proposition 1.1 vii and 2, § 3.2.2, Lemma 4]. So, by an easy induction on depth R, we may also assume depth $R = 0$.

Since depth $M + G$-dim $M = \text{depth} R$, G-dim $M = 0$ [2, § 3.2, Theorem 2]. Hence M is a reflexive R-module such that $\text{Ext}_R^i(M,R) = \text{Ext}_R^i(M^*,R) = 0$ for all $i > 0$.

Consider the two spectral sequences with the same limit

$$\text{Ext}_R^p(M, \text{Ext}_R^q(M^*,R)) \Rightarrow_p H^n$$

$$\text{Ext}_R^p(\text{Tor}_R^q(M, M^*), R) \Rightarrow_p H^n$$

By the assumptions on M, we get $H^n = 0$ for $n > 0$ from the first spectral sequence. The low term exact sequence for the second spectral sequence then yields

$$E_{2}^{1,0} = \text{Ext}_R^1(M \otimes_R M^*,R) = 0.$$

Also, $\text{Hom}(M \otimes_R M^*,R) \cong \text{Hom}_R(M,M)$ is free. Let $K = M \otimes_R M^*$. If we prove K is free, it easily follows that M is free.

Let

$$0 \rightarrow T \rightarrow F \rightarrow K \rightarrow 0$$

be exact with F finitely generated and free. Then taking duals, we get an exact sequence

$$0 \rightarrow K^* \rightarrow F^* \rightarrow T^* \rightarrow 0.$$

Received February 10, 1975.
Since K^* is free, T^* is of finite homological dimension, hence free as depth $R=0$, and (2) splits. Therefore taking duals again, and combining with (1), we get a commutative diagram with exact rows.

\[
\begin{array}{cccccc}
0 & \rightarrow & T & \rightarrow & F & \rightarrow & K & \rightarrow & 0 \\
\downarrow & & \downarrow & \cong & \downarrow & & \downarrow \\
0 & \rightarrow & T^{**} & \rightarrow & F^{**} & \rightarrow & K^{**} & \rightarrow & 0
\end{array}
\]

The vertical arrows are the natural maps into the double dual and the middle one is an isomorphism. Hence by the snake lemma, $K \rightarrow K^{**}$ is surjective, and $K \cong K^{**} \oplus L$ for some module L. Taking duals again, $K^* \cong K^{***} \oplus L^*$. By rank considerations now, $L^* = 0$. Since depth $R=0$, $L=0$. So, K is free and hence M is free.

Hence, we get

Proposition. PG-modules of finite G-dimension are projective.

References

TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD
COLABA
BOMBAY 400 005
INDIA