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A GENERALISED LLOYD THEOREM AND
MIXED PERFECT CODES

OLOF HEDEN

0. Introduction.

Denote by S the set 8;x8,;x ... x8,, where 8;=Z/p,Z for 1=1,2,
...,n and Z is the ring of integers. The numbers p,,p,,...,p, are not
necessarily prime numbers.

If T is a finite set, then |T'| is the cardinality of 7'. Let s=(sy,. . .,8,)
and £=(f,...,t,) be any two elements of S. The integer

d(s,t) = |{t | s;+¢;, 1=1,2,...,n}|

is called the distance between s and f. Let S (s) denote a sphere with
center at s and radius e, that is

Sy(s) = {te S| d(t,s)<e}.
A subset C of S is a perfect e-code if for any t € §
ICnS, ) =1.

If the numbers p,, p,,. . ., p, are not equal, then a perfect e-code may be
called a mixed perfect e-code.

In this paper we shall prove a theorem for mixed perfect e-codes that
generalises a theorem of Lloyd, cf. [5], [6], [7] or [8]. We shall also prove
that the following two conditions are necessary for the existence of a
perfect e-code in 8.

(i) If the prime p divides at least one of the numbers p,,...,p,, then
p divides |S,(0)|.

(i) Let p be a prime and I,,={i | p divides p;}<{1,2,...,n}. If [,+@
then e>n—|l,]|.

Suppose that p,=p,=...=p,=q and that ¢ is a prime power. Then all
parameters 7, e and g for which perfect e-codes exists are known, see [1].
If p;=p%, 1=1,2,...,n, (different a,’s) where p is a prime, then several

perfect 1-codes are known, see [3] and [4]. In the general case, when the
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14 OLOF HEDEN

p;’s are arbitrary, no perfect e-code has been found and the non-existence
has been proved only for a few cases, see [2].

Now, in many cases when the necessary condition given by the gener-
alised Lloyd theorem is satisfied, then, by using (i) and (ii), it is possible
to prove the non-existence of perfect e-codes. But, unfortunately, by
these methods, we cannot say anything about the case p;=p,=...=
P,=¢, where ¢ is not a prime power.

1. The algebra K[X,,..., X, ]/(X;*—1,...,X,Pr—1).

Let K be an infinite field that contains all primitive p,th root’s of
unity. Let K[X,,...,X,]J/(X,#*-1,...,X,P"—1) denote the algebra over
K generated by the monomials

XA X0 (8y...,8,)€ES,
where multiplication is defined by
X2 XX, X = X1t X et

8;+1t; is the sum of s; and ¢; in S;.

Let A and B be subsets of S. Then the sum A4 + B is defined to be the
set of all elements c=a+b where a € A and b € B, counted with multi-
plicities (note that in general ¢ can be written in many ways as a sum).
Note that we may represent 4 and B by the elements

AXy,. o, X)) = s Xy X 00
B(X,,...,X,) = 2 p Xt . X
of K[X,,...,X,)/(X,*-1,...,X,P»—1). Then 4+ B is represented by

the element
AX,,. ... X,)B(X,,...,X,)

of K[X,,..., X, J/(X,f*—1,...,X,Pr—1).
If C is a perfect e-code, then, as easily seen,

(1) 8,00+C = 8.
Since (1) is equivalent to

@) 8,(0)(Xys. . ., X )0 Xy . ., X)) = 8(Xy,. .., X,)

the following lemma and its corollary seem to be usefull in the study of
perfect codes.
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Let J; be a primitive p;th root of unity. Denote by y,(X,,...,X,),
t=(ty,...,t,) €8, the following element of

KXy, . XX =1, . X Pr—1):
Xy, .. X,) =TI A+95K,+ ... +9@ DR X PimY)p, |

Lemma 1. The vectors y(X,,...,X,), te 8, is a base of
K[X,,... . X, )/ (XS —-1,...,X,Pr—1)

and
). ST, § if t=t'
yt(Xl" . "Xn)yl’(Xl" caXy) = {g‘( ! ) i; t+t
Proor. Since, for any pth root of unity 9,
a_Jp idé=1
1+94...+9? —{0 if 91

we find that
- _ 1 if (8p,...,8,) =ty . -st,)
9,70, . .,0,7") = — %1 n 1 n
YD ") {o i (8, 08,) by oty) -

Now suppose that there are elements &, € K such that

Sies Y Xy ., X,) = 0.

If we put X;,=9;7% i=1,2,...,n, in the equality above, then we find
that o, =0 for t=(f,...,t,). We conclude that ;=0 for every ¢ € S and,
consequently, the vectors y,(X,,...,X,) t €8 are linearly independent.
Since the dimension of K[X,,...,X,]/(X,f*-1,...,X,P*—1) as vector-
space over K is |S| and the number of vectors y,(X;,...,X,), te€ S, is
|S| we have now proved the first assertion of the lemma.

An easy computation shows that if 3?=1 and ¢=p—1, then

(1+¥#X+... +92X)(1+HF X + ... +9%X9)
= (149X +... +92X)(1+H -+ ... +999) modX?P-1.

From that fact the second assertion of the lemma is easily deduced.
CororLLARY. If the elements A(X,,...,X,), BX,...,X,) and
CX,,...,X,) of K[X,,...,X,)[(X;Pr—1,...,X,Pr—1) satisfy
(3) A(X,,...,X,)B(X,,...,X,) = CX,,...,X,),
then their coordinates «;, f; resp. v, in the base y(X,,...,X,), t € S, satisfy
By = 71 -
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2. The weight enumerator.

Let K[Z,,...,Z,] denote the ring of polynomials in the variables
Zy,. . .,Z; with coefficients in the field K. Consider this ring of polyno-
mials and the algebra K[X,,...,X,]/(X"*—1,...,X,P»—1) as vector-
spaces over K. We shall now define vectorspace homomorphisms from
K[X,,...,.X,)/(X,*—1,...,X,P»—1) to K[Z,,...,Z,] which we shall
use later.

Let I be a subset of {1,2,...,n}. Define the homomorphism f; from
K[X,,..., X, )/(XP~1,...,X,P»—1) to K[Z,,...,Z,] by

frr XA . X2 7,0,
where
s; ifj¢l
0 ifjel and s;=0
1 ifjel and s;%0.

The image of the vectors y,(X,,...,X,), t €8, by the homomorphism f;
will be
(UTIE 2o) Tjer (L4914 ... + 9@~ X P171).
Thier 1+ (0; = 1)Z;) (1 - Z;)%,
where if j € I, then
If 1={1,2,...,n}, then we shall write f instead of f;.

Let F denote a partition 4,,...,4, of the set {1,2,...,n}. Define the
homomorphism g5 from K[Z,,...,Z,] to K[Z,,...,Z;,] by

ge: 2. .26 7.0 20,

where ¢, =3 4,d;. Suppose that g,. . .,q; are integers such thatif i € 4,,
then p;=g¢q,. The image of y,(X,,...,X,) by gpof will be

(4) gF°f(yt(X1, e ’Xn)) = I—.[Ilc (1 + (Qi- I)Zi)ni-d‘(l - Zi)di ’

where n;=|4;| and d;=|{j € 4; | t;+0}|. We shall denote d; by w,(t) and
call it the sth weight of t. Let 4 be a subset of S. If 4 is represented by
AX,,...,X,) in K[X,,..., X, ]/(X,2—1,...,X,Pr—1), then

Irof(AX .., X)) = 3 8[(Cn,- . . ), A1Z1 . . . Z,*

where 8[(cy,. . .,¢;), 4] is the number of elements of A4, the ith weight of
which equals ¢;, ¢=1,2,...,k. The polynomial ggpof(4(Xy,...,X,)) is
called the weight enumerator of 4 and will be denoted A4(Z,,...,Z,).
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Note that, by the homomorphisms f; and g¢gpof polynomials of
K[X,,... X, )/(X;*—1,...,X,P»—1) with non-negative integer coeffi-
cients are mapped to polynomials of K[Z,,...,Z,] with non-negative
integer coefficients. This fact shall be used in section 4 to prove some
necessary conditions for the existence of perfect codes.

3. The Lloyd theorem.

Consider K[X,,..., X, ]/(X;”—1,...,X,P»—1) as a vector space over
K. Let L(C(X):A(X)) denote the subspace of

K[Xy.. X)X =1, X, Pn—1)

spanned by the vectors B(X,,...,X,) satisfying (3). By using the corol-
lary of Lemma 1 we may calculate the dimension of L(C(X):4(X)). It
for some ¢, the #th coordinate in the base y(X;,...,X,), t€8, of
A(X,,...,X,) is zero and the tth coordinate of C(X4,...,X,) is nonzero,
then it is impossible to find a vector B(X,,...,X,) satisfying (3). In
this case we shall say that the dimension of L(C(X):A4(X)) equals —1.
In the other cases, then the dimension of L(C(X):A4(X)) equals 1 plus
the number of zero coordinates of A(X,,...,X,)in the basey,(X;,...,X,),
tedl.

It may be seen that the vectors B(X,,...,X,) satisfying (3) are ele-
ments of an affine subspace of K[X,,..., X, ]/(X,"—1,...,X,”»—1) of
dimension (dimL(C’(X ): A(X)) - l). But here we shall not use that fact.

Let L(B(X); A,C) denote the subspace of

KX, .. X /(X —1,... X Pn—1)

spanned by the vectors B(X,,...,X,) which are the representation vec-
tors of the sets B satisfying 4+ B=C.

LemMA 2. Let A and C be two subsets of S. If h is a vector space homo-
morphism from K[X,,..., X, J/(X*=1,...,.X,P»=1) to K[Z,...,Z,],
then

dimh(L(C(X): A(X))) 2 dimh(L(B(X); 4,C)) .

Proor. Since L(B(X); 4,0)c L(C(X):A(X)) and since h is a vector-
space homomorphism, we find that lemma 2 is true.

Now we shall prove a generalisation of the Lloyd theorem. The proof
will show how Lemma 2 and the corollary of Lemma 1 may be used to
find necessary conditions for the existence of sets 4, B and C satisfying
A+ B=C. But first we have to give some notations.

Math. Scand. 37 — 2
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Let F be a partition 4,,...,4, 0of {1,2,...,n}and n;= |4,],s=1,2,.. .,k.
Denote by P(F,e) the number

P(F,e) = [{(83,..-»8) | 81+ ...+ Ze, 8,€Z,
and 0=<s;5n; for 1=1,2,...,k}|.

Suppose that F and the numbers ¢;,...,q; are such that ¢ € 4, implies
that p;=gq,, v=1,2,...,k. Consider the polynomial

ITE (1+ (@ = )2 %1~ Z,)%.
Denote the coefficient of the monomial Z,* . .. Z,% in this polynomial by

Ol(81,- - +»8), (s - ., dp), F] .

THEOREM 1. Let F' be as above. If a perfect e-code exists in S, then the
number of distinct k-tuples (dy,. . .,d,), where d; is an integer and 0= d,; <n,,
1=1,2,...,k, satisfying the equation
(5) 0= Zl+...+ak§e OL(81;- - +»8k) (24, - %), F']

in the unknown x,,. . .,x, is greater than or equal to P(F,e)—1.
Proor. We first intend to find the coordinates of S,(0)(X,,...,X,)
in the base y,(X;,...,X,), t € 8. Denote by 0,(X) the polynomial
0i(X) = X+...+ X7 1,
It is easily seen that

8,(0)(Xy- - -, X,)
= 1+370iX)+ ..+ c <, 05(Xy) .0 (X5,)

The coordinate o, t=(t;,...,t,), of 8,(0)(X,,...,X,) is given by
8,(0)(#,7,...,8,7 ™). Since

(9.t — | Pe
O"L(ﬁ‘i ) { —1 i.f tiE{1a27°°°’pi—1} ’

we may conclude that

X = zal+...+anse 6[(81,- . -:sn)’(dls- . -,dn),Fo] ’
©T 1 if 4+0,

and F, is the partition {1},{2},...,{n} of {1,2,...,n}. From this formula
for «; we find that

(6) X = z«l+...+ak53 6[(81" . "Sk):(dls‘ . ’dk)rF] ’

where



A GENERALISED LLOYD THEOREM AND MIXED PERFECT CODES 19

where s;€Z, 0<s;<n,;, and d;=w(t). Consequently if C(X,,...,X,)
satisfies (2), then by the fact that S(X,,...,X,)=yo(Xy,...,X,) 1T ;>
the corollary of Lemma 1 and by (4) we get that

(N grof(OXy. ... X)) = (I80)]) TTF (1+ (g — D Z,)™
+3 By TTE (14 (g — V) Z)"%(1 - Z)*%,
where B;=0, d=(d,,...,d;)+(0,...,0), if there is a teS such that
w;(t)=d; and o, 0. Observe that dimggof (L(S(X ): S,(0)(X ))) is less than
or equal to 1 plus the number of k-tuples (d,,...,d;) satisfying (5).
Now let (sy,. . .,8;) be a given k-tuple satisfying s, + ... +8,5¢, 8, € Z,
and 0=<s;<n;. By adding a suitable element of S to a perfect e-code it

is possible to find a perfect e-code C' whose representation vector
C'(Xy,...,X,) in K[X,,..., X, ]/(X,,*—1,...,X,P*—1) satisfies

grof(C'(Xy,...,X,)) = 2, ... Z;%+ (terms of degree>e) .

Consequently
P(F,e) < dimgyo f(L(C(X); 5,(0),8)) .

By using Lemma 2, then by (6) and (7) we have proved Theorem 1.

In the case p,=p,=...=p,=p We can say even more about the zeros.
CoroLLARY. If a perfect e-code exists in S and py=...=p,=p then the
number of distinct integer zeros d, 0 <d < n, of the equation
(8) 5 coetty(1+(p—1)Z)m2(1—Z) = 0

in the unknown x is equal to e.

Proor. If F={4} and 4={1,2,...,n}, then P(F,e)=e+1. Since the
equation (8) is of degree e it has at most e zeros.

4. Applications.
We shall prove the following two theorems.

THEOREM 2. If a perfect e-code exists in S and the prime p divides at
least one of the numbers p;, then p divides the number |S,(0)|.
THEOREM 3. Let p be a prime and
I, = {i| pdivides p;} < {1,2,...,n}.
If a perfect e-code exists in S and I+ @, then e>n—|L,|.
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But since the proofs of these theorems are very technical, we shall
first use an example to show how the non-existence of a code can be
proved by using Sections 1, 2 and 3.

ExamprLE. Let p;=6 and p,= ... =p,=2. Suppose that C is a perfect
1-codein 8=8; x 83 x ... x8;. Let F denote the partition {1}, {2,3,...,7}
of the set {1,2,...,7}. By (6) and (7) we get that

C(Zy,Z,) = gF°f(O(X1" .. ’X7))
U/12(1+ 52,)(1+ Zg)s + By(1 4 5Z)(1— Z)+
+By(1=2Z,)(1+ Zp)3(1 — Z,)3 .

Since P(F,1)=3 we can not use Lemma 2 to prove that no perfect 1-code
exists in S. But if we substitute Z,=1 in the polynomial C(Z,,Z,), then
we get that

O(Zy,1) = 16/3-(1+5%,) .

Since C(X,,...,X;) e Z[X,,...,X;] we get that C(Z,,1) e Z[Z,]. Con-
sequently we have a contradiction and there can not possibly exist any
perfect 1-code in 8.

Now we shall give some notations and lemmas that we shall use in
the proofs of Theorem 3 and 4.
Let ¢ be a m-tuple and I a subset of {1,2,...,m}. Denote by S(t,7)
the set
S, I) = {(81,..-,8,) | si=t;, t¢1}.

We note that for two m-tuples ¢ and ¢’ either S(t,I)nS(t',I)=9 or
S, I)=8@',1I).

Lemma 3. Suppose that C(X,,...,X,)e Z[X,,...,X,]. Let &, t€ S, be
the coordinates of C(X,,...,X,) in the base y/(X,,...,X,), te8, of
K[X,,....X,])/(X,,*—1,...,.X,P»—1). Then for any n-tuple t and I<
{1,2,...,n}

(/181 Xsese, ny %5 = BilTTaer 14 >

Bie Z[By,,. .., 9]

where

and
{i100,. . it = {1,2,...,m}\ 1.

Proor. Substitute X;=0 if i€ and X;=9,7% if i ¢ I in the polyno-
mials C(X,,...,X,) and y(X,,...,X,), s€S. We get that by this sub-

stitution
O(Xl,. . ,Xn) = ﬂt € Z[’l?,tl, . .,'01:"]
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and that
0 if ¢ ¢ 8(¢,1)

/X,...,Xn = : ’
vy )= WILerpe i ¢ €S(t.T)

Consequently
ZSES “sys(Xl: cee 7Xn) = zses(l,l) “S/Hiel Pi»

and Lemma 3 is proved.
A

Lemma 4. Suppose that C(X,,...,X,)eZ[X,,...,X,]. Let the elements
B, of K be such that

OZy,. ., Zy) = 3 By TIE (1+(@:— 1) Z,)" 51— Z,)% .
Then for any k-tuple d and I<={1,2,...,k}
Zd'ES(d,I) By = ﬂd/l—Iia 7",

Ba€ Z[Dy,. . .,0;,]

firre v otm) = (1,2, 03N User 45 -

Proor. Since ggpof(y(Xy,..., X)) =gpof(y(Xy,....X,)) i wyt)
=wy(t'), 1=1,2,...,k, we get that

Bd = (I/ISI) Zt,w,'(t)=d.' &y -

Zd'eS(d,I) By = Zt,wi(t)=di,i¢1 O‘t/ 18] .

Let S(t™, 1), S(t®,I),...,8(t™,I) be a partition of {te S| wy(t)=d;, ¢ ¢ I}.
We find that (cf. Lemma 3)

zd'esaz,z) By = 2’11 Buw/ Hi¢1 ",

and Lemma 4 is proved.

where

and

Consequently

If we return to the example above we shall find, using Lemma 4, that
A,=05,/64 and 4,=0,/64 where b, and b, are integers. It is now easy to
see that the constant of the polynomial C(Z,,Z,) can never be an integer.
Consequently there is no perfect 1-code in this particular S.

Since we have fixed the partition F we shall write
O[(81s- - +58%), (dy, - « -, 8)]
instead of O[(sy,. . .,8%),(dys. . .,d;), F]. We shall use the notation
6[04, di] = coeffz‘c{(l + (q‘i_ l)Zi)”i_dt(l —Z‘)di
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only when its meaning is clear. It follows from the definition of these
symbols that if ¢c=(cy,...,¢;) and d=(d,,. . .,d;), then

d[c,d] = TT% oles,d,] -

Lemma 5. If p divides q;, then
d[c;,d;] = dle,d;’] modp .

Proor. Since for any g,
(L+(g;—1)Z)" %1 - Z,;)% = (1-Z;)® modp
we get that
(14+(gs=1)Z)" ¥1=Z)% = (1+(q;— V2" % (1-Z)¥
and Lemma 5 is proved.
If c=(cy...,¢), then let I(c) denote the k-tuple (sy,...,s;) where
8,=0if i el and s;=c; if ¢ ¢ I. Let P denote the set
P = {(s3,...,8)]| 8;€Z, 0=8;=m; and 8;+ ... +8,Se}.
Let D denote the set

D={d+0| 3, pd[s,d]=0}.
Note that
(9) zseP 6[8’0] = ISe(O)l .
From (7) we now deduce that if C satisfies (2), then

(10) gFof(C(Xls' oo :Xn)) = (l/lse(o)l) ].—].-’1c (1 + (Qi_ I)Zi)m
+Xaep Ba TIF (1 +(gs— 1)Z,)" 91— Zy)* .

Proor or THEOREM 2. Let p be a prime and
I = {i]| pdivides ¢;} = {1,2,...,k}.

Suppose that there exists a perfect e-code in § and that p does not divide
|8,(0)|. Since |8,(0)|>1 and gmof(C(X,,...,X,)) is a polynomial with
integer coefficients we find by (10) that the set D is non-empty. So by
(9) if d € D, then

18e(0)] = Zsep [8[s,0]—0[s,4]] .
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Using Lemma 5 we find that
8[s,0]—o[s,d] = T 6ls;, 01— TT7 OLs;,d:]
= [lies 5[8i»0][H¢¢1 d[s;,0] _Hi¢1 d[s;,d;]] modp.

We get that if I={1,2,...,k} or d;=0 for ¢ ¢ I, then p divides d[s,0]—
d[s,d] for every s € P. Consequently I is a proper subset of {1,2,...,k}
and

(11) . Dn80,I)=0.

Let C be any perfect e-code. From (10) and the definitions of §[s,C]
and d[s,d] we get the following relations:

(12) 0[s,C] = Byd[s,0]+ 3 4cp Badls,d], seP.
Define T'(C) to be the integer

T(O) = ZSGP [_6[3’ O] +6[I(8),0] HieI 6[8i’0]] .

We get that

T(C) = ByTo+ 2aep BaTa
where

Tq=Dep [6[3,0]—6[s,d]

—TTier 0085 0N TTser L85, 01— T Tser 5[3i’di]]] .
By using Lemma 5 we find that
(13) 8[s,0]—0d[s,d] = TT% O[ss 01— TT7 olss,d;]

= TTier Olss OJ[Hiu d[s;, 0] "‘Hz‘;l o[s;,d;]] modp.

Consequently, since each term in the sum 7'; is divisible by p,
(14) T,=0 modp.
We also find that

Ta+Ysep TTser 0lsis 0][Hi¢1 d[s;, 0] — Hiu d[s;,d,]]

_ _ _[I1840) ifdeD
- zseP 6[8’0] (5[8,(1] = 0 if d=0.
Consequently

Let dO,. . .,d™ be k-tuples such that
S(d™, 1), 8(d®,I),...,8(dm™,I)

is a partition of the set of k-tuples (d,...,d;,) satisfying d;e Z and
0<d,<n;. Let J be a subset of {1,2,...,m} such that S(d?,I)nD+@
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if and only if © € J. We may suppose that d? € D if 1 € J. From the fact
that 7,=0, (11), (15) we get that

T(0) = ByTo+34cp Bala = 2701 Daesa®, pop Bala
= zieJ Td(i) zdeS(d(i),l)nD Bd
= zieJ Ty ZdeS(d(i),D B; = ZieJ T d(i)ﬁd(i)/l__[i¢l ",

where by Lemma 4 since C(X,,...,X,)e Z[X,,...,X,]
Bawy € Z[Dy,. . .,9,] .
Since p divides T';u), ¢ € J, (14), we find that

T(©C) Iz 4%/ € Z[Dys- - -, D] -

Since all elements of Z[$,,...,9,] are integral over Z we conclude that
T(O) 119" /p € Z. From the fact that the prime p does not divide g;
for ¢ ¢ I we conclude that p divides 7'(C).

Now we shall prove that there exists a perfect e-code €’ in S such that
T(C") is not divisible by p. Let s=(sq,...,s,) be such that w(s)=1
and s;=0 if j¢U; ;4; and suppose that C is a perfect e-code. If ¢ is
an element of C, then the subset C'=s—c+C of 8 is a perfect e-code
that contains the element s. Since the minimum distance between the
elements of C’ is 2e+ 1 we get that if ¢’ € P, then

0 if ¢+ (wy(s),. .., w(s))

6[0’,01] =11 if c’=(w1(s),. .. ,wk(s)) .

It follows from the definition of 7'(C’) that 7'(C')= — 1. This contradicts
the fact that p divides 7'(C) for every perfect e-code C in S. Consequently
if there exists a perfect e-code in 8, then p divides |S,(0)| and Theorem 2
is proved.

Proor or THEOREM 3. Let p be a prime and
= {i| pdivides ¢;} < {1,2,...,k}.

Suppose that C is a perfect e-code in S. Consider the relations (12) and
let T'(C) denote the integer

T(C) = Yaep [TTier 8ls: 018[Z(s), C1 T 6[s,, 0160,01] .

We find that
T(C) = BT+ 4ep BTy
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where 7,=0 and if d € D, then

Ty = zseP [6[8, 0]—d[s,d]
— T Tser 00sss O][Hz‘u d[s;,0] “Hiu 5[81"‘1{]]] —18,(0)]

Since p divides |S,(0)|, Theorem 2, we conclude using (13) that 7';=0
modp if d e D. We also find that 7;=T, if d’' € 8(d,1). So by similar
arguments as those we used in the proof of Theorem 2 we find that p
divides 7'(C).

Suppose that e<n—|U, ;4. If a perfect e-code exists in S, then
there will exist a perfect e-code C and an element ¢ € C satisfying

Sirwilc) = e and wyc) = 0 if ¢el.
Since the minimum distance of C is 2¢+1 we find that
0[L(c"),C] = 0 if ¢’ + ¢ and (wy(c'),...,w(c")) € P

and that 6[0,C]=0. Since 8[I(c),C]=1 we get that 7(C)=1. But this
contradicts the fact that p divides 7'(C) for every perfect e-code C of S.
Consequently e>n—|U, ;4,| and Theorem 3 is proved.

The arguments in the proofs of Theorems 2 and 3 are in some cases
helpful in the study of the existence of sets A and B satisfying

(16) A+B=28.

For instance let 4, and 4, be a partition of the set {1,2,...,n} such that
the prime p divides p; iff i € 4,. Let

4 = {se8| w(s)<e; and wy(s)=0}
U {seS | wys)<e, and w,(s)=0}.

If e, <|4,| and e,<|4,|, then it is possible to prove that there is no
subset B of S satisfying (16).

But if A’ and B’ are subsets of X, 4 8;=8", A" and B" are subsets
of X, 4,8;=18" satisfying A’ + B’ =8"resp. A"+ B"'=8", then 4" x 4" +
B'xB"=8"x8".

Indeed it would be very interesting to know which subsets 4 and B
of § satisfy (16).

By using the Sections 1, 2 and 3 I have found some other results that
seem to be new. I hope to be able to discuss them in a forthcoming paper.
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