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SOME PROPERTIES OF MIRRORED ORDERS

MIROSLAV BENDA

The question whether a countable structure (4,U,...) which has a
proper elementary extension with the same U actually has an uncount-
able such extension was raised by Keisler. Examples that this does not
have to be so were found by Gregory [3], J. Knight [5], Lachlan [6] and
the author [1]. But Lachlan proved positive statement as well. Namely,
if Th((4,U,...)) is totally transcendental then the answer to the above
question is yes. One may ask oneself under what other conditions the
answer is yes. I considered the situation when (4, U,...) has, for every
« < w,;, an elementary chain (4, U,...) such that

(A,U,...) = (4,,U,...) £ (4,U,...) £ (4,,U,...)

whenever 0 < 8 <y < «. This, by Friedman’s Theorem (see [4, Corollary D,
p. 53) amounts to assuming that (4,U,...) has an elementary chain
which preserves U and whose order type is that of the rationals. We
show that even this is not enough to guarantee an uncountable elementary
extension with the same U. We shall in fact construct for each » a
linear order (4, <,U) of power » (=|U|) such that every elementary ex-
tension of it preserving U has power » and the relation ‘“‘being an ele-
mentary substructure of *’ partially orders these extensions to a type of
(P(x), =) (and so has chains of length « for any & <x*). The example
has some other interesting properties.

Before constructing a specific example we will prove a general theorem
about certain class of linear orders from which the desired properties of
the order will follow immediately.

Given a linear order (4, <) define the left type of an element a € 4
as follows:

(i) (@)= 0 for every ac A
(i) t(a)2k+1 if a=sup{red | x<a and t(x) 2k}
(iii) t(a)= oo if f{a)=k for any k< ow.

We write t)(a)=Fk if {(a) =k but not ¢(a)2k+1.
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t,(a), the right type of a, is defined similarly except that (ii) is replaced
by t(a)2k+1 if a=inf{re A | ¢ (x) =k and >a}. In these definitions
the supremum or infimum of the empty set is an element outside of A.
Thus if a is the first (the last) element of 4 then #(a)=0 (,(a)=0).

DEerFINITION. A linear order (4, <) is mirrored if #(a)=¢.(a) for any
acA.

Thus, for example, the orders w, w* + w, 5 (the order of the rationals)
are mirrored while w-2 is not since #(w)=1 and ¢ (w)=0. If an order
has the property of the definition then the right immediate neighborhood
of any point (except the extreme ones) is the mirror image of the imme-
diate left neighborhood of the point; ‘“mirrored’”’ comes from this.

Before formulating our basic result we recall that a closed order is
one in which every set has supremum and infimum (so it has to have
the least and the last element). We could get by with a little more care
without the extreme points but it does not seem worth the trouble.
Also if we sorted out points of infinite type in the natural way we could
talk in the next result about indiscernibility with respect to infinitary
formulae of certain quantifier rank. But for our purposes the classifica-
tion suffices.

To familiarize the reader with closed and mirrored linear orders we
list below some basic properties which will be needed in the proof of
the main theorem. We assume that (4, <) is a closed (needed only for
(iv)) and mirrored linear order, a,b,c,d € A and (a,b)={x € A | a<z<b}.
We let t(a)=t.(a)=t(a). So if a is the first or the last element of A then
t(a)=0. Also let t,={a € A| t(a)=Fk}.

(i) If there is no x € (a,b) with t(x) = k then t(a), t(b) < k.
(ii) If there is a ¢ € (a,b) with ¢(c) =k < w then for any m < k there is a
d € (a,b) with {(d)=m.
(iii) If for every z € (a,b) t(x) = oo then t(a)=£(b) = .
(iv) If ¢t;n(a,b) is finite and one of t(a),t(b) is < oo then #(a),t(b) < k.

The properties (i), (ii) and (iii) follow immediately from the definition.
As for (iv) say that #(a) < w. If t(a) > k then it follows from (ii) that there
are infinitely many points in (a,b) of type k. So t(a)<k. Similarly if
t(b) < oo then #(b) < k. To conclude let us assume that #(b) =oo and let

=sup{red| a<x<b and if aSy<x then ¥(y)<oo}.
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Clearly a <c<b. We claim that ¢(c)=oc. If ¢=0 it is clear. If ¢ <b then
by the definition of ¢ for any d>c¢ there is an e € (¢,d) with t(e)= oco.
So t,(c) =co=#(c). But this means that there are elements of arbitrarily
large finite types in (a,c)<(@,b), a contradiction (by (ii)).

THEOREM 1. Let (4, <) be a closed and mirrored linear order. Let I be
{a€ A | t(a)=o00}. Then

(1) I, <) is a set of indiscernibles of (4, <).
(2) No ¢ el is first-order definable in (A, <,8)4ec 4y

(3) If {xeA| t(x)=0} ts dense in (A, <) (i.e. if a<b then [a,b]n
{x | t(x)=0}%0) then for every formula @(v,,...,v,), every i € I and any
ay,....0,€ A-{i} if (4,<)E ¢[i,a,...,a,] then for some ac A—1I
4, <)k ¢la,a,,...,a,].

Proor. To establish the claims we will define a sequence (F | k< w)
of sets of partial isomorphisms which will be shown to satisfy the ex-
tension property:

(EP) if feF,,, and ac A then there are extensions g,he F,, of f,
such that a e rangeg and a € domainh.

Moreover, F), will be defined so that the partial isomorphisms in F, will
preserve points of type <k only and on points of type =k will just
respect their order. This will enable us to prove (2).

Elements of F, are finite functions {(a;b;)| ¢<n)} such that
Ay<a,<...<@a,, by<b;<...<b, and for each ¢ <n the following are
satisfied :

a) t(a;) 2k iff t(b,) =k

b) if #(a;) <k then #(a;)=1(b;)

c) for every m <k min(|t,,N(ay,a,,)],®)=min(|t,N(D;,bs4)l, @)
d) a,=b,="first point of 4, a,=5,=Iast point of 4.

c) says that the intervals (a;,a;,,), (b;,0;,,) have the same number of
elements of type m if we disregard distinctions between infinite cardinali-
ties.

We now show that (F, | k<o) has the extension property and ex-
plain later its usefulness. So let {(a;,b;) | t<n}e F),, and let a € 4 be,
say, in (a;,a;,,). We are to find b € 4 such that

(*) {(ai,b)) | i=n}u{(a,b)} e Fy .



8 MIROSLAV BENDA

CasE 1: H(a) 2 k.
By c) there is a b € (b;,b;,,) such that {(b) = k. For such a b (*) holds.

CASE 2: H(a)=r<k.
For m <k let p,=|(a;,a)nt,| and g, =((a,a;.,) Nt
o) All p,.’s and ¢,,’s are infinite.

If |t,n(a;,0;.,)| 22 the same has to be true for (b;,b;,,); it is then
possible to find a b such that {(b)=r and

(Bysb) Nt % 0 £ (b,by0) N,

which shows that (*) holds. If there is only one element, say a’ of type &
in (a;,a;,;) we may assume e.g. that a <a’. Since the order is closed,
there are infinitely many elements of type k—1 in (a;,a¢) and no point
of type k is in (a;,a); we conclude that ¢(a;)=k. And so (by b)) #(b;)=k.
By c¢) (b;,b;,1) has one element of type k, say &'. Choosing b € (b;,b) of
type r we will satisfy (*). If t,n(a;,a;,,) =0 then, as above, we find that

Ha;) = Ha;41) = 8b;) = t(bj4y) = k

and that there is no problem to find the b.

p) All p,,’s are infinite but some ¢, (m <k) is finite.

Let m, be the least m such that g, is finite. Note that by (iv) #(a;.,) Sm,
and t(a) =m,. Find a point b € (b;,b;,,) such that |(b,b;,,) Nty | =4,,, and
t(b)=r. Such a b exists because if x € 4, {(x) <m,, then there is a largest
y <z such that ¢(y) =m, (if there is a y with {(y)=m,, y <z at all). If we
assume, by way of contradiction, that no largest y exists then

z=sup{yed| y<z and {(y)=my} £ =,

(which exists due to (4, <) being closed) is a point of type =my+1 so
z<x. But because (z,x) contains no point of type m, property (iv) shows
that t(z) £ m,. Contradiction.

Having the b we have to show that (*) holds. a) and b) are obviously
true. Since (b;,b) contains infinitely many points of type 7y, (b,b;,,)
contains no point of type >m, and because (b;,b;,,) contains infinitely
many points of every type <k, (b;,b) must also contain infinitely many
points of every type <k. If ¢, >0 then (b,b;,,) contains = w points of
every type <m, and no point of type >m,; the same is true of (a,a,,,).
If ¢,,,=0 and {(a)=m, we also have the situation just described. If
¢m,= 0 and #(a) <m, then we must have #(a;.,) =my=1(b;,) and c) holds
again.
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An analogous argument works in the case when all ¢,.’s are infinite
and some p,, is finite.

y) Not «) nor B).

In this case we let m, be the least m <k such that p,, <w and let m,
be the first m <k such that ¢, <w. We have: t(a;) Sm,, t(a;,,) <m; and
t(@) < min (mg,m,). Thus ¢(b;) <m, so we can find the p,, th element of
type mq in (b;,b;,,); call it '. We can also find, now counting from the
right, the g, -st element in (b;,;,,) of type m,; call it ". Clearly b’ <b".
Now, more or less repeating the arguments used in «) and 8) we can find
be(b,b"’) of type t(a) and check that (*) holds with this choice of b.

It should be clear that given b (rather than a) we can, just by inter-
changing some letters, find a so that (*) holds. In other words the proof
of (EP) is complete.

The extension property is useful for the following reason: if
{(a;,b;) | i=n} e F, and @(v,,...,v,) is a formula with at most k quanti-
fiers then (4, < )Eg¢[ag, . - .,a,]iff (4, <)E@[b,,. . .,b,]- This can be proved
by a simple induction on the number of quantifiers in ¢ (see also [2]).

This yields claim (1) because if 44< ... <¢, and j,< ... <j, are from I
then {(3,,5;) | I=n} e F, for every k<w.

As for (2) let @(vg,vy,. . .,v,) be a formula, i € I and ay,...,a, € A - {i}.
Assume that (4, <)k¢[i,aq,...,0,], thata; < ... <a,<i<@,,<...<a,
and that ¢ has k£ quantifiers. Because ¢(¢)=c we can find b € (a,,,,,41)
with #(b) > k. It is easy to check that {(a;,@;) | 1<I<n}u{(i,b)} € F. This
means that (4, <)E¢[b,a,,...,a,] so ¢ is not definable.

To prove (3) note that by the argument just finished it is enough
to find b€ (a,,,a,,;) such that {b)=Fk. Since ieln(a,a,,,) and
{x | t(x)=0} is dense there is a point of type 0 in (a,,,t), say b,. Because
(4, <) is mirrored, b, has immediate successor b,, which has immediate
successor b,,. ... The supremum of {b, | » <w} is a point of type 1. We
can then find similarly a point of type 2 in (a,,,?) and eventually find b
of type k. The proof of the theorem is finished.

THEOREM 2. Let x=w be given. There is a structure (A,, Uy, <,) such
that |4y =|Uy| = and the isomorphism types of elementary extensions of
(Ao, Uy, <o) which preserve Uy are partially ordered by < the same way
as P(x) is ordered by <. Moreover (Ay, Uy, <o) has no Uy-preserving ele-
mentary extension or power xt.

Proor. Let us fix a closed and mirrored linear order (4, <) of power
» in which Uy= {z | ¢(x) =0} is dense and has power ». Also assume that
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I={x| t(x)=o0} has power ». We will construct such an order later.
For XcIlet Ax=(A—-I)uX and let < x be <PAx. Using (3) of Theo-
rem 1, Tarski-Vaught test for elementary substructures and the fact
that if 4<C, B<LC and 4 < B then A< B we get that whenever X c Y < I
then

(i) (Ax, <x)< Ay, <y)

Let Ax=(4%,U,y <x). From (i) and the fact that U, is definable in
every Ax we have
(id) XcY iff Ax< Ay.

The structure Ay=(4,y, U,y <,) is what we are looking for. Firstly,
x=|Uy|=|4,|. Secondly, let B>>A4, and N¥= U, where N(.) is the name
of U,. We claim

(iii) forsome X c I, B~Ax.

To see this recall that U, is dense in (4,, <,) so
Aok (V2)[N@) > (eSz 0 259)] > 5=y
and so does B. This implies that every gap in 4,, i.e. a pair
({zed| z<i}, {xed,| z>1})

where ¢ € I, can be filled by at most one element (in B). If X is the set
of 1 €l whose gaps are filled in B it should be obvious that B~ A.
So by (ii) the isomorphism types of U,-preserving elementary extensions
of A, are ordered as claimed. And A, cannot have a U,-preserving ex-
tension of power x* since it has largest U -preserving extension, namely
A;, which has power x. Finally note that had we chosen I finite the
theorem would remain true with »=w.

What remains to be done is to exhibit a closed mirrored order in which
{x | #(x)=0} is dense and which has a prescribed cardinality of I. In
the following construction we write 4 instead of (4, < ). Let 4, have
type 1 and let {a,}=4,. We define by induction 4, with a, in the middle
of 4, as follows: Given A, and a, let 4,,, have order type 4, -w+1+
A, w* and let a, ., be the element in the middle of 4_,,. We can assume
that A,c4,,, in the following way: a,=a,,,; the initial segment
{red,| vr<a,} is the natural initial segment of A4,,; (it is the first
half of the first copy of 4,in A4,,,); the terminal segment (x € 4, | z>a,}
is the natural terminal segment of A4,,, (it is the mirror image of
{x | x<a,} with the mirror placed at a,,;). This identification permits
us to define 4, for any 7 limit as the union of the preceding orders. It
is obvious that |4,|=|x+ w|. If one has the orders in one’s mind then it
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is plainly seen that they satisfy the above requirements. Just to check
on few we see that 4, has one point of type 1 (the middle one), 4, has
one point of type 2, 4, has one point of type « (a, in fact) 4,,, has
infinitely many points of type o they are ordered in type w+ 1+ w* so
@, in this order has type w+1. 4, has w, points of type oo etc.

A precise definition of the orders (4,, <,) can be formulated as fol-
fows: Define by induction on « orders (4,, <,), @, € 4, and embeddings
1,5 of (4,,<,) into (4, <,) where a<f so that f, =f; of, 5 where
x<p. We start with ({a,},0). For limit #>0, (4,, <,) is defined as a
direct union of (4,, <,) using f, , with x <f <. On the successor step
with (4,, <,) given, we let A, ,=Zx A, u{a,,,} where (Z,<) is an
order of type w+ w* which is fixed throughout the construction and
@, is a new point. We let Z=2Z,uUZ, where Z, has type w and Z, has
type w* and let 2z, and z, be the first and the last element of Z resp.
Given z,ye€ 4,,; we define x <,y iff (a) z=(n,a) and y=(m,b) and
(n<m or (n=m and a< b)) or (b) x=a,,;,y=(m,b) and m e Z, or (c)
y=a,,, and x=(m,b) and n € Z,. Define f, ,,, from 4, into 4,,, by
Sfu,ar1(@) =0, 1. If x<,a, then f, ., (x)=(2p,x) and if a,<,x then
S, at1(®) = (21,®). For B<a, fp ,11=F, s+1°f5,- This finishes the descrip-
tion of the orders.

The same problems can be considered for larger gaps but things are
easier here owing to the presence of natural candidates. For example
taking a complete atomic Boolean algebra (B, <) with x atoms and letting
U be the set of all atoms we see that (B, <, U) has no elementary U-pre-
serving extension of power (2*)*. It is known that (B, =,U)< (B, £,U)
where

B, = {be B| bor —b contains finitely many atoms} .

Now let C < B be an independent family of power 2*. If we let By be
the subalgebra (finitely) generated by B,uX, we see that Bxn(C—X)=0
and this permits us to construct, for given « < (2*)+, an elementary chain
of U-preserving extensions of (B, <,U) of length «. Similarly one can
find examples for 22°. ... By Vaught’s 2-cardinal theorem if a structure
has U-preserving chains of all lengths up to [, (x) then it has U-preserv-
ing extensions of arbitrarily large cardinalities. We have not thought
much about finding an example of a structure which has U-preserving
chains of lengths up to »++ but no U-preserving extension of power »++;
it is probable that the usual examples for non-stretchability of finite
gaps will work (see: C.C. Chang and H.J. Keisler, Model Theory, North
Holland Publ. co., Amsterdam 1973).
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In connection with this it is natural to associate to a given structure
A the least ordinal « such that there is no elementary chain of elementary
substructures of 4 of length «. Clearly if |A|>w then |[A|ZaZ]|A]*.
If |A]=w then a=w, and it is easy to find examples for which a=
0,1,2,....

Note that for uncountable |4|, x=|A| iff A has no proper elementary
substructure of power |4], i.e. if A is a Joénsson structure. (To get a
Jénsson algebra one should delete elementary from the definition of «).

More about this number can be found in my paper Construction of
models from groups of permutations which will apear in J. Symbolic Logic.
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