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FUNCTION SPACES AND ADJOINTS

JOHN R. ISBELL

Introduction.

Quite a bit has been written about various notions of ‘‘reasonable”
topologies for function spaces. This paper concerns one such notion:
consistently topologizing all function spaces Hom (B,C) for one fixed B,
so as to lift the representable functor Hom (B, ) to an endofunctor of the
category of topological spaces which shall have a (left) adjoint. The
prima facie broader subject of arbitrary endofunctors G having adjoints
is not broader; for if ¢ has an adjoint, so does G followed by the forgetful
functor, which is therefore some representable functor Hom (B, ).

The first theorem in this paper says in part that such a lifted hom
functor @, lifting Hom (B, ), is determined by its value B* on a two-
point space 2 one of whose points is open, The set (underlying) B* con-
sists of the characteristic functions of the open sets of B; one may
identify it with the lattice of open sets — the topology of B. A topology
on the set yields a coadjoint endofunctor if and only if it makes finite
intersection, and arbitrary union, continuous operations, that is if and
only if it makes B* a topological topology.

The way B and B* give G' and its adjoint has been described by
Wilker [13], who gave sufficient conditions on the topology of (the
topology) B* which are stronger than necessary. Indeed, the finest of
Wilker’s topologies on B* for Hausdorff B is the compact-open topology.
The finest compatible (with the indicated operations) topology on B*
always exists; it is finer than the compact-open when B is an uncount-
able product of lines; it is the compact-open when B is a G, in a compact
space. This last is a specialization of a similar result for non-Hausdorff
spaces (3.1).

I have published [9] a claim that the finest compatible topology on
any topology B* is the “Scott topology” studied by Scott [10], but
before him (I have learned) by Day and Kelly [1], who called it 2. The
claim is false. Both £, and a more geometric fine topology introduced
in [9], may fail to be compatible. Thus two results of [9], 2.1 and 2.9,
are false. (Example, 3.3 below.) The part of 2.1 proved in [9], that Q
contains every compatible topology, is true.
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The main theorem of [9], 2.10, also contains an error. Not a further
error, but a meaningless assertion presupposing the truth of 2.9. The
rest of the theorem is true; but less interesting alone; but, on redoing it
here, we get a better result. (Better because it makes precise and answers
the question which motivated 2.10 in terms of a less restrictive notion
of reasonable topology for function spaces.) Namely (2.3 below): A
function space Hom(B,C) is injective in a T, topology agreeing with
the pointwise on the set of constant functions and on finite sets of func-
tions if and only if it is trivial (B being empty or C a singleton) or B is
2-compact in the sense of Day and Kelly [1], C is injective T,, and
the topology is Q.

For a reader more interested in function spaces than in functors, this
concludes the description of content except to add that the classifica-
tion of coadjoint G’s by sets B bearing a topological topology relativizes
to T, spaces. For other readers: and trivially to sober spaces. For Freyd’s
classification of adjoint endofunctors of a variety by bialgebras [3] ex-
tends to quasivarieties such as the quasivariety of topologies — dual [7]
to the primal (=sober) spaces — in the variety % of local lattices. (The
local lattices of Ehresmann [2] have recently been often called ‘“‘complete
Heyting algebras”. As objects, they are the same thing; but categorists
should not confuse them, because the appropriate, and usual, morphisms
do not preserve the Heyting operation p — ¢. The preserve the topological
operations, infinite v and finite A.) Freyd’s result, indeed, extends fur-
ther; and my extension in [8] can be shown to apply to topological spaces.
Since it does not apply to T, spaces, a more direct argument (which
does) is used here instead. I do not know if there are additional adjoint
endofunctors of better separated spaces which do not extend to T,
spaces. (Always they would arise by topologizing function spaces, by
the remark in the first paragraph.)

We conclude with a little information on adjoint endofunctors in the
variety &£ of local lattices. By Freyd’s theorem, the adjoints are classi-
fied by bialgebras. The main result found here on bialgebras is that
each algebra A admits at most one coalgebra structure — which we can
describe. In any variety ¥, free algebras have a distinguished coalgebra
structure. Since % has a forgetful functor to partially ordered sets, free
local lattices have a distinguished co-partial order. That structure is so
soft that every local lattice inherits it as a quotient of the free local lat-
tice on its underlying set. The theorem is that a coalgebra structure on
A must induce the same co-partial order; and, of course, (co-) partial
order is so strong that it determines local (co-) lattice structure.

In the affirmative direction, briefly, very many bialgebras exist and



FUNCTION SPACES AND ADJOINTS 319

almost none of them are known. The topological topologies of Day and
Kelly from 2-compact spaces yield #-bialgebras easily, whose bialge-
bra morphisms are given by the continuous maps of the spaces. Colimits
of these are again bialgebras. Some remarks and constructions show that
there are many new ones (associated with colimit spaces, with 2-compact
spaces but not the topology £, or (4.9) with no spaces), none of which is
explicitly described.

I am indebted to F. W. Lawvere for numerous helpful conversations
and particularly for the definition of natural co-orderings in Z.

1. Adjoint endofunctors of TOP.

As stated in the Introduction, we have a classification and a descrip-
tion of adjoint endofunctors of the category TOP of topological spaces,
which relativize to T, spaces and to primal spaces. This seems a fair
statement although in the primal case there is a complication in the
description which may, as far as I know, be unnecessary. The cases
divide at 1.3:

A cocontinuous endofunctor of TOP or of T, spaces, followed by the for-
getful functor, has the form () x B.

In the primal case we have a weaker result (1.3.a) which suffices.
This line of argument for the primal case is a bit silly since (as mentioned
in the Introduction) it is essentially an algebraic problem and the classi-
fication, together with the description of the (continuous) coadjoints, is
essentially contained in Freyd’s general theorem. However, we must
take this line to treat the T, case. Possible later results for such categories
as Hausdorff spaces may require several lines at once; so the following
five paragraphs outline the alternative ‘“‘algebraic’”’ argument and its
application to TOP. They can of course be skipped.

Remark, not a part of the outline. The dual category TOP°p, provided
with a suitable forgetful functor, is the category of models of a theory of
the sort Freyd has called ‘‘essentially algebraic” [4] (‘“‘colimited by its
point”, in my terminology [8] — perhaps ‘“‘predicate-algebraic” would
serve, since about the axioms there need be nothing algebraic except their
expressibility in terms of the predicates). Technically, I need this to drive
the proof home. I think that is accidental. As partial evidence note the
T, case, which nobody calls algebraic but which turns out the same.

The preceding remark at least drew our attention to TOPepr, which is
all to the good. Contravariant adjoints are more natural. Note that the
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(eponymous) grandfather of all adjoints is the dual-space functor * in
vector spaces. It is self-adjoint on the right, Hom (V,W*) « Hom(W, V*).
(““On the right” is to be understood below.)

The “normal” distribution of contravariant adjoints is illustrated by
the categories TOP and GR of groups. The contravariant adjoints be-
tween them are classified precisely by topological groups. How common
“normality”’ is depends on how one generalizes the composition leading
to topological groups. If one wants a classification by structures simpler
than the adjoint functors themselves, some (‘“‘algebraic’) restriction
seems to be needed.

(Two “abnormal” examples are given in [8; 3.10]: TOP with TOP,
and the category POS of partially ordered sets with itself. The latter
is spurious. The usual presentation of partial order theory is not “‘essen-
tially algebraic’’, and the results in [8] on classification failure are cor-
rect; but one need only pass from POS to the equivalent category of
partial orderings. In a partially ordered set (P, <), P is the set and
< <P x P is the ordering. The categorical problem of classifying contra-
variant adjoint endofunctors of POS is solved by the partially ordered
partial orderings, just as for TOP and GR — by [8; 3.8].)

These preliminaries and excursions may show that one should not
be surprised if adjoint endofunctors of TOP, which are the same as
contravariant adjoints between TOP and TOPop, are classified by some-
thing like topological topologies. But more precisely, note that the re-
sult is not a classification of adjoints by topological topologies. Topolo-:
gies constitute, not TOPor, but the category opposite to primal spaces.
Adjoint endofunctors of TOP are classified by certain pairs (B,B*), B
in TOP and B* living in a categorically awkward but conveniently
familiar place. Now the applicable theorem is 3.8 of [8]. It applies to
two concretely given categories, i.e. categories ¥, 2, with forgetful
functors, provided some broad conditions hold (which are obvious for
all categories in sight), both forgetful functors are faithful, and one of
them reflects isomorphisms. The usual forgetful functor for TOP is
faithful but not isomorphism-reflecting. (TOP has no continuous iso-
morphism-reflecting functor to sets, and continuity is necessary.) But
TOPor has the needed functor, represented by a three-point space {a,b,c}
with three open sets, @, {a,b,c}, and {a}. Hence one gets a classification
of the adjoints by certain pairs (C,C’), C in TOP and C’ in TOPor, It is
roughly backwards and twisted (doing the same thing for primal spaces,
C would be precisely the space B* and C’ the correspondent of B), but
it is no more than tedious to deduce Theorem 1.4 for TOP from it.
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We must recall, and amplify, some properties of the three categories
in question.

(1) The full subcategory of Hausdorff ultraspaces is left adequate.
Why ? and, So what? Both of these questions are answered in the litera-
ture, more or less. Recall that a (Hausdorff) ultraspace consists of a
discrete open subspace D and another point p whose deleted neighbor-
hoods form a (non-principal) ultrafilter in D. The familiar fact that
each topology is determined by its convergent ultrafilters means that
every space is a quotient of a coproduct of ultraspaces. It is easy to see
that the essentially unique non-Hausdorff ultraspace (a two-point T,
space plus a discrete space) is a quotient of a Hausdorff ultraspace. It is
also easy to see that in any full category of topological spaces, if each
space is a quotient of a coproduct of certain spaces, then they form a
left adequate subcategory; this is written out in [5], stated only for
uniformizable spaces.

The importance of left adequate subcategories is described in [12] in
precisely the terms we want: natural transformations of cocontinuous
functors are determined by their restrictions to such a subcategory.
But this is in the Introduction [12], and the proof seems to be missing.
It is routine. If F,G: % — & are cocontinuous, I: 2<% left adequate,
o«: FI - QI natural, one extends « to «’: F — @ as follows. To construct
a coordinate « ¢, represent X as a colimit of objects Y (¢) of 2 canonically,
in Ulmer’s terminology (as colimit of its cospectrum, in my terminology
[6]) and take the colimit of the morphisms xy;); and verify sufficiency
and necessity of this construction.

(2) In these categories, certain epimorphisms are surjective. In TOP,
of course, all of them. In the other two categories, we need an elabora-
tion of the known fact that an epimorphic embedding of a Hausdorff
subspace is surjective. Recall that a mapping f of T, spaces or primal
spaces is epic if and only if f-1, on open sets or equivalently on closed
sets, is injective. (The open sets or the closed sets classify the maps into
the two-point, three-open-set space 2, and all T, spaces can be embedded
in powers of 2.)

1.1. In T, spaces, given a Hausdorff space H, a morphism v: X - B,
an epimorphically embedded subspace S of X, and a morphism t: S —~ H
whose fibers t-1(h) are all mapped homeomorphically by v upon B, then
X=_.

Proor. Suppose on the contrary X has a point z not in 8. § is also
epically embedded in Su{x}; otherwise there would be two different
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open subsets of Su{r} having the same intersection with §, and they
would extend to open subsets of X of the same description. Evidently
{x} is not open nor closed in Su{z}. The closure of {x} cannot meet two
different fibers t-(y), ¢-(z), for such fibers have disjoint neighborhoods
in 8. So it meets only one fiber F'; and G'=Fu{z} is closed in Su{x}.
Now F is a retract of G by v|G followed by the inverse of v|F; so F — &
is not epic, and there are two different closed sets of G having the same
intersection with F. They are closed in Su{z}, and we have a contra-
diction.

1.2. 4 cocontinuous endofunctor of TOP, or of T, or primal spaces,
admits a unigue natural transformation to the identity.

Proor. Let F' be such an endofunctor. Let P be a singleton and let
B=FP. Since F preserves colimits, it takes every discrete space D to a
coproduct of that many copies of B, which is D x B. For every space H
there is a bijection e: D — H from a discrete space. Since e is epimorphic,
80 is Fe: D x B — FH. On the other hand the unique morphism »: H — P
gives Fu: FH - B, and (Fu)(Fe) is projection Dx B — B. Also the
points z: P — H, coretractions, give coretractions B - FH.

In a Hausdorff ultraspace H with non-isolated point p, closed sets K
not containing p are discrete summands of H=K]J] (H—-K), so FH=
(K xB)I1I F(H — K). Therefore Fe: D x B - FH is injective; it does not
identify two points with different second coordinates because (F'u)(Fe)
is projection on B, nor two points with different first coordinates be-
cause there is a summand containing just one of them. Fe is also sur-
jective; in the case of TOP, just because it is epic, and in the other cases
as follows. Let S be the image of Fe, which is of course epically embedded
in X=FH. If we were in primal spaces, § may not be primal but it is
T,, and epically embedded as a T, space. Since Fe is bijective from D x B
to S, Dx B — D — H induces a function ¢: § - H. The inverse image of
an open-closed set of H, i.e. a summand, is a summand of FH or the rela-
tive complement in S of a summand of FH; anyway, open. Since these
form a basis for the topology of H, t is continuous. Hence 1.1 applies
and Fe is bijective. We have also shown that projection 7;,: D x B - D
pushes (across e and Fe) to a continuous map ¢ =ny: I'H -~ H. Now the
projection restricted to discrete spaces is natural from F to the identity.
Because of the connecting bijections m={n;} on ultraspaces is still
natural. Since ultraspaces are left adequate, = extends to a unique
natural transformation F — I. On the other hand, because of the core-
tractions Fz, there is no natural transformation from F to I on ultra-
spaces except z. 1.2 is proved.
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Returning to (2): certain epimorphisms are surjective. Coequalizers
are surjective, in TOP and in T, spaces. For which categories, we have
the

1.3. A cocontinuous endofunctor of TOP or of T, spaces, followed by the
Jorgetful functor, has the form () x B.

Proor. In 1.2 we established the desired conclusion on Hausdorff
ultraspaces H. Also for each X we have coretractions B —~ FX given by
the points P — X. Their images are disjoint since the natural transforma-
tion to the identity separates them, so we have the set X x B inserted
in the ground set of F.X. Representing X as a quotient space of a coprod-
uct of Hausdorff ultraspaces H;, since F is cocontinuous, every point of
FX comes from a point of FH;. Then it comes as F(P -~ H; - X), i.e.
X xBis all of FX.

1.3.a. A cocontinuous endofunctor of primal spaces is the primal re-
flection of a T-space-valued functor which, followed by the forgetful functor,
has the form () x B.

Proor. The proof of 1.3 applies except that FX is only shown to be
a primal strict quotient (primal reflection of a quotient space) of a co-
product of FH,;. The T, strict quotient is a subspace of F X, the image;
its ground set is X x B, and it gives a subfunctor (the points coming
from F(P - X)).

To conclude, we shall need the coadjoint of F. A cocontinuous endo-
functor of any of these categories has a coadjoint, by the Special Ad-
joint Functor Theorem.

We include some side remarks in the statement of 1.4 below. For the
omnibus result an ambiguous notation, clear in its use here, will be
convenient. B may denote a fixed space and 7' a topology on the set
B* of open subsets of B; or T may denote a contravariant functor
associating to every space B a topology on B*. A T-function space
Fn, (B,C) is the set Hom (B,C) with the weak topology induced by the
mappings 7, into B* (topologized by T') given by open V<C, tp(f)=
J~YV). The natural identification of B* with Hom(B,2), 2 the space
{0,1} with {1} open, takes 7, to Hom(B, V). For certain T (specified
within the paragraph), a 7’-product 4 x ;B is the topological space on
the product set A x B whose open sets are those U such that the func-
tion oy from A4 to subsets of B defined oy(a)={b: (a,b) € U} is open-
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valued and 7'-continuous. For arbitrary 7', this is not a topology. Those
U are closed under the operations of open sets, join and finite meet,
provided the continuous functions 4 — B* are closed under those oper-
ations. For general 4, this means those operations are continuous on B*,
That is, B* with T is a topological topology. Only in that case do we
define T'-products.

THEOREM 1.4. Every cocontinuous endofunctor of TOP or T, spaces (of
primal spaces) has the form (primal reflection of) ()x pB. For every
topology T on B*, Fn,(B,C) is a functor of C; if T is functorial, then
Fn,(B,0) is functorial (of mized variance) in B and C. For fixed B,
Fn, (B,C) has an adjoint if and only if B* is a topological topology, in
which case A x B (or its primal reflection) is the adjoint. If T is defined
Jor all B and all B* are topological topologies, then A x 5 B is functorial in
both variables if and only if T is functorial.

Proor. By 1.2 and the Special Adjoint Functor Theorem, cocontinu-
ous F has a coadjoint G and a natural transformation #' — I. Let B=FP.
By adjointness, G2 has the set of points Hom (FP,2)=B*. By 1.3, each
FA is on the point set 4 x B (or near enough, 1.3.a). The continuous
maps F4 — 2 correspond to 4 — G2. Calculating the correspondence by
means of the maps P — A, one sees that it is U oy, which means
FA=Ax pB (or the primal space with the same topology).

We have written six further assertions or implications. Four proofs
are short and completely routine, leaving the two “only if”’ clauses.
The last — 4 x B functorial only if 7' is — involves checking that
J: B’ > B induces continuous f*: B*¥ -~ B'* by considering 4 = B* and
the universal open set U in B* x ;B consisting of all {x,y) with y € z;
for V=(1x 5f)"YU), op is f*.

For the remaining implication, two slightly longer proofs will be in-
dicated. (Each adds some extra light.) If B* is not a topological topology,
one finds that Fn, (B, ) does not preserve all powers of 2. And a dis-
continuous functor has no adjoint. Alternatively, one can consider “pre-
topological”’ spaces, defined as sets with a family of “open’ subsets
subject to no axioms. For them everything works including the adjunc-
tion. Fn, (B, ) does not actually take topological spaces to topological
spaces in this setting; one gets a subbasis as pretopology, but maps of
topological spaces into this new Fn, (B,C) are the same as into the old.
Then if Fn, (B, ) restricted to TOP has an adjoint, the adjoint is a re-
flection of pretopological ( ) x ,,B. But it is easy to see that no properly
pretopological space has a topological reflection.
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To describe all topological topologies or all those that are T, or
primal is, of course, a problem like describing all topological groups;
one does not expect a complete answer. Note, ‘T, T, or ‘““primal primal”
would be meaningless in the preceding sentence. A topology on a set may
be T, or not; but as a lattice, it is always isomorphic with a primal topo-
logy on some set. We shall note further:

A T, topological topology is primal.

We want a slightly more general result. Rather than explain it, it is
nearly as quick to generalize to (I suppose) the end.

1.5. A T, topological complete semilattice is primal.

~ Proor. Write the operation as v. Then if a2 b in T, complete S, b is
in the closure of {a}; for the points p; of S whose coordinates are b
except for an a in the ¢th place converge to <b,b,...), so their joins a
converge to b. If a directed set {x,: « € A} has join z, the A-tuple {(z,)
is a limit of a net of A-tuples ¢, where (¢,), is z, if x, <x;, x; otherwise.
(Any finite number of coordinates x, are matched by (¢;), corresponding
to a common successor z;.) So the join x is a limit of the joins x; of #;.
That is, a closed set T' of § is a lower set and is closed under directed join.

If T is irreducible it is also closed under binary join. For if z,y e 7T,
they have no disjoint neighborhoods in 7'. But for any neighborhood N
of xvy, there are neighborhoods L and M of x and y such that join maps
LxMinto N.Ifze LnMnT, z=2zvz e N. With binary join and directed
join, T' has a largest element ¢ and is {t}-.

2. Injective function spaces.

The next main order of business is repairing the main theorem of [9],
on injective function spaces. As stated in [9] it is two sentences, the first
of which is not about function spaces and is, in fact, about a mistaken
construction that does not exist in TOP (the adjoint of an Fny). The
rest of it, we can improve (2.3 below).

We must recall some concepts and results from Day and Kelly [1]
and from Scott [10]. The determination of any injective spaces depends
on Scott’s description of them by means of the awkward notion of a
“continuous lattice”. I added an awkward description of them to Scott’s
geveral, in [9], using the older concept of a meet-continuous lattice: a
complete lattice in which zA(Vy,)=V(zAy,) when the family {y.} is
directed upward. It turns out (2.1) that meet-continuity can be elimin-
ated; there exists a non-awkward description.
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The whole line begins with the Day—Kelly topology £ of a lattice L.
Day and Kelly defined it only in case L is a topology (but in an evidently
order-theoretic way). Scott extended it even to any partially ordered set.
Let us stay in complete lattices L, where a set H is defined to be closed
(i.e. L—H € ) provided H is a lower set and is closed under taking
suprema of directed subsets.

Scott defines a complete lattice L to be continuous provided each ele-
ment y is the least upper bound of the set of all x such that y is 2-interior
to the set of successors of . Apropos, z is called [9] bounded in y or a
bounded part of y if whenever the supremum of {z,: x € A} is >y, there
is a finite subset whose supremum is >=z. In general, this is weaker than
the condition that y is interior to the successors of 2. In an MC (meet-
continuous) lattice, it is equivalent [9; 2.3]. Since Scott proved that every
continuous lattice is MC (in the proof of 2.7 [10]), we have two conditions
together equivalent to Scott’s one condition.

One of the conditions is redundant.

2.1. A complete lattice i3 continuous if and only if every element is the
supremum of its bounded parts.

Proor. It remains to show that this condition implies the MC laws
uA(Vv,)=V (uAv,) for directed {v,}. Evidently the left side is greater
than or equal to each uAv,, hence greater than or equal to the right side.
Also the left side y is the supremum of its bounded parts x. Since
y=<Vv,, x is under some finite join, and under some v, since the family
is directed. Thus the right side exceeds all these x, and we have equality.

Now Scott, needing a name for these lattices, called them “‘continuous”.
Similarly Day and Kelly earlier called the spaces whose topologies have
this property ‘““(2-compact’. Topologically the property is semi-local:
not that each point has sufficiently many neighborhoods satisfying some
condition, but that in every neighborhood U there is a neighborhood ¥
bounded in U. Accordingly I propose to call the property, both for lat-
tices and for spaces, semi-local boundedness.

Scott showed that a semi-locally bounded lattice is a topological MC
lattice in the topology 2. (The proof is not at all complete in 2.7 [10],
where it seems to be, because ‘“‘continuous”’ functions there are not ob-
viously continuous in the usual sense. At the end of the paper, Scott
shows that they are really continuous.) By the way, the justification for
the seemingly over-condensed term ‘“‘topological MC lattice”, viz. that
no lattice which is not meet-continuous admits a T, topology making
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finite meets and all joins continuous [9; 2.2], is not directly affected by
the errors of [9]. In context, the justification seemed more conclusive
because all meet-continuous lattices were said to admit at least one such
topology, namely . In this line all we know is that every topology L
admits such a topology (the pointwise) and that every semi-locally
bounded complete lattice admits such a topology (£2).

The main results of this section seem more intelligible arranged as
follows, including Day and Kelly’s theorem on this topic (though I do
not offer another proof of it).

2.2. The only adjoint endofunctors of the category of T, spaces which
preserve embeddings are Cartesian products () x B for semi-locally bounded
Ty spaces B. Those functors are adjoints, being () x o B.

THEOREM 2.3. For semi-locally bounded B and injective I, Fng(B,I) is
injective. If a hom set Hom (B,C) containing more than one point admits
an injective Ty topology agreeing with the pointwise topology on the set of
all constant functions and on all finite sets, then B is semi-locally bounded,
C 18 injective Ty, and the topology is that of Fn,(B,C).

To annotate the components of 2.2 more fully: Day and Kelly showed
that () x B (which obviously preserves embeddings) is cocontinuous if
and only if B is semi-locally bounded [1]. In effect they did it by showing
(inter al.) that then it is adjoint to Fn, (B, ). They didn’t say so. So the
second sentence of 2.2 is really by Day—Kelly; one can complete it by
Scott’s proof that £ is an admissible topology, the fact ([9] or 1.5 above)
that 2 contains all admissible topologies, and the remark that the topo-
logy of A x B contains the product topology. Thus when () x B is an
adjoint ( ) x B, T must be the finest admissible topology, here .

The rest of 2.2 (which will be proved after 2.3) of course extends Day—
Kelly. It can also be regarded as a replacement for the erroneous part of
2.10 of [9].

Proor of 2.3. Fn,(B,2) is B* in the topology £2 — a continuous lattice
(by 2.1), therefore in this topology an injective space [10]. Every injec-
tive T, space I is a retract of a power of 2, and Fn, (B, ) preserves powers
and retracts. The extension to non-T, spaces [ is a triviality. (I is injec-
tive if and only if its T, reflection is.)

For the second assertion, the hypotheses imply that B is non-empty
and the set of constants is homeomorphic with C. From [10] we know
the injective T, space Hom (B,C) must be a semi-locally bounded lattice

Math. Scand. 36 — 22
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in the natural order, and the topology must be 2, determined by the order.
The order is given by the topology on finite sets, so it is the pointwise
order. The least upper bound f of a family of constant functions p,
must be constant; for each value f(x) exceeds all p,=p,(x), so the con-
stant f(x)-valued function is =f. (So all f(x) are order-equivalent, hence
equal because the pointwise order on Hom (B, C) underlies a T, topology.)
Similarly the subset C* of constant functions is closed under meet.

Hom (B, Q) is a topological MC lattice, so the complete sublattice C*
is also. Then C is a topological MC lattice; the pointwise join (or finite
meet) of continuous functions is continuous. The operations of Hom (B, C)
(determined by the order) are therefore performed pointwise. Evaluation
at a single point of B is a homomorphism r retracting the MC lattice
Hom (B,C) upon C*.

Since C* is a topological MC lattice, its topology is contained in its
Q-topology. But if H is a lower set of constants closed under directed
join, the smallest lower set J of Hom (B,C) containing H is also closed
under directed join. (If {f,} is directed in J, p,=V[f(r): € B] is in
H and {p,} is directed.) Since H=JnC*, H is closed; C* has exactly the
Q-topology. Then r is continuous, since £2-continuity means just preser-
vation of directed joins [10].

It follows that the retract C is injective. Hom(B,C) being a semi-
locally bounded lattice in the pointwise order, B is a semi-locally bounded
space [9, after 2.3]. Finally, since Fn, (B,C) is an injective space on the
same partially ordered set as Hom (B,C), it has the same topology Q.

Conclusion of proof of 2.2. Whenever an adjoint functor ¥ preserves
embeddings, the coadjoint G' preserves injectives; for an extension prob-
lem A<B, A GI is adjointed to FA<FB, FA — I, and solvable.
Then the given conditions imply that the functor has the form () x B
and that Fn, (B, ) preserves injective T, spaces, and the result follows
from 2.3.

3. Fine function spaces.

On an algebra of any species there is a finest topology making all
operations continuous — though it may be the indiscrete topology. For
it is straightforward to check that in the supremum of all such topologies
T, (which has for a subbasis their union), the operations are still continu-
ous. (For finitary operations, of course, one need only remark that the
discrete topology is a 7',.) There is also a coarsest admissible topology:
the indiscrete. Wilker showed [13] that on a topology B* the topology
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of pointwise convergence is the coarsest T, topology in the special class
he considered. It is actually coarsest admissible T,,. For more generally,
in any T, topological MC lattice, principal ideals are closed [9]; and the
complements of principal ideals form a subbasis for the pointwise topo-
logy on B*. (The open sets containing a point p are those meeting {p}-,
i.e. not in the principal ideal generated by B— {p}-.)

The (correct) result just cited from [9] is there followed by some in-
correct remarks. In fact, on a general MC lattice, it is not known if ad-
missible T, topologies exist. Let us add one example to the two types
we have, pointwise and £. The complete Boolean algebra M of measur-
able sets —in [0,1], say — modulo sets of measure zero admits the
topology T whose basic neighborhoods of a (blurred) set Y are
{8: u(Y —8)<e}, e>0. Meet is T-continuous; if UAV is in the ¢-neigh-
borhood N of Y, then u(Y —(UAV)) is e—26, >0, and A maps the
d-neighborhood of U and V into N. As for join, even uncountable,
VU, € N implies that a finite subjoin is already in NV and a neighborhood
of (U,) is mapped into N by v. So 7' is admissible, and the finest ad-
missible topology on M is T. I do not know whether M has a coarsest
admissible T, topology.

3.1. The quasicompact-open topology on a topology B* for the intersection
B of a descending sequence of locally quasicompact primal spaces is ad-
missible, and finest admissible.

Proor. It should be mentioned that the quasicompact-open topology
is not always admissible. It would not be hard to show this using Wilker’s
example [13] for which he stated less; we use a different example below
(3.3) for convenience in treating £ too.

The quasicompact-open topology (indeed, any ‘‘set-open’ topology)
makes meet continuous; for if UnV is in the subbasic (actually basic)
open set of all supersets of quasicompact K, so are U and V, and the
open set is closed under n.

To continue, we need a known result whose proof has not been pub-
lished; I remarked after 2.11 of [7] that this holds ‘“by substantially
the same proof”. As follows:

3.2. The intersection of a downward directed family of quasicompact
primal spaces is quasicompact.

Proor. It suffices to show that an intersection of such spaces P, (in
some containing space P,) is non-empty if all P, are; for if {F,} is a
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directed family of relatively closed non-empty sets of NP,, then
{F,~nP,} is a directed family of non-empty quasicompact primal sub-
spaces.

Given the non-empty P,, consider the closed sets F of P, such that
no FnP, is empty. Zorn’s Lemma applies to them for each «, hence as
a whole; there is a minimal such set M. Then M is not the union of two
closed proper subsets (each would miss some P, and miss their inter-
section). Thus M is the closure of a point z € P,. Each P,nM is dense
in M, for its closure meets all the P’s. Since P,nM is also irreducible
closed in P, (just as M is in P,), it is the relative closure of a point
x' € P,. Since {&'}-={x}~, «'=z; xeNP,.

Back in 3.1, consider binary join. B being the intersection of a
descending sequence of locally quasicompact primal spaces S;, note
that every point of §; has a basis of quasicompact primal neighbor-
hoods. (Indeed, an embedding N — 8§; of a quasicompact space
extends over the primal reflection N’ of IV because it induces S;* -~ N*=
(N")*. N' is a quasicompact primal neighborhood of each interior point
of V; and any open set U containing N contains N’ because of U* — N*.)
Then part of the recursion will be that when two open sets U, V; of S;
cover quasicompact K, they contain quasicompact primal sets P;,Q,
whose interiors Y, Z, still cover K. Since one can cover K with interiors
I, of quasicompact primal sets H, so chosen that x € U; or V¥, implies
H_ < U, or V, respectively, this part is sound. Begin, from UuV>oK,
with any two open sets U,,V, of §; whose traces on B are U and V.
Go from Y, Z, to Uy, =Y;n8i1, Visa=2Z;n84y,. Finally L=NP,,
M =N@Q, are quasicompact by 3.2. The sets of (open) supersets of L and
M give a neighborhood of (U, V) in B* x B* mapped by U into the super-
sets of K.

If an infinite join of open sets U, is in the supersets of a quasicompact
set K, so is a finite subjoin, and continuity of infinitary joins follows
from this and continuity of binary join. Thus the topology is admissible.

To show that it is finest admissible, it suffices to show that it contains
£2. Suppose the contrary, W being an 2-closed set of B* that is not
closed but omits its limit point U with respect to the quasicompact-open
topology. We may assume U =B. (As follows: U is U;nB for some open
set U, of S,. Since U,;n...nU, is open in §;, we may suppose the U;
are descending. Since N U,< B, it is just U. W, being 2-closed, contains
VU for every V € W, and if U is a quasicompact-open limit of the V’s
it is also such a limit of the V' nU.)
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Observe that quasicompact sets in S; have quasicompact primal
neighborhoods. Call a set S (in S,) covered if SnB is contained in some
element of W. Not all quasicompact A <S8, are covered; for then 4°nB
would belong to W, and B is a directed union of these sets. We get quasi-
compact non-covered 4,<8;. Let NV, be a quasicompact primal neigh-
borhood of 4,. Having descending N,,...,N,, with §;>N, quasicom-
pact primal, and N,° taken in S, non-covered, it cannot be true that all
quasicompact 4 =<N,°n8;,, are covered; for again (now in S,,,) A°nB
would belong to W, and N,°nB is a directed union of these sets. We get
quasicompact non-covered 4, ., there, and it has a suitable neighbor-
hood N, ,,. Then NN, is a quasicompact subset N of B (by 3.2). Since B
is a limit point of W, N<U € W; and U= ¥V nB for some open V of §,.
The descending quasicompact primal spaces N;,— V have empty inter-
section; by the proof of 3.2, one of them is empty, and N, is covered.
The contradiction completes the proof.

It seems natural to wonder whether the margin 4, < N,° in the latter
part of the proof of 3.1 is really needed. Something like it is needed;
for every Tychonoff space is a directed intersection of locally compact
spaces, but it is easy to see by using measures that the compact-open
topology need not be finest admissible. (Taking an uncountable power
of a countable discrete space N={1,2,. ..} and the product measure of x
where u(1)=2-%, compact sets have measure zero. The measure topology
defined as just before 3.1 is not T,; but it is admissible and not contained
in the compact-open topology. Of course its join with the compact-open
topology is finer, and admissible.)

This is a convenient place to note that Wilker’s topologies [13] on B*
for Hausdorff B are always contained in the compact-open. For they have
bases consisting of filters W < B*. As Wilker notes, it must be true that
U U, € W implies that a finite subunion already belongs to W. Then one
can define the irrelevant set I for W as the union of all (negligible) open
sets N such that UUN € W implies U € W. Every neighborhood V of
R=B-1I is in W; for negligible sets form a directed cover of I, and the
VUN form a directed cover of B. B being Hausdorff, the converse is
true; W has no member U omitting a point p of R. For U would be
covered by open sets U, whose closures omit p; a finite union 7' of them
would belong to W; and (B—T')° would be a negligible set containing p,
since SU(B—T)?e W implies T'n(Su(B—T)% <8 € W. Then, of course,
R is compact.

Now, the trouble with the topology £2. One way to summarize it is
this: not only does 2 contain every admissible topology on B*, but also
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it always contains the quasicompact-open topology A. (For obviously
the basic 1-closed sets, the set of all U in B* not containing quasicompact
K, are lower sets closed under directed join.) And:

3.3. For some B,B* has mo admissible topology containing the quasi-
compact-open topology.

Proor. Partition the interval [0,1] into three dense sets P, @, R and
form the quotient set PuU{g,r} in which @ and R are squashed to points.
The space B is this set, not with the quotient topology, but with a set
defined to be closed if it is the image of a closed set in [0,1]. Of course B
is quasicompact; after taking a neighborhood of ¢ and a neighborhood
of r, only a compact subset of P remains. Thus in the quasicompact-open
topology on B*, {B} is open. The open sets U=B—{r}, V=B-{q}
cover B. It remains (since an admissible topology must be contained
in 2) only to show that no 2-neighborhood of (U, V) consists entirely
of pairs covering B. Such a neighborhood contains a product neighbor-
hood W x W’. Let E be the set of points e of P such that B—{e} e W,
F the set of fe P such that B—{f} e W'. E meets every sequence ¢ in
P c[0,1] converging to a point of R; for otherwise every element of W
would contain all of ¢, and since U has a directed open cover by relative
complements of tails of o, W would not be an 2-neighborhood. There-
fore E is dense in P. Therefore F contains a sequence t converging to a
point of @. But F meets 7, just as £ meets each 0. So £ meets F in a
point 2. We have (B—{z},B—{x}) € W x W', not covering.

Knowledge of finest admissible topologies on B* is so small that one
could list any number of questions. We may note the problem of a better
description of 2; it does not seem inaccessible, and it marches with the
specific question whether 2 is admissible for Hausdorff spaces (for a
product of X, lines?). It seems worth mentioning that for the second
simplest spaces, Hausdorff ultraspaces B, it is easy to verify that W < B*
is in 2 provided its intersections with the set of discrete open sets, and
with the set of supersets of each non-discrete U € B*, are relatively open
in the pointwise (=compact-open) topology. It is not hard, using Szpil-
rajn’s theorem [11], to produce examples where this is indeed not the
pointwise topology. I can’t tell if it’s admissible.

4. Locales.

The key idea in this portion of the paper is the distinguished copartial
order on a local lattice. I have no idea what co-partial order is, except
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that it becomes partial order if you reverse all the arrows. So let us
reverse them. The objects of .#°op are called [7] locales or ‘“‘pointless
spaces’’. They generalize primal spaces.

The following discussion (two paragraphs) is somewhat like the first
proof sketched for Theorem 1.4. A tedious translation, “nearly” C = B¥,
indicated there, will be omitted here.

The main theme until now has been continuous ways of topologizing
function spaces in TOP. Forget most of the little we know about that,
and a kernel remains which can be extended to Zor. Of course only T,
topologies are relevant. Then continuous topologies for Hom (B, ) always
exist; the coarsest is the pointwise; another, often the finest, is the
compact-open. AIl of them agree on finite sets. Now the finitary part of
T, topology is partial order. This can be made precise in relational func-
torial semantics [8], but here, why not accept it as an imprecise state-
ment? For the topologies of finite subsets of a space are evidently
determined by the binary relation x, € {x,}~, an arbitrary partial order.

Since locales C' do not have underlying sets, they do not have under-
lying partially ordered sets. But they hold an underlying partial order
< in a slightly different sense, and the basic result we have is that an
Z-structure on C must be determined by <. By the way, the converse
is trivial; < lifts the functor Hom/( ,C) into partially ordered sets, and
if the image is in the subcategory % then C is an Z-object of Zor.
More: it suffices to consider Hom (C*,C), since it is an algebraic super-
structure we are concerned with.

Pages 7-10 of [7] give enough fundamentals on locales for reading the
rest of this paper, except for some details on the natural partial order <.
(Unfortunately, even if C is a space, C x C and its sublocale < need not
be spaces (4.4). Points are not enough.) The reader has the definition
of < via Hom(X,C), where f=g means f~1(U)>g~Y(U) for all open parts
U of C. So he can skip now to 4.5. Moreover, 4.1 and 4.2 mainly give
partial information on the situation of 3.1; whether it goes all the way
to Z-structures in #°p is not known.

4.1. Locally quasicompact locales, and intersections of descending se-
quences of them, are spaces. The latter class is closed under forming count-
able products. Quasicompact, locally quasicompact locales are closed under
product.

REMARK. As noted in 2.9 of [7] for products, so also if certain inter-
sections of spaces in #or are shown to be spaces, they are the inter-
sections in TOP; for the points of the Zor-intersection always form the
TOP-intersection.
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Proor. First, the last assertion. Ehresmann showed [2] that quasi-
compact locales are closed under product, whence so are quasicompact
locally quasicompact ones.

To show that a locale is a space it suffices to show that two different
open parts differ on a point, i.e. any non-empty part open in its closure
has a point. These classes of locales are open- and closed-hereditary; so
it suffices to show that their non-empty members have points. If B has
a quasicompact part C, C has a maximal open proper part and hence a
point. If B is the intersection of descending locally quasicompact locales
S;, 8; is covered by the interiors U, of quasicompact parts C,. B is
covered by its open parts BnU,, so not all are empty; the interior of
some C,=C" meets B. Similarly once the S;-interior U*? of C* meets B,
since UtnS,,, is covered by the S,,,-interiors of quasicompact parts of
Utn8S;,,, we get one of them C¥! whose interior meets B. Having a
descending sequence of quasicompact non-empty locales C%, their inter-
section is non-empty quasicompact [7, proof of 2.11], and it is contained
in B. Thus B has a point, as required.

Given a product P of such B/, intersections of S/, we may take all
8¢ quasicompact (powers of 2, for instance). Then the products P, of
S,? for j<n, 8,7 for j > n, are locally quasicompact and form a descending
sequence with intersection P.

4.2. The spaces of 3.1 and 4.1, when non-empty, are of the second cate-
gory in themselves.

Proor. A direct proof is not hard but is superfluous after 4.1. Since
dense open parts are closed under finite intersection, a countable locale
intersection of them may be assumed descending and is therefore a space.
It is also dense (every locale has a smallest dense part [7]), hence non-
empty. Being a space, it has a point.

Note. There seems to be no “pointless’ generalization of Baire cate-
gory. As recalled above, intersections of dense sublocales are always
dense. On the other hand, the second category space spec(Z) is a count-
able join, in its lattice of sublocales, of nowhere dense parts.

Turning to partial order, a partially ordered object of a general finitely
complete category ¥ is an object C of € with a reflexive, anti-symmetric,
transitive subobject < of C x C. (This is the general notion of a model
of a relational theory in a category [8], applied to any finitary presen-
tation T of the theory of partial order.) One should note that for
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€ = £ov, this is not equivalent to any economical formulation in terms
of lifting Hom ( , C) into POS. The trouble is that £or is not well-powered,
and C? may have long chains of subobjects which have no intersection
but which yield “non-representable’ liftings. The long chains exist if C
contains a Cantor set [7], and it is not hard to find intersectionless long
chains of order relations. Anyway (1) the proper definition is in terms of
the relation <. (2) It is equivalent to a lifting of Hom(,C) into POS
having an adjoint on the right — the proof is easy.

We are concerned with the natural partial order of a locale C' defined
(in version (2)) by f<¢ in Hom(X,C) provided f-Y(U)<g-1{(U) for all
U e T(C). (This translates routinely into the description given in the
Introduction for the co-partial order on the dual object 7'(C).] Going to
version (1):

4.3. The natural partial order < of a locale C is the intersection of the

complements in S(C x C) of the parts U x (C—U), U open in C.

Proor. f-1(U)<g-Y(U) if and only if f-1(U)ag-1(C —U) is empty, i.e.
the morphism X — C? with coordinates f,g maps nothing into U x (C — U).

Calculating natural partial orders is an ugly job. Useless for finding
local lattices, but interesting, is when C is unordered, < being the diag-
onal. In TOP the corresponding property characterizes T, spaces. Not
in ZFop,

4.4. Fit locales, and strongly Hausdorff locales, are unordered, but not
all Hausdorff spaces are unordered.

Proor. For the fit case (every part of C' an intersection of open parts)
consider two morphisms f,g: X - C with f>g. Recall that f-1,9-1 on
S(C) are morphisms of colocal lattices. Thus for open U in C, f-1(C - U)
is the complement of f-}(U). Also C—U is the intersection of open
parts V,, and we get f-{(U)2g~YU), X —fYU)=fUAV)>29"1AV,)=
X —g}(U). Thus f-U)=97YU), f=g.

If C is strongly Hausdorff, the closed diagonal of C x C has a comple-
ment covered by open rectangles, U x ¥V with ¥V <C—U. A fortiori it is
covered by the U x (C—U).

Now consider the Hausdorff, not strongly Hausdorff space Y from [7],
the real line with the set Q of rationals made open. An open set is then
Uu(VnQ), U and V metric-open. Since it contains (Uu V)nQ, we may
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suppose V>U. Let D be the smallest dense part of the line and
J.g: D — Y the embeddings D=Q, D<]. Then

fAUU(INQ) =V nD>UnD =g Uu(VnQ), fzg.

(The reader familiar with the calculation of the sublocale JnQ in [7]
may wonder, why just D? Simply because D is obviously non-empty
and contained in JnQ.)

4.4(a). The unordered locales have some closure properties. Under
product, routinely; in fact under limit, and the ordering of morphisms
into a limit of any diagram in #°p is coordinatewise. Under subobject,
routinely. Hence (as in [7, 2.8]) they form an epireflective full sub-
category. Indeed, the reflection maps are extremal epic. Unfortunately
it is not known what the extremal epics in .#°r are, even for spaces.
The unordered reflection Z of Y in 4.4 is a bijective (not monomorphic)
continuous image with a finer topology than the metric line R; ¥ - R
is not extremal epic since it factors through some subobjects (e.g., R
with each sequence of irrationals converging to a rational made closed).

4.4(b). Each point p of an unordered locale C is closed and is the inter-
section of its neighborhoods (in S(C)). For if the closure of p is mapped
to C by insertion f and by constantly p-valued g, we get g = f. With the
intersection of neighborhoods, the reverse inequality.

An upper part of a partially ordered locale A with order relation R,
is a part H which contains R(H); more fully, Rn(Hx A)<H xH. An
srreducible locale is one having a dense point, or equivalently having no
two disjoint non-empty open parts. Convention concerning semilattices:
the operation will be called join, and the term ‘‘upper” will be inter-
preted accordingly.

4.5. Hvery o-semilattice in £oP is irreducible and its open parts are
upper parts.

Proor. In the o-semilattice 4 with binary join j, if U is not upper,
R(U) has a non-zero part D disjoint from U ([7], proof of 1.3). Consider
the patch E=Rn(U x D). It is non-empty (since B(U)> D is the second
coordinate projection of Rn(U x 4)), mapped by first coordinate pro-
jection p, into U, and mapped by j(=p, on R) into D. Consider the
images of the maps m, and m, from X to A, m, having the first &
coordinates p, and the remaining ones j. Infinitary join w: 4* - 4 is
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idempotent, so it maps the image of m,, by (any) coordinate projection
wmy,=p,|E. But by the laws of ¢-semilattices, wm,, = p,|E for finite n.
If U is open, so is w~1(U). An open part of a product locale is a union of
finitely defined open parts (officially: the coproduct local lattice, being
generated by the factors, consists of joins of finite meets of their ele-
ments); so w—(U) has a finitely defined part V meeting m(Z). Then V
meets almost all m,(E), wm,(E) meets U, a contradiction. Thus open U
cannot fail to be upper.

It follows that for two open parts U,V, j(Ux V)< R(U)<U is also
contained in V; U meets V, and A is irreducible.

4.6. A semilattice in L°P whose open parts are wpper must have the
natural partial order.

Proor. 4 underlying such a semilattice and f,g: X - 4, if fvg=f
then any part P of X mapped by g into an upper part U of 4 is so
mapped by f,f1(U)>g-}(U); so fzg in the natural order. Conversely if
fzg, let e=fvg, the composite jk& where j: A2 ~ 4 is join and %k: X — 42
has coordinates f,g. For U open in 4, j-}(U) is the join of open rectangles
V;x W,; since j is idempotent, V,nW,<U.

B Vix W) = V) ngH (W) < f~HV)nfH W) = f1U),
e} (U)<f-1(U). By the first part of the proof, f-1(U)<e-1(U), so e=f.

THEOREM 4.7. A locale has at most one local lattice structure or even
structure of a semilattice with open parts upper. If it has one, binary join
18 an open mapping.

Proor. The partial order determines the operations; for instance,
meet m: A%2 - A is the greatest lower bound of the coordinate projec-
tions. So by 4.6 the structure is unique. As for join j, we noted in 4.5
that j(Ux V)<UnV for open U,V, and in 4.6 the reverse inclusion.
Since those are a basis for 42, j is open.

REMARK. 4.3 says the natural order is the coarsest making open parts
upper. Of course a finite space can have (as a set) a finer semi-lattice
order, with a bigger j, which by 4.6 must be discontinuous.

As for existence, a topological algebra of any type on a primal, quasi-
compact, locally quasicompact space 4 is an algebra in #°r; for the
powers of A and the morphisms between them are the same in .#°P as
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in TOP (4.1). We get an initial supply of examples from the semi-locally
bounded local lattices with the topology £. For they are injective
spaces [10], and hence, one checks routinely, locally quasi-compact.
They are primal by 1.5 and quasicompact because no open proper subset
contains the least point.

These are all the locally quasicompact examples I know. One can
check with little difficulty that no other local lattice in the topology Q
(admissible or not) has this property. Also, a pointwise topological
topology B* is locally quasicompact only if B is locally finite-bottomed,
when pointwise = [9].

There are far more local lattices in #°p, since the category is closed
under limits (like the algebras of any type in any complete category).
Call the subcategory that we have . Scott showed [10] that the con-
tinuous functions between these topological local lattices are the func-
tions preserving directed joins; in particular, all homomorphisms are
continuous. Thus:

4.8. There 18 a contravariant full embedding @ of semi-locally bounded
locales B in localic local lattices taking B to T(B) with the topology L.

Limits of diagrams in 2" correspond, not biuniquely, to colimits of
diagrams of semi-locally bounded locales B;. Indeed the limit L of the
@(B,) determines the colimit C' of the B;; for C is determined by its
morphisms to 2, which correspond via cones over the diagrams to mor-
phisms @(2) —» L, i.e. points of L. In other words, L is a localic local
lattice whose primal part Z_ is the paratopology of C, in the limit-2 topo-
logy from the diagram of @(B,). There is at least one such L for every locale
C so representable. (For instance, for every Hausdorff k-space.) But
there is more than one. For one thing, C* can have several limit-Q
topologies. (Represent [0,1] as colimit of countable closed subspaces.)
For another, L_+ L is possible. (I do not know if L_= L is possible out-
side A".)

4.9. There exist arbitrarily great localic local lattices with only two points.

Proor. Let B be a dense-in-itself locally compact space, and consider
the directed system of all quotients B; formed by pinching a nowhere
dense compact set to a point. The colimit is a singleton, so the limit L
of @(B,) has only two points. It remains to exhibit a great part 4 of L.

The complete lattice T(®P(B)) has a reflective subset 4* defined as
follows. Basic open sets of @(B) are the sets Ny={U e ®(B): U> K},
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K < B compact. W e T(P(B)) is in A* provided whenever W contains
Ny it contains N, J the closure of the interior of K. Observe that an
N« is covered by a family of N ’s if and only if every neighborhood of K
contains an H. Then for any V e T(®(B)), the union of all N such that
for some nowhere dense compact G, N4, <V, is an element of 4*. It
contains V (via G = @), and every element of 4* containing V contains it.
Thus A* is reflective. Hence A* is a complete lattice and reflection pre-
serves join. From the description of reflection, it preserves finite meets
(HyUH, is near K and G,UG, nowhere dense). Since it is surjective, 4*
is a local lattice and a strict quotient of 7'(®(B)). It determines a sub-
locale A of @(B), as big as the Boolean algebra of regular closed sets of
B, and contained in every @(B,). So A <L, as required.

4.9 also answers my question in [7]; a directed inverse limit of quasi-
compact primal locales need not be primal.

It seems very hard to see the locales L in 4.9. (Is A all of L?) We
may note that as a local lattice, L is a topology, i.e. a model (in .Zop)
of the relational theory of topologies. More simply, the lattice structure
on L makes every Hom(X,L) a topology: limit of Hom(X,®(B,)). (Is
every localic local lattice a topology ?) It is easy to see that 4 has inter-
section 0 (i.e. {@} — or less) with every part of @(B) bounded below 1.
But indeed, this holds for L and for any two-point localic local lattice M,
for by 4.5 the o-semi-lattice closure of any part P of M has a largest
point, which is easily seen to be the join of P.
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