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THE STRUCTURE OF INDECOMPOSABLE
INJECTIVE MODULES

ROBERT M. FOSSUM!

1. Introduction.

It is well known that each injective module over a noetherian com-
mutative ring decomposes uniquely, up to isomorphism, as a direct
sum of indecomposable injective modules. Each indecomposable in-
jective module is the injective envelope of the residue class field as-
sociated to its uniquely determined associated prime ideal. Gabriel [8]
gives a rather precise description of these indecomposable injective
modules, especially in the equicharacteristic case. The main purpose
of this note is to give a structure theorem for the indecomposable
injective modules. It uses the Cohen structure theorem for complete
local rings. (See Azumaya [1], Matlis [17] and Gabriel [8] for the basic
theory of injective modules.)

The principal tool used in this study is the formation, from the in-
jective A-module E, of the injective A[T]-module Hom ,(A[T],E).
That Hom ,(A[T],E) is injective is a purely functorial fact. However
the elements in Hom , (4[], E) can be interpreted as power series in
T-1 with coefficients in E. The submodule of polynomials in 7'-! will
also play a large role in this study. These modules were known to
Macaulay [14] who employed them in his study of ideals in polynomial
rings. In fact Gabriel alludes to Macaulay’s duality as well as the
dualities of Pontrijagin, Grébner, and Grothendieck as special cases
of Matlis duality. In a sense we complete this circle by going from a
generalized Pontrijagin duality back to Matlis duality through the
construction of Macaulay’s inverse polynomials.

We study the prime ideals associated to the A[7]-module
Hom ,(A[T],E) in order to find the decomposition of this injective
module into indecomposable injective modules. This question was
raised by Professor D. G. Northcott during a conversation concerning
his recent work on this same subject [18]. We take this opportunity
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to thank Professor Northcott for kindly permitting us to see an ad-
vance copy of his manusecript.

After obtaining the structure of indecomposable injective objects
in the category of all 4-modules, and giving some ideas of the applica-
tions, we turn to the study of injective objects in the category of
graded modules over a Z-graded noetherian ring. There is a similar
structure theory. This study has led to many interesting questions
concerning graded rings, a topic which will be covered in a future
paper with H.-B. Foxby.

The paper is divided into eight sections.

I. Flat base change.
I1. Inverse polynomials and power series.
III. Structure theorem for indecomposable injective modules.
IV. The prime ideals associated to E[[T-1]].
V. Injective cogenerators.
VI. Symmetric semi-groups and Gorenstein rings.
VII. Graded injective modules.
VIII. Graded completions and graded power series.

Some basic assumptions are made throughout. All rings are assumed
to be commutative. Capital letters X and 7 denote indeterminates.
If p e Spec(4), then k(p) denotes the residue class field of the local
ring 4,. The injective envelope of the A-module M is denoted by
E (M) or just E(M).

Thanks are also offered to H.-B. Foxby, P. A. Griffith, I. Beck and
B. Iversen for discussing these results. An extremely useful result
about flat base change of injectives due to Foxby is included with
his permission.

I. Flat base change.

Beck [3] has shown for the polynomial extension 4 - A[X] and
for a Z-injective A-module E, that

inj.dim.A[X]A[X] ®.A E=1.
This is a special case of a more general result due recently to H.-B.

Foxby (who has kindly permitted its inclusion here).

TrarorEM I.1. Suppose A is a noetherian ring, that B is a noetherian
A-algebra and that the structure morphism A - B makes B into a flat
A-module. If E is an injective A-module, then
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inj.dim.; B ® , B = sup{inj.dim.ggumB ® 4 k(»)} ,

the supremum taken over all p € Ass, B.

Proor. Since both A and B are noetherian, it is sufficient to con-
sider an indecomposable injective A-module E, which we assume to
be the injective envelope of A/p. We are then required to show that

inj.dim.;B @ 4 B = inj.dim.pg B @4 k(p) -

Let qeSpecB with t=qnA4. Set C=B,® 4k(r) (which is just
B,®44/[x). The spectral sequence for the change of rings B, - C
[, Cartan and Eilenberg] with

Byt = Extc? (M, Exty 2(C, B, ® ,E)

and abutment Exth"(M »B,®4E) for all C-modules M degenerates
into isomorphisms

Ext?(M, Hom, (4[t,E)® B,) = Exty ?(M,B,QF)

for all p=0 since Exth'l(C’,Bq ®E)=0 for all ¢>0.
[These isomorphisms can be established without recourse to spectral
sequences. Since

for all ¢>0, a resolution of a C-module M by projective C-modules
can be used to compute the derived functors Exth‘ (M,B, @ 4E).

But we have also the isomorphism
Hom, (M, HomBq(O,Bq ®4E)) ~ HomBq (M,B,Q,E) .

Thus the derived functors of the left hand side are naturally isomorphic
to the derived functors of the right hand side. That is

Exto!(M, Homp, (C, B, ®,E)) = Exts$(M,B,® E).

Suppose that inj.dim.pzg,)B ®k(p)Zn. Then there are prime
ideals q e Spec(B) maximal with respect to the property that
gnd=p and

inj.dim.Ba®k(p)Bq®k(p) zn,
since the injective dimension of a noetherian ring as a module over

itself is determined as the supremum of its local injective dimension
(cf. for example Bass [2]). Consider the ring C obtained as above for
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this q. There is then a C-module M such that Ext,*(M,C)=+0. Because
Hom ,(A4/p,E) ~ k(p) we get isomorphisms

C ~ Hom,(4/p,E)®4B, = HomBq(C’,Bq QR4E),
and hence an isomorphism

Ext,n(M,C) ~ Exth"(M,Bq RqE).

Therefore inj.dim.Bqu ®4F zn and thus inj.dim.z; B® ,E =n.
Suppose, conversely, that inj.dim.zB®, 4E=n. Then there is a
prime ideal q € Spec(B) such that

Extzn(Blq,BQRLE) £ 0.
Hence

Exth"(k(q),Bq Q4E) £ 0,
and therefore

EXtC’n(k(q)o HOIIIA(A/C[(]A,E) ®ABq) 0.

On the one hand, this implies that Hom,(4/qnA4,E)=+0. Since E is
the injective envelope of A[p, this last inequality implies that
p2qn4d. As above, let t=qn4. Then the functor —®,B,=—-®,4,
®4,B;; and so

Hom,(4/v,E) ® 4B, ~ Hom, (k(r),4,®E) @4 B, .

Thus 4, E+0. But 4,® 4E(A[p) is just the injective envelope of
Alp ® 4A4,. Were it the case that p properly contained t, then it would
follow that 4, ® ,E =0, a contradiction. Hence r=p and then

Hom, (4/t,E) @B, = k(p)®4B, = C.

Therefore Ext,"(k(q),C)+0 which implies that inj.dim.,CZzn. Hence
inj.dim.B®Ak(p)B ®Ak(p) Zn.
Thus we have the desired inequalities.

ReMARk. Using the results developed by Beck [3] for Z-injective
modules, the above proof can be suitably modified so that it applies
also in that case.

We now draw several corollaries.
CoroLLARY 1.2. Suppose A and B are as in the theorem. If E is an

injective A-module for which B® B has finite injective dimension, then
the fibres of B over those p € AssE are Gorenstein rings.
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ProoF. A noetherian ring B is Gorenstein if and only if inj.dimBa B,
is finite for each ¢ € Spec B (Bass [2]).

CoroLLARY 1.3. Suppose A and B are as in the theorem. If M is an
A-module, then

inj.dim.; B® M = inj.dim., M + sup {inj.dim. pg ) B @ k(p)},

the supremum taken over those p appearing in a minimal injective resolu-
tion of M.

CoroLLARY 1.4 If the local ring A has a Gorenstein module, then the
Jormal fibres of A are Gorenstein rings.

Proor. A finitely generated A-module M is Gorenstein if and only
if Hom,(M,M) is a free A-module, the groups Ext (M, M)=0 for
>0 and inj.dim., M <o (Foxby [7]). Let A* denote the henselization
of A. The fibres A - A% are regular and therefore M* =: A*@ M
is a Gorenstein 4*-module, by Corollary I.3.

Since A* has a Gorenstein module, it has a canonical module
(Fossum~Griffith-Reiten [6]) £ (with the properties Hom 44(£2,2)~ A%,
Ext 4 (2,2)=0 for ¢>0 and inj.dim. 42 < o). Therefore the trivial
extension 4*x Q2 is a Gorenstein ring (Reiten [19]). The completion
A of A is the completion of A*. The completion of A*xQ is the ring
A x (4 ® 442). According to Hartshorne [10], the formal fibres of the
Gorenstein ring A% x Q are Gorenstein. Therefore the fibres of A* -~ A4
are Gorenstein and hence the fibres A —~ 4 are Gorenstein.

ReMARK. This result, due first to Foxby, was demonstrated using
the spectral sequence introduced in the theorem.

CororrLARY 1.5. (Beck [3]). If 4 ts noetherian, the element X an
indeterminate and the A-module E is injective, then
inj.dim.A[X]A[X] ®AE =< 1.

Proor. Each fibre of 4 -~ A[X] is of the form X(p)[X] and is of
dimension 1.

In the ring A[X] let S be the set of polynomials whose coefficients
generate the unit ideal in 4. Let 4(X) denote the ring S-14[X].

Math. Scand. 36 — 20
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CoroLLARY 1.6. If E is an injective module over the noetherian ring A,
then
inj.dim. , ,4(X) 4 = 1.

If A is a local ring with maximal ideal m and residue class field £,
then A(X) is a local ring with maximal ideal mA4(X) and residue class
field k(X).

CoroLrarY 1.7. If E is injective envelope of k, then A(X)Q® ,E is the
injective envelope of k(X) as an A(X)-module.

Proor. The fibre of 4 -~ A(X) over m is the ring 4(X) which is a
field. Also

Hom 4%, (¥X),A(X) Q4 F) ~ A(X)®,Hom (k,E) ~ A(X) R4k .

Hence the socle of A(X)® ,FE is one dimensional.

I1. Inverse polynomials and power series.

The polynomial ring A[7'] considered as an A-module is free on the
basis 1, T,7%,.... Therefore the A-module Hom , (A4[T], M) is the
product of a countable number of copies of M. In fact if b;: 4 - A[T]
is given by b;(a) =aT" for each a € A, then there is induced a projection
at:Hom , (A[T],M)— M by #*(f) =f(T"). The projections ntfor¢=0,1,2,. . .
then give an isomorphism

n: Hom, (A[T], M) - TT: =% M,

of A-modules whose inverse defined on a sequence (a;);<, is that homo-
morphism which takes a basis element 7" to a_;, and in general

(@)i<olCo+ T+ ... +¢,T7) = cpag+ca_1+ ... +ca_,.

forc;e A.

The module Hom ,(4[7"], M) inherits the structure of an A[7']-module
through the action of A[7'] on its first component. If f: A[T] - M and
p € A[T], then (p-f)(g)=f(pq) for all g € A[T]. If we examine how this
action is transported across z to the product we see that

(T aYag,a_1,0_5...)) = (@_;,@ 41y, - ) -
If we write, formally, (ag,@_;,...)=32 (a_;/T-%, then we obtain the rule:

(*) (z}io c;T7)- Roa T =32, (Zj]io )T
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Thus we denote Hom ,(A[T], M) formally by M[[T-1]] and think of it
as power series in 7'-! with coefficients in M. We call it the A[7']-module
of inverse power series.

Inductively we get

Hom ,(A[T,,...,T],M) = M[[T\7,..., T 1]].
The next result is purely formal.

ProrositioN I1.1. Suppose M is an A-module. Then
inj.dim. m M[[T-1]] = inj.dim., M .

In particular M is an injective A-module if and only if M[[T-1]] is an
injective A[T]-module.

Proor. Since A[T]is free as an A-module, the functor Hom ,(4[T"],-)
is exact. It also preserves injective modules. (In fact if 4 — B is a ring
homomorphism and ¥ is an injective 4-module, then Hom , (B, E) is an
injective B-module. Cf. Cartan and Eilenberg [5].) Therefore the right
hand side of the equality is an upper bound for the left hand side. As
for the reverse inequality, it is enough to show that M[[T-']] injective
as an A[T]-module implies that M is injective as an A-module. But
Hom ypm(4, M[[T]])~M as A-modules when we view 4 as an A[T]-
module via the augmentation A[T] > 4 by T — 0.

The polynomials in 7'-! with coefficients in M form an A[T]-sub-
module of M[[T-1]], as is evident from (*) above. These polynomials
can be viewed as the sequences in I, ,M; which are almost everywhere
zero. But there is also another functorial way to obtain the system of
inverse polynomials. For each n= 0 form the free A-module of rank =,
A[T])(T™). For m = n there is an A-algebra homomorphism

enm: A[T](T™) ~ A[T](T™) .
There arises two systems
{A[T)/(T™),0nm} and {Hom (A[T]/(T™), M),e*,m}
and two limits
A[[T]] = Lim A[T)/(T™) and M[T-*] = limHom , (A[T]/(T™), M) .

By standard functorial arguments it is seen that Hom ,(A[T]/(T™), M)
is the A[T]-submodule of M[[T-']] annihilated by 7™, that M[T-1] is
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the union of these submodules in M[[7-1]] and that M[T-1] attains the
structure of a module over A[[7T']] with the operation given by formula
(*) after interchanging the symbols NV and oc. It is then clear that each
Hom ,(A[T]/(T™),M) is also an A[[T]]-submodule of M[T-1] since
A[[T])/(T™) =~ A[T]/(T™) for each m=0. Thus it follows that for each
finitely presented A[[7']]-module L there is a natural isomorphism

Hom 47y (L, M[T7]) = lim Hom , (L/T™L, M) .

This commentary prepares the ground work for the next result.

Prorosrtion I1.2. Suppose A is a noethertan ring and M is an
A-module. Then the following equalities hold:

inj.dim. , M = inj.dim. gz M[T-1] = inj.dim. gezy M[T-1] .

Proor. Taking colimits (direct limits) preserves exact sequences. Also,
since A4 is noetherian, and so A[[7']] is noetherian, the Artin—Rees Lemma
holds (Bourbaki [4]). So if L’ is an A[[T']]-submodule of the A[[T]]-
module L of finite type, then the (7T')-adic topology on L’ is the same as
the topology induced on L’ by the (T')-adic topology on L. Hence we
deduce isomorphisms

Lim Hom 4qqy (L'/T*LN0 L', M) = lim Hom yyuzy (L' [T"L’, M)

for each A[[T]]-module M.
Let 0>~ M — E°—- E'— ... be an injective resolution of M. Then

0> M[T-] - E)[T-] - EY[T] - ...
is an exact sequence of A[[7T']]-modules. To show that
inj.dim. gy M[T-1] £ inj.dim. M,
it is sufficient to show that each E[T-1] is injective. For this, it is enough
to show that
Hom g7y (L, E[T-1]) ~ Hom 4qzy (L', E[T-1])
is surjective for the submodule L’ of L, the module L being of finite type.

For each n 2> 0, the module L'/(T"LnL') is a submodule of L/T*L. Since
E is injective, the homomorphism

Hom , (L/T"L,E) - Hom 4 (L'/T*Ln L', E)

is surjective. By the remarks preceding the statement of the proposi-

tion, this implies that indeed the homomorphism in question is surjec-

tive. The opposite inequality follows since Hom qp; (4, M[T-1]) = M.
The same proof holds with 4[[7']] replaced everywhere above by A[T'].
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REMARK AND QUESTION. It is immediate that if M[7T-1] is an injective
A[[T]]-module, then M is an injective A-module, with no chain condi-
tions. What conditions on an injective A4 module E are necessary in
order to show that E[T-'] is an injective A[[T]]-module (or A[T]-
module) ?

REemMARK. Proposition II.2 follows from a result in A. Grothendieck,
Local Cohomology, Lecture Notes in Math. 41, Springer-Verlag, 1967.

Suppose p € Spec(A4). Let P=pA[[T]]1+TA[[T]] or pA[T]+TA[T].
In either case, the residue class field of P is k(p).

CoroLLARY I1.3. Suppose E is an injective envelope of k(p) as an
A-module. Then E[T-1] is an tnjective envelope of k(p) as an A[T] and as
an A[[T]]-module.

Proor. The module E[T-1] is essential over E and E is essential over
k(p). Since E[T'-1] is injective by Proposition II.2, it is an injective en-
velope.

In a later section we study the retraction of the injection E[T-1] —
E[[T-1]] when X is an injective module over the noetherian ring 4.

III. Structure theorem for indecomposable injective modules.

We begin this section by reviewing the theory of Cohen rings (Grothen-
dieck [9]) and the Cohen structure theorem.

Suppose k is a field of characteristic p. There is a complete discrete
valuation ring W(k) (or just W) satisfying the following properties:

a) The maximal ideal of W is generated by p-1 (so in particular W
is of characteristic zero and W is a field if p=0).

b) The residue class field of W is k£ (so there is an isomorphism
W/pW ~k).

c) If 4 is a complete local noetherian ring with residue class field k,
there is a homomorphism W — A of Z-algebras making the diagram

WA
N
k
commutative.

In case k is a perfect field which has nonzero characteristic the ring
W (k) is uniquely determined up to isomorphism as the ring of infinite
Witt vectors over £.
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If W is a discrete valuation ring with uniformizing parameter m and
W is not a field, then the field of quotients of W is W[z-1] and the
injective envelope of the residue class field of W is just W[z-1]/W.
This can be viewed as the direct limit of the system

given by w+a®W — a™"w+amW for m=n.

The Cohen structure theorem for a complete local ring 4 with residue
class field ¥ and with generators ¢,,...,f, for the maximal ideal states
that 4 is a homomorphic image of W(k)[[T,...,7T,]] the map being
induced by the map of condition c¢) above together with the assignments
T;—-t;. (In the equicharacteristic case the map induces an injection
k - A such that ¥ -~ A — k is an isomorphism and the correspondmg
k([Ty,...,T,.]] > A is a surjection.)

We are now prepared to state the structure theorem for indecompos-
able injective modules over a noetherian ring.

TrEOREM III.1. Suppose A is a noethertan rmg and E is an tndecom-
posable injective A-module. Let {p}= AssE and let A denote the completion
of the local ring A,. Suppose a=ker( (lc(p))[[Tl, LT~ A p)- Then

E = {fe€ Egue(k0™)T1%. .. T, af=0}.

Proor. The set in question is just
Homyyr,, . r(dyp Ep(®)T1 ... T, ) -
If B is a local ring and a is an ideal, then
E g (k) = Hompg(Bla, Eg(k)) .

By Corollary 1.3 the module Epyyp . r5(k) is Ex(k)T,7,..., T, ]
Hence the theorem follows from the remark above and the Corollary.

Remark. If 4 is equicharacteristic then we may replace Ep (k)
everywhere by k.

The injective module Ey (k) ~ B(k)/W (k) where B(k) is the field of
fractions of W(k). When k is a perfect field of nonzero characteristic,
then B(k) can be identified with the set of k-sequences

(P . ST P9 S |

in which all but a finite number of x_, are zero. The sum of two is de-
fined using the ghost components. Then B(k)/W (k) is just the module
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of vectors =(...,z_,,...2_;) with almost all the z_,=0. If z,y are
such vectors, if a € k and if the ghost component of z is given by

am = z p_ixm—-ipi
then
(x_*_y)(m) — x(m)_l_y(m)
and
(a'x)m = a'pmxm
(where a=(a,0,0,...) € W(k)). Thus B(k)/W(k) takes the appearance of
the inverse polynomials.

IV. The prime ideals associated to E[[T!]].

Each injective module over a noetherian ring decomposes into a direct
sum of indecomposable injective modules. Now an £ ,(A/[p) appears in
this decomposition if and only if p is associated to the module.

ProrosiTioN IV.1. Let E be an injective A-module (with A noetherian).
Then B € Ass pm(E[T1]) if and only if PnAeAss,(E) and P=
(BnA)A[T1+TA[T].

ProoF. Suppose B € Ass 7 (E[T-]). Then there is an element
g € E[T-1] such that =Ann 44 (g). There is an n>1 such that ¢ =0.
Hence T € B. The remainder of the proof is easy to complete using
Corollary I1.3.

In order to study E[[T-1]] we begin with a very simple case.

Prorosition IV.2. Let k be a field. Then Assyp (E[[T-1]]) =Spec (k[T]).
The torsion submodule of k[[T-']] is isomorphic to k(T)[k[T] and it is a
proper submodule of k[[T-1]].

Proor. (Thanks are due the refereee who provided this simple proof.)
Consider the ring of formal power series k[[T'-]]. It is a discrete valuation
ring with uniformizing parameter 7'-!. Hence its field of quotients is
E[[T-1]][T] and this ring contains £[7'] as a subring with £(7') as a sub-
field. The k[T]-module E[[T-]][T]/k[T] is just T-k[[T-']]. Multiplica-
tion by 7' on 7-k[[7-1]] induces an isomorphism with £[[7'-1]]. Thus to
compute the torsion module of k[[T-1]], it is enough to compute the
torsion module of E[[T-]][T]/k[T]. An element h(T-!) represents a tor-
sion element if and only if there is a ¢(7') in ¥[7"] such that g(T)A(T-1)=
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p(T) is in k[T]. This is true if and only if A(7-!) is a rational function in
T, that is, if and only if A(T-')=p(T)[q(T), which is in k(7).

The element 33 ,1-72" is not a torsion element, so indeed the tor-
sion submodule is proper.

Since Assyp(k(T')[k[T']) =Speck[T]—{0} and since the torsion sub-
module of k[[7-1]] is proper, the statement of Proposition IV.2 is verified.

CoroLLARY IV.3. There is a decomposition

K[T-] = KT)/R[T] ® 11 *(T) .
Recall that &(T')/k[T] is the direct sum of the modules Eyp(k[T/(p))

for p an irreducible polynomial.

ProrosiTioN IV.4. Suppose A is a noetherian ring and E is an injec-
tive A-module. If p € Ass ((E), then the fibre of A — A[T] over p is con-
tained in Ass m(E[[T-1]]).

Another way to state this proposition is to say that the pullback, in
the category of sets, of the maps
SpecA[T']
Ass E — Sp:cA
is contained in Ass mE[[T-1]].

ProoF. Suppose p € Ass, E. Then there is an injection k(p) -~ E and
hence an injection k(p)[[7-1]] - E[[T!]]. Since

Assyum k(p)[[T]] = Spec(k(p)(T]),

the result follows.

It is possible that the set of associated prime ideals of E[[T-]] is
properly bigger than the fibre over Ass,E. For example, let £ be a field
and set A =k[X]. Let p=(X). It has been seen that E ,(4/p)=k[X"1].
Take base change 4 — A[T] and in k[X-1J[[7-1]] consider the element
[=32,X-T-t. Let M=A[T]f. Then

Ass g ([ X[[T1]]) 2 Ass gnM .
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Since (X7'—1)f=0 it follows that X7 —1 is in each prime ideal £ in
Ass i) M. Were QnA € Ass (E)={p}, it would follow that X € Q.. But
then 1 € , a contradiction.

An interesting problem is to compute Assyp(E[[T-1]]) for E the in-
jective envelope of the residue class field of the discrete valuation ring W.

V. Injective cogenerators.

Recall that a module C is a cogenerator for the category of A-modules
if Hom(M,C)+0 whenever M 0. The injective A-module Z is a co-
generator if and only if Hom ,(A/a,E)+0 for each ideal a+ 4. The fol-
lowing result is well known, but a proof is included for the sake of com-
pleteness.

ProrositioN V.1. The injective A-module E is a cogenerator if and only if
a={acd: aHom,(4/a,E)=0}
Jor all ideals ac 4.

Proor. If equality holds, then Hom,(A/a,E)+0 for each aZA4.
Hence E is a cogenerator. Suppose that E is a cogenerator and

b={acd: aHom,(4/a,E)=0}.

Then b is an ideal in 4 containing a. Suppose b +a. Then Hom 4 (b/a, E) #0
so there is an f: b/a — E which extends to f': A/a — E since E is injective.
But then f’ has the property that bf’+0..

We can now generalize Macaulay’s duality.

ProposrTioN V.2. Suppose E is an injective cogenerator for A. Then
E[[T-]] 18 an injective cogenerator for A[T].

Proor. Let a be an ideal in A[7T"]. We must show that Hom 4 (4[T]/a,
E[[T-1]])+ 0 provided a= A[T]. But
Hom 1) (A[T]/a, B[[T-]]) x Hom ,(4[T]/a,E) .

Since E is a cogenerator for A, this last module is non-zero in case
a+A[T].

In case A is noetherian the same statement holds for E[7-1].
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ProprosiTioN V.3. Suppose A is noetherian and E is an injective co-
generator. Then E[T-1] is an injective cogenerator for both A[T] and
A[[T]]

Proor. We use the isomorphism
Hom 7y (A[[T]]/a, E[T-Y]) = limHom ,(A[[TT)/(a+(T"),E) ,

the fact that the direct system consists of injectives and that a+ (7™) +
A[[T1]] for sufficiently large n to conclude that E[T-!] is a cogenerator.

As Northcott [18] explains, this result, for 4 =k, a field, is due first
to Macaulay [14, § 60].

ProrosrtioN V.4. (Macaulay [14]) Suppose k is a field. Then
k([T,1,...,T,7 1] is an injective cogenerator for k(T,,...,T,].

CoroLLARY V.5. Suppose I is an ideal in k[T,,...,T,]. Then
S = {feklTy,...,T,]: fHomyq (k[T]/,k{[T-1]]) =0}
(where T=(T4,...,T,)).

VI. Symmetric semi-groups and Gorenstein rings.

In this section we give an alternate proof for a result, due first to
Herzog and Kunz [11]. Although no direct use is made of the preceding
results, the notions of inverse polynomials appear and by thinking in
terms of inverse polynomials, the result and proof seems to become
clearer.

Suppose £ is a field. The ring of formal power series 4 =k[[7T']] has as
its field of quotients the ring of finite Laurent series K =Fk[[T]][T-]
(the localization of 4 at the multiplicative subset {1,7',72,...}). The
module K/4 is, on the one hand, an injective envelope of the residue
clags field of A and so, on the other hand, isomorphic to the module of
inverse polynomials in the coefficients in £ by the map which associates
to the inverse polynomial ag+a_,T-'+ ... +a_, T~ the residue in K/A4
of the element a7+ ... +a_, "L

Let 8 be a submonoid of the monoid of additive non-negative integers
which is not contained in a proper subgroup of Z. It follows that there
are relatively prime non-negative integers a,,...,a, in S such that each
8 € S can be expressed as s=3;_,n;a; with n,2 0. (And given such a set
{a;}, there is a corresponding monoid generated.)
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The subset of £[[7']] consisting of power series of the form
Eses wsTs! We € k ’

forms a subring of k[[7T']]. It is a homomorphic image of the ring
E[[X4,...,X,]] by the k-homomorphism induced by the assignments
X, > T% for each <. We can thus write k[[7*,...,7%]]. Clearly
E[[T]] is integral over k[[T*,...,T%]] and the field of fractions of
k[[T*,...,T%]] is K since the {a,} are relatively prime.

The monoid S has a “tail”’. That is to say, there is an element
t=sup(Z—S8). Say that S is symmetric if S satisfies the property

seS ifand onlyif t—sé¢ 8.

ProrosiTion VI.1. (Herzog and Kunz [11]). The ring k[[T*,...,T%]]
s Qorenstein if and only if the submonoid S generated by the {a,} is symme-
tric.

Proor. Let B=k[[T™,...,T*%]]. Since B is a one dimensional local
domain with field of quotients, it is standard (Bass [2]) that B is Go-
renstein if and only if the socle of K/B is simple. Thus we prove: The
socle of K/B is simple if and only if S is symmetric.

Suppose ¢ is the greatest integer not in S. Then 7"+ B € Socle (K /B).
Suppose S is symmetric and that 7%+ B € Socle(K/B). Then m7*<c B
where m=(7",...,7%). Hence l+a;€ S for each . Suppose I<?¢ and
l¢S. Then t—1le 8, say t—l=na,+ ... +na,. We suppose (without
loss of generality) that n,>1. Hence t—1—a, € 8. Since § is symmetric
the element t—(t—1{—a,) ¢ S and therefore I+ a, ¢ S, a contradiction to
the assumption that I <t. Therefore Socle(K/B) is generated by 7'+ B
and it is simple.

Now suppose that Socle(K/B) is simple (and therefore generated by
T¢+ B) but that S is not symmetric. Then there is an ! maximal with
respect to the property that ¢ .8 and t—~1¢ 8. Then I<¢t and t-1<t.
So T'+ B € Socle (K|/B). Therefore t=1 and S is symmetric.

Two simple examples are perhaps illustrative. The submonoid gener-
ated by 2 and 2k+1, for any k, is always symmetric with ¢=2k—1,
while the submonoid generated by any sequence k, k+1,...,2k—1, for
k> 2, is not symmetric. (In this last case t=k—1.)
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VII. Graded injective modules.

In this section we use techniques developed in the previous sections
in order to study the injective objects in the category of graded modules
over a graded noetherian ring.

Suppose 4 =k[T,,...,T,] is graded in the natural way. Then the
module of inverse polynomials E=k[T,7,...,T,"'] is a graded A4-
module (with deg7;~*= —1) and in the category of graded 4-modules is
an injective object and as such is an injective envelope of the graded
A-module k.

The goal in this section is to describe the structure of injective graded
A-modules. For general references we refer to Cartan and Eilenberg [5],
MacLane [15], Iversen [13], Hilton and Stammbach [12], Grothendieck-
Dieudonne [9] and Matijevic [16].

We assume that 4 is a commutative ring with a family of subgroups
(A,)pcz of the additive group of 4 subject to the conditions:

¢0) A':I_IneZAn'
(IT) For each pair of integers 4,j, the product 4,4, 4,,;.

A graded A-module is an A-module M together with a family of sub-
groups (M,),.z such that

(I) M"—‘HneZMn'
(IT) For each pair 4,j, the product A, M;cM,,;.

The elements in U, , M, (resp. U, ,4,) are called homogeneous
elements. If m € M, and m =0, then the degree of m, written degm, is ¢;
write degm =s.

An A-submodule N of M is a graded submodule, if, whenever n € N,
then its homogeneous components in M are also in N. This is equivalent
to saying N=11,.z(NnM,).

Say a graded 4-module is graded noetherian if it has the ascending
chain condition for graded submodules. This next result, due to Matijevic
[16], says that there is no difference in saying 4 is graded noetherian
or noetherian.

Prorosrrion VII.1. Suppose the graded ring A has the ascending chain
condition for graded ideals. Then A is noetherian.

Proor. (Matijevic [16]). The elements of degree 0 form a subring 4,.
Any ideal in 4, generates a graded ideal in 4. Thus it must be finitely
generated. So 4, is noetherian. Let A+=4,+4,+ ... be the subring of
elements of non-negative degree and 4 ,+ the ideal of elements of positive
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degree. This ideal generates, in 4, a graded ideal, which must be of
finite type. Therefore 4 ,+ is of finite type as an ideal in 4+. By Grothen-
dieck-Dieudonne [9] the ring 4+ is noetherian. Likewise 4~ is noetherian,
80 A-=A4[x,,...,x,] with ;€ 4_~- homogeneous elements. Now A=
A+[x,,...,x,.] as an A+-algebra. So 4 is noetherian.

Thus we can assume that our graded noetherian rings are noetherian.
If M and N are two graded A-modules, we define several sets of
morphisms. First

HOM,(M,N); = {fe Hom,(M,N): f(M,)sN, ., for all n} .
This is an abelian subroup of Hom ,(M,N) and then
HOM,, (M,N) = 3., HOM,, (M, N),.

It is readily demonstrated that HOM,(M,N) is an A-submodule of
Hom ,(M,N) and becomes a graded A-module with ith component
HOM ,(M,N),.

Using HOM (-, -), the category Gr, of graded 4A-modules is defined.
Its objects are the graded 4-modules and Gr(M,N)=Hom ,(M,N),.

For each M € Gr, and each n € Z we define the n-shift M[n] to be the
graded A-module with underlying 4-module M and with M[n];=M, ;.
It is easy to verify that each A[n] is a projective object in Gr,. The
category Gr, is abelian, complete, cocomplete with a family of small
projective generators {4[n]},.z. Hence Gr, has enough injective objects
(Grothendieck [9], Gabriel [8]), and therefore injective envelopes. The
standard argument can be used to show that A is noetherian if and only
if the direct sum of injective objects in Gr, is injective (Bass [2]). If
this is the case, then each injective object decomposes into a direct sum
of indecomposable injective objects.

[An example of a non-noetherian graded ring is a polynomial ring over
a field in infinitely many variables. Suppose % is a field and S a vector
space over k (not necessarily finite dimensional). The symmetric k-alge-
bra 83(L)=11,5,5™L) is a graded k-algebra with augmentation S(L) - k.
From the pairings S*(L) ®; S™(L) - S**+™(L) we get pairings

S"(L) ®kH0mk (Sn+m(L)’]c) - Homk(Sm(L)’k)

for m+n20. Let E_,=Hom;(S"L),k) and form E=11,.,F_,. Then £
is a graded S(L)-module, it is injective in Grgy, and is an injective en-
velope of k. This is another way of viewing the inverse polynomials.
(And the inverse power series become [],.,E_,.)]
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Suppose S is a multiplicatively closed subset of the graded ring A
consisting of homogeneous elements. Let M be a graded A-module. Then
S-1M inherits the structure as a graded S-14-module. In fact

(8*M), = {ffs: fe M;, se A;n8 and i—j=n}.

Then, as usual, the module S-*M >S4 Q M.

Let p be a homogeneous prime ideal in 4. Let S denote the set of
homogeneous elements in 4 —p. So §=(U 4,,)n(4 —p). Then S is multi-
plicatively closed. Denote by A, the graded ring S—14. These rings 4,
play the role of local rings in the theory of graded rings. We list below
some of the properties.

VIL.2. The extended prime ideal pA, is a maximal homogeneous ideal
in A, and each homogeneous element mot in p A, is invertible.

VIL.3. The subring A, is a local ring with maximal ideal p AN A, .
Denote its residue class field by g(p).

VIL.4. If there is a homogeneous element t with degt+0 and ¢t &pA,,
then there 1is one of least positive degree, say T with degT =d > 0. This T s
transcendental over A, and Ay Ay =g(p)[T,T-1] (with T denoting its
residue class modulo pA,) and this residue ring is graded with degT =d.
If no such element T exists, then pA,) 18 a maximal ideal in Ay and

AplpAy=g(p)
If B is a graded ring, let B® denote the subring I1,.7B,s-

VIL5. The ring Ay®= A, [T,T-] and it has a unique maximal graded
tdeal generated by the radical of A, with residue class ring g(p)[T,T-1].
Furthermore A= AwyP[ Ay, - - Ay, -

We need an analogue of Theorem 1.1 for graded injectives.

ProrosiTioN VIL.6. Let A — B be a homomorphism of noetherian graded
rings which makes B flat as an A-module. If E is the graded injective enve-
lope of the graded module A[p, then

graded inj.dim.z; B® (E = graded inj.dim.,C
where O =B ® 4 Aw)[pA)-

The proof proceeds as in the ungraded case. The important points are
in the conclusions of the following lemmas.
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Lemma VIL7. Suppose C is a noetherian graded ring and M is a graded
C-module. Then
graded inj.dim.. M = n

iof and only if there is a graded prime ideal p such that EXT ™ (C/p, M) +0
while EXT»+1(C/q, M) =0 for all graded ideals q.

Proor. The proof is the same as in the ungraded case.

LemMa VIL.S. Let C and M be as in the previous lemma. Then
graded inj.dim., M = sup {graded inj dim.g ) M}

over all graded prime ideals p.

Now the proof of Proposition VII.6 is also a straight forward transla-
tion of the proof of Theorem I.1.

CoroLLARY VIL.9. Suppose A is a noetherian ring with a maximal ideal
m and residue class field k=A[m. Let T be an indeterminate with degT =
d> 0. The graded injective envelope of k[T,T-] as an A[T,T-]-module is

E® AT, T

where E s the injective A-envelope of k.

Proor. We consider 4 to be graded with 4, =0 for n+0. Now apply
Proposition VII.6 to get

graded inj.dim. gp -y E[T,T-1]
= graded inj.dim.p pk[T,T-1].

The proof is completed by noting:

(A) The ring k[T,T-']=8-%[T] where S is the set of nonzero homo-
geneous elements of k[7'].

(B) If C is a noetherian graded integral domain and S is the set of
nonzero homogeneous elements, then S-1C is an injective graded C-
module.

Let A be a graded noetherian ring and 7' a graded 4-module. Let
grE(T) denote an injective envelope of T in the category Gr,. Suppose p
is a graded prime ideal of 4. We want to describe grE(4/[p).

As in VIL5, we can write A=A P[A4y,;..., 4, ,]- The Ag-
modules (4,); are finitely generated and satisfy (d4,,)< 4y, Hence



310 ROBERT M. FOSSUM

there are indeterminates X,; with deg(X;)=¢ and a surjection B=
Ay Xy, .., Xg4,,] > Ay whose kernel is a homogeneous ideal. As in
the ungraded case, the module grE(4/[p) is, in a natural way, a graded
A)-module. We now can describe grE(4[p). Let I be the injective en-
velope of g(p) as an A4, -module.

TrEOREM VII.10. The injective envelope of Alp in Gr , 18 isomorphic to
HOMB (A(p)’I[T: T—l][Xi—lli ) Xc-i_jl,r]) .
(If Agy/pAy)=g(p), then T' should be omitted from this statement.)

Proor. By Corollary VIIL.9, the module I[7,7-1] is the graded injec-
tive envelope of g(p)[T,T-'] as A, P-module. Then I[T,T-1[{X,;1}]
is a graded injective envelope of g(p)[7',7-] as a B-module. Then by
ordinary change of rings, the stated module is an injective envelope as
an 4,-module.

VIII. Graded completions and graded power series.

Suppose A4 is a graded noetherian ring and a is a homogeneous ideal
in 4. For each r € Z we form the nth component

(Agro(a))n =: li_x,lir (A/ ar)n

of the graded a-adic completion of 4, a graded ring which we denote by
A®°. Then A#® =:1],.,(4%°),. If T is an indeterminate, say of
degree d, then we can form the graded (7')-adic completion of A[T'].
For wont of better notation we will use A”[[T]]"" to denote this ring.
Then

(A"[ITT)"), = Lim, (A[TY/(T7)), -
This inverse system can be displayed as follows:
(ApoqT?+ A4, T+A4,) > (An—dT+An) - 4,.

And this has

ngo An—dem
as its limit

ProrosrrioN VIILL. If A ts a noetherian graded ring, then A"[[T]]"”
18 noetherian (graded).

Proor. It is enough to show that each homogeneous prime ideal in
A"[[T]]"” is finitely generated. Suppose £ is such an ideal. If T e Q,
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then let g=0.n4. Now Q=qd4"[[T]]"+TA"[[T]]" and is finitely gen-
erated. If 7' ¢ Q,, let q be the ideal in 4 generated by the constant terms
of elements in Q. (Then g is the image in 4 of £, under the map induced
by T' - 0.) Let f,,. . .,f, be homogeneous elements in £ whose constant
terms generate q. Then by the usual argument, the ideal g, is generated

by fise--sfr-

CoroLrARY VIIL.2. Suppose A is a noetherian graded ring and a is a
homogeneous ideal in A. Then A™® is noetherian.

Proor. Suppose a is generated by homogeneous elements ay,...,a,
each with degree d;. Let T; be an indeterminate of degree d;. The ring
A"[[T,,...,T,]]"” is graded noetherian, the ideal (7', —a,,...,T,—a,) is
homogeneous and the graded completion

AF® ~ A[[Ty,..., TN [(Ty—ay. .., T,—a,) .

Suppose p is a prime homogeneous ideal in A. The following result is
established, just as in the ungraded case.

TrEOREM VIIL.3. The endomorphism ring
HOM ,(grE(A/[p),grE(A[p)) s isomorphic to the graded completion of
the ring A, at its maximal homogeneous ideal pAy,.

And now there is the analogue of Matlis duality and all the related
problems. We hope to return to some of them in a later paper.
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