THE CENTRALIZER UNDER TENSOR PRODUCT

RICHARD H. HERMAN

Abstract.

Let M_{φ} denote the fixed points of the modular automorphism group $t \to \sigma_t^{\varphi}$ of a faithful, normal state, φ , on a von Neumann algebra M. We calculate $(M \bar{\otimes} N)_{\varphi \otimes \varphi}$ when φ and ψ are periodic. In general we show when $(M \bar{\otimes} N)_{\varphi \otimes \varphi} = M_{\varphi} \bar{\otimes} N_{\psi}$. We also give a discussion of eigenoperators for a modular automorphism group.

1. Introduction.

In [1] and [7] Araki and Takesaki have given an analysis of "periodic", faithful, normal states viz, states for which there exists a smallest positive number T such that the corresponding modular automorphism group at T is the identity. If φ and ψ are two such states on M, N respectively then (Theorem 1) $(M \overline{\otimes} N)_{\varphi \otimes \psi} = M_{\varphi} \overline{\otimes} N_{\psi}$ if and only if T_{φ}/T_{ψ} is irrational. We then give a general condition for this to hold without assuming periodicity.

It is shown that unitary operators cannot occur as "eigenoperators", [5], of modular automorphism group although they can (and do) occur for other automorphism groups. This observation leads to an alternative proof of Erling Størmer's result, [5], that a compact abelian group acts ergodically on a von Neumann algebra M, only if M is finite.

2.

Let φ be a faithful, normal, periodic state on a von Neumann algebra M. If T_{φ} is its period we set $\varkappa = e^{-2\pi/T_{\varphi}}$ and recall, [7], that

(1)
$$\varepsilon_n(x) = (1/T_{\varphi}) \int_0^{T_{\varphi}} \kappa^{-int} \sigma_t^{\varphi}(x) dt$$

defines a normal projection of M onto the subspace

$$M_n = \{x : \sigma_t^{\varphi}(x) = \varkappa^{int}x\}$$

of M.

Assuming $\varphi(x) = (x\xi_{\varphi}|\xi_{\varphi})$ with ξ_{φ} cyclic and separating we have

$$\varepsilon_n \circ \varepsilon_m = \delta_{nm} \varepsilon_n$$

(4)
$$\varepsilon_n(axb) = a\varepsilon_n(x)b, \quad a,b \in M_{\varphi} \equiv M_0$$

(5)
$$x\xi_{\varphi} = \sum_{n \in \mathbb{Z}} \varepsilon_n(x)\xi_{\varphi}.$$

Suppose then that M acts on a Hilbert Space \mathfrak{F} and let N be another von Neumann algebra acting on \mathfrak{R} with faithful, normal, periodic state $\psi(\circ) = (\circ \xi_w | \xi_w)$.

Let ε_0 denote the unique projection of $M \overline{\otimes} N$ onto $(M \overline{\otimes} N)_{\varphi \otimes \psi}$ characterized by $(\varphi \otimes \psi)(\varepsilon_0(w)) = \varphi \otimes \psi(w)$ for each $w \in M \overline{\otimes} N$.

THEOREM 1. Suppose M and N are given with faithful, normal, periodic states φ and ψ , having periods T_{ϖ} and T_{η} respectively. Then

(i) If T_w/T_w is irrational then

a)
$$\varepsilon_0 = \varepsilon_0^{\varphi} \otimes \varepsilon_0^{\varphi}$$

equivalently

b)
$$(M \overline{\otimes} N)_{\alpha \otimes \psi} = M_{\alpha} \overline{\otimes} N_{\psi}$$
.

(ii) If T_{w}/T_{w} is rational then

a)
$$\varepsilon_0 = \sum_{j \in I} \varepsilon_{-k_j}^{\varphi} \otimes \varepsilon_{l_j}^{\psi}$$

equivalently (with some abuse of notation)

b)
$$(M \overline{\otimes} N)_{\varphi \otimes \varphi} = \sum_{j \in I} \oplus M_{-k_j} \overline{\otimes} N_{l_j}$$
.

(The direct sum is in the sense of the pre-Hilbert Space structure induced by $\varphi \otimes \psi$ and the indices run over k_j and l_j for which $k_j/l_j = T_{\varphi}/T_{\psi}$ or $k_j = l_j = 0$.)

PROOF. Let $E_0 = \{ \eta \in \mathfrak{H} \otimes \mathfrak{R} : (\Delta_{\varphi}^{it} \otimes \Delta_{\psi}^{it}) \eta = \eta \}$. Then since $\xi_{\varphi} \otimes \xi_{\psi}$ is cyclic and separating for $M \overline{\otimes} N$ we have

$$\varepsilon_0(x \otimes y)(\xi_w \otimes \xi_w) = E_0(x \otimes y)(\xi_w \otimes \xi_w) = E_0(x \xi_w \otimes y \xi_w)$$

for arbitrary x, y belonging to M, N respectively.

Now according to [7],

$$x\xi_{\varphi} = \sum_{n \in \mathbb{Z}} x(n) \xi_{\varphi} \qquad x(n) = \varepsilon_{n}^{\varphi}(x)$$

$$y\xi_{\psi} = \sum_{n \in \mathbb{Z}} y(n) \xi_{\psi} \qquad y(n) = \varepsilon_{n}^{\psi}(x) .$$

Thus

$$E_{0}(x\xi_{\varphi}\otimes y\xi_{\varphi}) = E_{0}(\sum_{n,m}x(n)\xi_{\varphi}\otimes y(m)\xi_{\psi})$$

$$= \sum_{n,m}E_{0}((x(n)\otimes y(m))(\xi_{\varphi}\otimes \xi_{\psi}))$$

$$= \sum_{n,m}\varepsilon_{0}(x(n)\otimes y(m))(\xi_{\varphi}\otimes \xi_{\psi}).$$

We recall that

$$\varepsilon_0(w) \,=\, \text{wk.-lim}_{T \to \infty}(1/2T) \textstyle \int_{-T}^T \sigma_t^{\varphi \bigotimes \psi}(w) dt \;.$$

By the orthogonality of distinct characters on R under Wiener mean, one sees that if the periods, T_{ω} and T_{w} , are irrationally related, we have

$$\varepsilon_0(x \otimes y) = \varepsilon_0^{\varphi}(x) \otimes \varepsilon_0^{\psi}(y)$$
,

using $\sigma_t^{\varphi \otimes \psi} = \sigma_t^{\varphi} \otimes \sigma_t^{\psi}$. Since elements $x \otimes y$ generate $M \overline{\otimes} N$, we have that $(M \overline{\otimes} N)_{\varphi \otimes \psi} \subseteq M_{\varphi} \overline{\otimes} N_{\psi}$, hence equality and (i) is proven.

The second statement is now clear, since by the above mentioned orthogonality, the only elements contributing to $\varepsilon_0(x \otimes y)$ are those specified in the statement.

We now consider the first part of Theorem 1 for general, i.e. not necessarily periodic, states.

If μ is a finite Borel measure on R, then it is known [8] that

$$\lim_{T\rightarrow\infty}(1/2T)\int_{-T}^{T}\hat{\mu}(t)\,dt\,=\,\mu(\{0\})$$
 ,

where $\hat{\mu}(t)$ is the Fourier transform of μ .

Consider now the expression (setting as above, save for periodicity)

$$\left((\varDelta_{_{\boldsymbol{y}}}{}^{il}\otimes\varDelta_{_{\boldsymbol{y}}}{}^{il})(x\otimes y)\xi_{_{\boldsymbol{y}}}\otimes\xi_{_{\boldsymbol{y}}}|\eta_1\otimes\eta_2\right)$$

where η_1, η_2 are arbitrary vectors in \mathfrak{H} , \mathfrak{R} respectively. This equals

$$\begin{split} (\varDelta_{\varphi}^{it} x \xi_{\varphi} | \eta_{1}) (\varDelta_{\psi}^{it} \xi_{\psi} | \eta_{2}) \\ &= \left(\int e^{i\lambda t} d \big(e(\lambda) \xi_{\psi} | \eta_{1} \big) \right) \left(\int e^{i\gamma t} d \big(f(\gamma) \xi_{\psi} | \eta_{2} \big) \right) \\ &= \int e^{i\beta t} d \mu(\beta) \ . \end{split}$$

Here $e(\lambda), f(\gamma)$ are the spectral measures corresponding to $\log \Delta_{\varphi}$, $\log \Delta_{\varphi}$ respectively and μ represents the convolution of the two measures $d(e(\lambda)\xi_{w}|\eta_{1})$ and $d(f(\gamma)\xi_{w}|\eta_{2})$.

As in Theorem 1 we are interested in finding when $\varepsilon_0 = \varepsilon_0^{\varphi} \otimes \varepsilon_0^{\psi}$. Thus we must find $\mu(\{0\})$.

Remembering, that the continuous measures are a two sided ideal in M(R), [2, Chapter V], we see by the above remarks that a calculation of $\mu(\{0\})$ involves only the convolution of the discrete parts of the two aforementioned measures.

If $v_1, v_2 \in M_d(R)$, i.e. are discrete measures in M(R) then

$$\nu_1 * \nu_2(\{0\}) = \sum_{\lambda \in \operatorname{supp}\nu_2, -\lambda \in \operatorname{supp}\nu_1} \nu_1(\{-\lambda\}) \nu_2(\{\lambda\})$$

Thus one see that if for $\lambda \neq 0$ belonging to the support of ν_2 we never have $-\lambda$ belonging to the support of ν_1 , then

$$v_1 * v_2(\{0\}) = v_1(\{0\})v_2(\{0\})$$
.

This motivates

DEFINITION. For faithful, normal states φ, ψ on M, N respectively, let us say that σ_t^{φ} and σ_t^{ψ} are disharmonic if whenever the character $\chi(t)(\equiv 1)$ is an eigenvalue of σ_t^{φ} i.e. there is $x \neq 0$ such that $\sigma_t^{\varphi}(x) = \chi(t)x$, then $\chi(t)$ is not an eigenvalue of σ_t^{ψ} .

The preceding remarks and the arbitrary choice of $\eta_1 \in \mathfrak{F}$ and $\eta_2 \in \mathfrak{R}$ then yield

Theorem 2. Let M,N be von Neumann algebras with faithful, normal states φ, ψ respectively. If the corresponding modular automorphism groups are disharmonic then

$$(M \overline{\otimes} N)_{\varphi \otimes_{\Psi}} = M_{\varphi} \overline{\otimes} N_{\Psi}.$$

3.

We referred above to eigenvalues and implicitly to what Størmer [5] has called eigenoperators viz, elements in M such that $\sigma_t^{\varphi}(x) = \chi(t)x$ for some character $\chi(t)$. Indeed for any group G acting ergodically on M such eigenoperators are, for fixed $\chi \in \widehat{G}$ multiples of a fixed unitary, [5, Lemma 2.1]. By ergodicity we mean that the only elements fixed by the group action, are multiples of the identity.

We make the following

REMARK. In [7] it is shown that for periodic homogeneous states the subspaces M_n (of Section 2) contain either isometries or coisometries. It is implicit in the calculations there, that for $n \neq 0$ no unitary can be in M_n . Indeed, for general φ , one cannot have $\sigma_t^{\varphi}(u) = \chi(t)u = e^{i\lambda t}u$ (for some $\lambda \in \mathbb{R}$) with u a unitary, unless $\sigma_t^{\varphi}(u) = u$. If such u existed, then u would clearly be analytic for σ_t^{φ} so we apply the "distributional form" of the KMS condition obtaining, for all $x \in M$,

$$\varphi(uxu^*) \,=\, \varphi\bigl(\sigma_i(u^*)ux\bigr) \,=\, \varphi\bigl(\bigl(\sigma_{-i}(u)\bigr)^*ux\bigr) \,=\, e^{\lambda}\varphi(x) \;.$$

Setting x = I one gets $\lambda = 0$ whence $\sigma_t^{\varphi}(u) = u$.

This remark now leads to an alternate proof of

Theorem 3. (Størmer [5]). Let $g \to \alpha_g$ be a strongly continuous representation of a compact abelian group, G, as automorphisms of a von Neumann algebra M. If G acts ergodically, then M is finite.

PROOF. There is nothing sacrosanct in Section 2 about the interval [0,T]. In fact any compact abelian group will do once we recall that G, has a faithful, normal, G-invariant, state, say φ (average any normal state over G using Haar measure. The new state is normal [4, Proposition 3] and faithful; the latter since the state and its support projection are invariant under G. Alternatively the existence of such states follows from Størmer's paper, [6]). Replacing the integers by G, one has in analogy with the statements in Section 2, $x\xi_{\varphi} = \sum_{\chi \in \hat{G}} \varepsilon_{\chi}(x)\xi_{\varphi}$, where $\varphi(x) = (x\xi_{\varphi}|\xi_{\varphi})$ is the faithful, normal, G-invariant state alluded to above. As we mentioned Størmer show that $\varepsilon_{\chi}(x)$ must be a multiple of a fixed unitary, that unitary being independent of x. Let us work with the unitary, call it v_{χ} . Now since $\varphi(\alpha_{g}(x)) = \varphi(x)$, α_{g} and σ_{t}^{φ} commute [3] so that σ_{t}^{φ} takes $M_{\chi} \to M_{\chi}$. Thus, $\sigma_{t}^{\varphi}(v_{\chi}) = e^{i\lambda t}v_{\chi}$. Our remark now yields $\sigma_{t}^{\varphi}(v_{\chi}) = v_{\chi}$ so that $\sigma_{t}^{\varphi}(\varepsilon_{\chi}(x)) = \varepsilon_{\chi}(x)$, yielding $\sigma_{t}^{\varphi}(x) = x$ for all $x \in M$, whence φ is a trace.

REFERENCES

- H. Araki, Structure of some von Neumann algebras associated with isolated discrete spectrum, Publ. Res. Inst. Math. Sci. 9 (1973), 1-43.
- E. Hewitt and K. Ross, Abstract Harmonic Analysis I (Grundlehren Math. Wissensch. 115), Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- R. Herman and M. Takesaki, States and automorphism groups of operator algebras, Comm. Math. Phys. 19 (1970), 142-160.
- 4. R. Herman, Invariant states, Trans. Amer. Math. Soc. 158 (1971), 503-512.
- E. Størmer, Spectra of ergodic transformations, J. Functional Analysis, 15 (1974), 202– 215.
- 6. E. Størmer, Invariant states of von Neumann algebras, Math. Scand. 30 (1972), 253-256.
- M. Takesaki, The structure of a von Neumann algebra with a homogeneous periodic state, Acta Math. 131 (1973), 79–121.
- 8. A. Zygmund, Trigonometric Series I & II, Cambridge University Press, 1968.

DEPARTMENT OF MATHEMATICS PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PENNSYLVANIA 16802, U.S.A.