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THE CENTRALIZER UNDER TENSOR PRODUCT

RICHARD H. HERMAN

Abstract.

Let M, denote the fixed points of the modular automorphism group
t - 0,” of a faithful, normal state, ¢, on a von Neumann algebra M.
We calculate (M ®N),g, When ¢ and yp are periodic. In general we show
when (M®N),g,=M,QN,. We also give a discussion of eigenoperators
for a modular automorphism group.

1. Introduction.

In[1] and [7] Araki and Takesaki have given an analysis of ‘““periodic”,
faithful, normal states viz, states for which there exists a smallest
positive number 7' such that the corresponding modular automorphism
group at 7 is the identity. If ¢ and ¢ are two such states on M, N re-
spectively then (Theorem 1) (M®N),g,=M,QN, if and only if T /T,
is irrational. We then give a general condition for this to hold without
assuming periodicity.

It is shown that unitary operators cannot occur as ‘“‘eigenoperators”,
[5), of modular automorphism group although they can (and do) occur for
other automorphism groups. This observation leads to an alternative
proof of Erling Stgrmer’s result, [5], that a compact abelian group acts
ergodically on a von Neumann algebra M, only if M is finite.

2.

Let ¢ be a faithful, normal, periodic state on a von Neumann algebra
M. I T, is its period we set x=e"*"Te and recall, [7], that

(1) &a(2) = (1T,) 32 %o (x)dt
defines a normal projection of M onto the subspace
(2) M
of M.

2= {Z: of(x) = »™x}
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Assuming ¢(x) = (x£,|&,) with &, cyclic and separating we have

(3) En%8m = Opmen
(4) eq(axb) = ae,(x)b, a,beM,= M,
(5) xf, = Ypezal)E, .

Suppose then that M acts on a Hilbert Space $ and let N be another
von Neumann algebra acting on & with faithful, normal, periodic state

w(o)z(ofwlfw)' _ _
Let &, denote the unique projection of XN onto (M QXN),x, charac-

terized by (pQ@y)(so(w)) = pQy(w) for each w e MRN.

THEOREM 1. Suppose M and N are given with faithful, normal, periodic
states ¢ and v, having periods T, and T, respectively. Then

@) If T,|T, is irrational then

a) & = &’ ®¢"
equivalently
b) (M®N),s, = M ,QN, .
(ii) If T[T, is rational then
a) g = Zjele—k/¢®el]w

eq'u‘ivdlently (with some abuse of notation)

b) (MéN)qz(@w = zjeIC_D M—k,‘®Nlj .

(The direct sum is in the sense of the pre-Hilbert Space structure indu-
ced by ¢®y and the indices run over k; and I; for which &;/l;=T /T, or

Proor. Let E,={ne HQK: (4,'®4,"m=n}. Then since & ¢, is
cyclic and separating for ¥ QN we have

£(2®@Y)(£,Q8,) = Eo(x®Y)(£,08,) = Ey(£,QyE,)

for arbitrary x,y belonging to M, N respectively.
Now according to [7],

xk, = Dpez(n)é, x(n) = &,%(x)
y€, = Dz ¥(n)é, y(n) = &,%(x) .
Thus
Ey(z£,09¢,) = Eo(Zn,m2(n)E,Qy(m)éE,)
= Yo nBo((2(n)®y(m))(€,Q¢,))
= X, mEo(2(n)Ry(m))(E,R¢E,) .
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We recall that
go(w) = wk.-limy,_, (1/27) 7 1 0,7 ®¥(w)dt .

By the orthogonality of distinct characters on R under Wiener mean, one
sees that if the periods, T, and T',, are irrationally related, we have

&(zQY) = &°(*)Q&"(y) ,

using ¢,7®¥=0"®a;’. Since elements *Qy generate M RN, we have that
(M®N),g,sM,QN,, hence equality and (i) is proven.

The second statement is now clear, since by the above mentioned
orthogonality, the only elements contributing to ey(x*®y) are those
specified in the statement.

We now consider the first part of Theorem 1 for general, i.e. not
necessarily periodic, states.
If u is a finite Borel measure on R, then it is known [8] that

limg_, ,(1/27) §2 p A(t)dt = p({0}),

where /i(t) is the Fourier transform of u.
Consider now the expression (setting as above, save for periodicity)

((4,*Q4,")(2®Y)E,®F N @)

where 7,,7, are arbitrary vectors in §, ® respectively. This equals

(0] ,,,“x&,,lm)(Avﬂgvmz)
= (§ed(e(D)E, 1)) (§ ed(F ()€, Ins))
= {ePdu(p) .

Here ¢(1),f(y) are the spectral measures corresponding to log4,, log4,
respectively and u represents the convolution of the two measures
d(e(A),ln,) and d(f(y)&,|n)-

As in Theorem 1 we are interested in finding when &= £,’®¢,*. Thus
we must find u({0}).

Remembering, that the continuous measures are a two sided ideal in
M(R), [2, Chapter V], we see by the above remarks that a calculation of
u#({0}) involves only the convolution of the discrete parts of the two
aforementioned measures.

If »,,9,€ M4(R), i.e. are discrete measures in M(R) then

vl*vz({O}) = Elesuppvg, - Aesuppry 1’1({ - l})”z({}-})
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Thus one see that if for 140 belonging to the support of », we never
have —2 belonging to the support of »;, then

v1#95({0}) = ”1({0})”2({0}) .

This motivates

DErintriOoN. For faithful, normal states ¢,y on M, N respectively, let
us say that ¢,” and o,” are disharmonic if whenever the character y(¢£)(=1)
is an eigenvalue of ¢, i.e. there is x4 0 such that ¢,f(x)= x(t)z, then y(¢f)
is not an eigenvalue of ¢.

The preceding remarks and the arbitrary choice of 7, € § and 7, &
then yield

TrEOREM 2. Let M,N be von Neumann algebras with faithful, normal
states @,y respectively. If the corresponding modular automorphism groups
are disharmonic then

(M®N),g, = M N, .

3.

We referred above to eigenvalues and implicitly to what Stermer [5]
has called eigenoperators viz, elements in M such that o?(z)=y(t)x for
some character y(f). Indeed for any group G acting ergodically on M
such eigenoperators are, for fixed y € G multiples of a fixed unitary,
[5, Lemma 2.1]. By ergodicity we mean that the only elements fixed by
the group action, are multiples of the identity.

We make the following

Remagrk. In [7] it is shown that for periodic homogeneous states the
subspaces M, (of Section 2) contain either isometries or coisometries. It
is implicit in the calculations there, that for n+ 0 no unitary can be in
M. Indeed, for general ¢, one cannot have ¢,?(u) = x(t)u = e*u (for some
2 €R) with % a unitary, unless o,°(u) =w. If such u existed, then v would
clearly be analytic for ¢,” so we apply the “distributional form” of the
KMS condition obtaining, for all x € M,

pluzu*) = p(ouryuz) = o((o_w)*uz) = ().

Setting ¥ =1 one gets 1=0 whence ¢(u) =u.
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This remark now leads to an alternate proof of

THEOREM 3. (Stermer [5]). Let g - x, be a strongly continuous re-
presentation of a compact abelian group, G, as automorphisms of a von
Neumann algebra M. If G acts ergodically, then M is finite.

Proor. There is nothing sacrosanct in Section 2 about the interval
[0,7]. In fact any compact abelian group will do once we recall that G,
has a faithful, normal, G-invariant, state, say ¢ (average any normal
state over ( using Haar measure. The new state is normal [4, Proposition
3] and faithful; the latter since the state and its support projection are
invariant under @. Alternatively the existence of such states follows
from Stermer’s paper, [6]). Replacing the integers by G, one has in ana-
logy with the statements in Section 2, 2§, =3  a¢,(x)é,, where ¢(v)=
(x¢,¢,) is the faithful, normal, G-invariant state alluded to above. As
we mentioned Stermer show that ¢ (xr) must be a multiple of a fixed
unitary, that unitary being independent of x. Let us work with the
unitary, call it v,. Now since ¢(x,(x))=¢(x), «, and ¢;” commute [3] so
that o takes M, -~ M,. Thus, ¢(v,)=ey,. Our remark now yields
of(v,)=v, so that ¢7(e(z))=¢,(x), yielding o (x)=x for all xe M,
whence g is a trace.
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