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A NOTE ON FUNCTIONS WITH A SPECTRAL GAP

KOZO YABUTA

In this note we shall give a few refinements of theorems on functions
with a spectral gap given by H. S. Shapiro in [4]. Shapiro has stated
our Theorem 3 without proof and Theorem 2 under ‘“uniform” estimates
in « for the inequality (2). He has kindly pointed out to us that Theorem
2 was known to him. Theorem 1 is probably new. In any case our proofs
seem novel.

We employ standard vector notations; R denotes the real line and C
denotes the complex plane. t=(f},%,,...,t,) and z=(z,%,,...,z,) are
points in R® and (¢,x) denotes t,x; +t,xy+ ... +1t,2,; [#|=(z,2)}, and dt
denotes Lebesgue measure on R”. f or f* denotes the Fourier transform of
a function f or a tempered distribution, i.e., if f is a summable function,
f(#) is given by

J(t) = Sgaf(@)e-i@nda .

B(x; a) denotes the open ball in R” with center x and radius a. The spect-
rum of a tempered distribution is the distributional support of its Fourier
transform. A gap in a distribution is a nonvoid open ball disjoint from
its support. A spectral gap in a tempered distribution is a gap in its
Fourier transform. & (R*) denotes the set of all rapidly decreasing in-
finitely differentiable functions in R® and &’(R?) denotes its dual, i.e.,
the set of all tempered distributions. {,) denotes the dual form for &%’
and <.

1.

Our main results are as follows;
TrEEOREM 1. Let f be a locally integrable function on R such that
fr(1+2%)1f(z)|dx < oo .
Let a>0. If, for two distinct real numbers by,by, the Poisson integral
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_ Yy
wx,y) = n lst(t)m
of f satisfies, for every >0,
(1) lu(by,y)| = A(e,jle e, y>1, j=12,

for constants A(e,j) depending only on & and j, then the spectrum of f is
disjoint from B(0; ), where d=min(a,7[|b;—b,|). If (1) holds for three
rationally linearly independent real numbers, then B(0; 8) can be replaced
by B(0; a).

In the n-dimensional case we have

THEOREM 2. Let f be a locally integrable function on R™ such that
§rn (14 |2[2) =42 f(2) | dz < oo .

Let a> 0. If the Poisson integral

w(@,9) = ¢,§anf (?) Y

(=t +y?) s

of f satisfies, for every >0,
(2) lu(z,y)] = A(e,x)e @7, y>1,

for all x € E(¢), where E(c) is any dense set in R* depending only on & and
A(e,x) are constants depending only on ¢ and x, then the spectrum of f is
disjoint from B(0; a).

2.

To prove the theorems above we need the Theorem 3 below and for it
we recall some definitions.

DEeriniTION 1. A function on R” is said to be radial if it depends only
on radii |z|. A locally integrable function on R* is said to be anti-radial if
its integral over the open ball in R* with center 0 and radius r vanishes
for every r> 0. Every locally integrable function admits an essentially
unique decomposition into a radial and an anti-radial part.

To state Theorem 3 for other kernels than the Poisson kernel we
recall the notion of radial tempered distributions.

DeriNITION 2. A tempered distribution 7' on R” is said to be radial
(anti-radial) if it holds (7T',¢)=0 for all antiradial (radial) ¢ € S (R")
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(respectively). If 7' is a locally integrable function, these two definitions
coincide.

Lemma 1. Every tempered distribution admits a unique decomposition
tnto a radial and an anti-radial part.

In fact, every tempered distribution 7' can be represented in the form
T = (1-4) 3um@2)f (%) 5 (1-4)g
for some integers k,m = 0 and some f € L%R"), where
A=%0w 2+ 02022 + . . . + 20,2 .
By decomposing g into a radial part g, and an anti-radial part g, we have
T =(1-4Yg,+(1-4g, = T,+7T,.
One can easily see that 7', is radial and 7', is anti-radial. The uniqueness

is obvious.

Now if we assume (2) in Theorem 2 holds for a single value of z, we
obtain the following information about the spectrum of f.
THEOREM 3. Let f be a locally integrable function on R™ such that
§rn(1+ |2[2) =072 f(z) | dor < oo .

If one has, for some a>0,

(3) w(0) = o fuaf (@) Y 4o = 0(e-),

Y2+ |x|2)m+Dr2
as y — oo, then the radial part of f has spectrum disjoint from B(0; a).
Proor. We may assume f radial, since the anti-radial part contributes
nothing to «(0,y).

(i) The case n is odd
Set (n+1)/2=1 and let ¢> 0 be given. We have

f(=) [y(l +elz|® - e(y® + |2|*))
1+ elz|* @+ |=)*}

@ w0y, =
Further we have
@2+ |22V — || = 3}, (Dy|e|2-P

+ 8y] de .

and
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dre~vl = 3% p(thylesM (1 Sk <),

for some functions p;, where r%-1p,(r) are polynomials in r. Hence we
see that
Ake-vlle LYR™)  for k < 1

and we have for some constants C
((—Aye-v)™ = CylafZy(+]al)t fork <,
since (e~¥)" = const.y(y2+ [2[2) 7. Set G(f)=(f(1 +¢|z[#)-1)". Then (4) can
be written by Parseval’s equality in the form
u0,y)fe, = §G(E)(1+eP(y,|t]))ev1dt +eyG(0) ,
where r#-3P(y,r) is a polynomial in y and r. Since one gets by simple
calculation
S,tlgaG(t)(l+eP(y, ]t())e—ymdt = O(yPe~), asy > oo,
we have, taking account of the assumption,
Siti<a GO)(1+P(y, [t]) e ¥1dt + eyG(0) = O(yPe=v) .

Put
H(z) = §y<a G(t)(1+P(z, [t]))e—211-0dt + £2G/(0)e* .

Then H is an entire function in z and we have

|H(z)| < const.(l+|z[#)esl?l forze C,
and
|[H(z)| < const.(1+2|%) forzeRandizeR.

Hence by the Phragmén-Lindel6f theorem, we see that H(z) is a polyno-
mial of the form

H(z) = 3% a2 .

Hence we obtain
(5) Sltl<a G(t)(1+eP(iy, |t| ))e""/'” dt +1eyG(0) = JZLO aj(iy)fe‘i"‘?/ .

Now let ¢ € #(R?) be a radial function such that support $<B(0; a).
Set (1) =y([t)), p(&)=va(|&]) for & € R and B(y) = (2m) e p(E)edE.

Then y(y), D(y) € ¥ (R) and supporty <{yeR; |y| <a}. Multiplying the
both sides of (5) by @(y) and integrating them with respect to y, we
have via Fubini’s theorem

$it1<a FOPO)dt + £ §jy .o G(0)g(6) At +ieG(0) § yP(y)dy = ZFoayP(a) = O,

where g(t)={z P(iy, |t|)P(y)e- ¥V dy € L}(R") and support g<=B(0;a). By
Parseval’s equality we have thus
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f@) f(=) ‘= 0
1+£lezzg T+elz2

f(x)

1+e¢|z|?

(6) S p(x)dx+ ¢ S (x)dx +ie S yD(y)dy S

Since &(1+¢|z)?)-1< (14 |x]#)-1,(0<e< 1), we have

'SS |f ()]

1t I—lz—l -0 ase—0.
elx

Hence by (6) we have letting ¢ - 0
Sf(x)q)(x)dx =0.

Since f is radial, we have thus the desired conclusion.

(ii) The case % is even.
Let o =(n+1)/2. We have, for every ¢> 0,

f(z) y d“sz;,:lg

1+ gla|™+2 (y? + |o|?)*
By calculation one can see that the Fourier transform of the function
yx;|z|™(y?+ ||?) > — cyx;|x|"(1 + |x|*)~* is of the form

z; f () yx;lz|®
1+ elz|™+2 (y2 + |a|?)

u(0,9)[c, = S

() PygltesM+oytlt|=m(e-vHl — et — 2y Py(1, f)eM],

for some constant ¢ and functions P;, where r"~1P,(y,r) are polynomials
in y and r. Hence each term in (7) is integrable on R™. Therefore, modi-
fying the proof of the first part one can easily show the desired conclu-
sion.

3.

To prove our main theorems we need two more lemmas.

LemMMA 2. Let T be a tempered distribution on R™, If for an a >0,

(T, =b)y = 0
Jor all b e R* and all radial p € L (R™) with support in B(0; a), then
T, =0

Jor all y € L(R?) with support in B(0; a).

Proor. Let ye &(R*) with support in B(0;a) and ¢ € £(R*) be

radial, with support in B(0; a) and ¢(t)=1 on the support of y. Then
one can easily see that
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0 = §§(—bXT,§(@+b)ydb = (T,{H(~b)p(x+b)db) .
Now we have by Parseval’s equality
(27:)‘”8 P(—b)P(x+b)db = S p(t)p(t)e~*=0dt = Sw(t)e‘i(x")dt
= P(@) .
The third equation follows from the assumption @(¢f)=1 on the support
of y. Hence we have (T',9)=0.

In the one dimensional case we have a stronger result.

LeMMA 3. Let a>0 and T be a tempered distribution on R such that
or two distinct points b,,b, € R

(8) T.¢@+b;)) =0 (j=12)
Jor all even functions ¢ € &(R) with support in B(0; a). Then one has
(T,9)=0

Sor all p € L (R) with support in B(0,6), where é =min (a,7/|b; — by|).
If, in particular, one assumes (8) holds for three rationally linearly inde-
pendent points in R, then B(0; 8) can be replaced by B(0; a).
Proor. Let ¢ € #(R) with support in B(0; a). Then
p(x) = " p(x) + M ()
is even, in &(R) and has support in B(0; a). Further we have
(Bt+0))"(—2) = p(z)e*"* 4+ (~2) .

Hence by assumption
(P67 ®=p(x) + p(—x)) = 0.

This equation holds also for b,. Hence we have
<T, (e—ziblm_e—zibgz)¢(x)> =0.
This implies (7, ®) = 0 for all & € #(R) with support in B(0; 8)\ {0}.
Therefore there exists a ploynomial P(z) such that
(T-P@)~,8) = 0

for all @ € #(R) with support in B(0; ). Hence by direct calculation

we get .
(T_P’ku(x'i'bj» = O(e—62y2/2) (4 =12),
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where k,(x)=y-le-="/¥", By assumption one can get in a similar way the
same estimates for 7', since %, is an even function in &(R). Hence we
have

(P,e~v=bity — const.(P,k,(x+b;)) = O(e~?), j =1,2,

which implies however P(x)=0. Hence we have the first assertion. The
last one is then obtained by modlfying the above discussion somewhat.

4.

Proors or TEEOREMS 1 AND 2. Theorem 1 follows immediately from
Theorem 3 and Lemma 3. Theorem 2 follows from Theorem 3 and
Lemma 2.

REMARK. By a similar method one can show the same results as
Theorems 1, 2 and 3, when one replaces the Poisson kernel by the kernel
k,(x)=y "e~"*¥* and f by any tempered distribution. In this case one
does not need to introduce ¢ in the proof of Theorem 3, since the kernel
is in &(R") and one can use Lemma 1.
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