A NOTE ON FUNCTIONS WITH A SPECTRAL GAP

KÔZÔ YABUTA

In this note we shall give a few refinements of theorems on functions with a spectral gap given by H. S. Shapiro in [4]. Shapiro has stated our Theorem 3 without proof and Theorem 2 under "uniform" estimates in x for the inequality (2). He has kindly pointed out to us that Theorem 2 was known to him. Theorem 1 is probably new. In any case our proofs seem novel.

We employ standard vector notations; \mathbb{R} denotes the real line and \mathbb{C} denotes the complex plane. $t = (t_1, t_2, \ldots, t_n)$ and $x = (x_1, x_2, \ldots, x_n)$ are points in \mathbb{R}^n and (t, x) denotes $t_1x_1 + t_2x_2 + \ldots + t_nx_n; |x| = (x, x)^{1/2}$, and dt denotes Lebesgue measure on \mathbb{R}^n. \hat{f} or \hat{f} denotes the Fourier transform of a function f or a tempered distribution, i.e., if f is a summable function, $\hat{f}(t)$ is given by

$$\hat{f}(t) = \int_{\mathbb{R}^n} f(x) e^{-i(x,t)} dx.$$

$B(x; a)$ denotes the open ball in \mathbb{R}^n with center x and radius a. The spectrum of a tempered distribution is the distributional support of its Fourier transform. A gap in a distribution is a nonvoid open ball disjoint from its support. A spectral gap in a tempered distribution is a gap in its Fourier transform. $\mathcal{S}(\mathbb{R}^n)$ denotes the set of all rapidly decreasing infinitely differentiable functions in \mathbb{R}^n and $\mathcal{S}'(\mathbb{R}^n)$ denotes its dual, i.e., the set of all tempered distributions. \langle , \rangle denotes the dual form for \mathcal{S}' and \mathcal{S}.

1.

Our main results are as follows;

THEOREM 1. Let f be a locally integrable function on \mathbb{R} such that

$$\int_{\mathbb{R}} (1 + x^2)^{-1}|f(x)| dx < \infty.$$

Let $a > 0$. If, for two distinct real numbers b_1, b_2, the Poisson integral

Received November 5, 1974.

1 The author would like to express his gratitude to the referee for his kind suggestions.

Math. Scand. 36 — 19
\[u(x,y) = \pi^{-1} \int_{-\infty}^{\infty} f(t) \frac{y}{(x-t)^2 + y^2} dt \]

of \(f \) satisfies, for every \(\varepsilon > 0 \),

\[|u(b_j, y)| \leq A(\varepsilon, j)e^{-\alpha - \varepsilon y}, \quad y > 1, \quad j = 1, 2, \]

for constants \(A(\varepsilon, j) \) depending only on \(\varepsilon \) and \(j \), then the spectrum of \(f \) is disjoint from \(B(0; \delta) \), where \(\delta = \min\{a, \pi/b_1-b_2\} \). If (1) holds for three rationally linearly independent real numbers, then \(B(0; \delta) \) can be replaced by \(B(0; a) \).

In the \(n \)-dimensional case we have

Theorem 2. Let \(f \) be a locally integrable function on \(\mathbb{R}^n \) such that

\[\int_{\mathbb{R}^n} (1 + |x|^2)^{-(n+1)/2} |f(x)| dx < \infty. \]

Let \(a > 0 \). If the Poisson integral

\[u(x,y) = c_n \int_{\mathbb{R}^n} f(t) \frac{y}{(|x-t|^2 + y^2)^{(n+1)/2}} dt \]

of \(f \) satisfies, for every \(\varepsilon > 0 \),

\[|u(x,y)| \leq A(\varepsilon, a)e^{-\alpha - \varepsilon y}, \quad y > 1, \]

for all \(x \in E(\varepsilon) \), where \(E(\varepsilon) \) is any dense set in \(\mathbb{R}^n \) depending only on \(\varepsilon \) and \(A(\varepsilon, a) \) are constants depending only on \(\varepsilon \) and \(x \), then the spectrum of \(f \) is disjoint from \(B(0; a) \).

2.

To prove the theorems above we need the Theorem 3 below and for it we recall some definitions.

Definition 1. A function on \(\mathbb{R}^n \) is said to be radial if it depends only on radii \(|x|\). A locally integrable function on \(\mathbb{R}^n \) is said to be anti-radial if its integral over the open ball in \(\mathbb{R}^n \) with center 0 and radius \(r \) vanishes for every \(r > 0 \). Every locally integrable function admits an essentially unique decomposition into a radial and an anti-radial part.

To state Theorem 3 for other kernels than the Poisson kernel we recall the notion of radial tempered distributions.

Definition 2. A tempered distribution \(T \) on \(\mathbb{R}^n \) is said to be radial (anti-radial) if it holds \(\langle T, \varphi \rangle = 0 \) for all antiradial (radial) \(\varphi \in \mathcal{S}(\mathbb{R}^n) \)
(respectively). If \(T \) is a locally integrable function, these two definitions coincide.

Lemma 1. Every tempered distribution admits a unique decomposition into a radial and an anti-radial part.

In fact, every tempered distribution \(T \) can be represented in the form

\[
T = (1 - \Delta)^k \sum_{|\alpha| \leq m} (ix)^\alpha f(x) \equiv (1 - \Delta)^k g
\]

for some integers \(k, m \geq 0 \) and some \(f \in L^2(\mathbb{R}^n) \), where

\[
\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \ldots + \frac{\partial^2}{\partial x_n^2}.
\]

By decomposing \(g \) into a radial part \(g_1 \) and an anti-radial part \(g_2 \) we have

\[
T = (1 - \Delta)^k g_1 + (1 - \Delta)^k g_2 \equiv T_1 + T_2.
\]

One can easily see that \(T_1 \) is radial and \(T_2 \) is anti-radial. The uniqueness is obvious.

Now if we assume (2) in Theorem 2 holds for a single value of \(x \), we obtain the following information about the spectrum of \(f \).

Theorem 3. Let \(f \) be a locally integrable function on \(\mathbb{R}^n \) such that

\[
\int_{\mathbb{R}^n} (1 + |x|^2)^{-\frac{n+1}{2}} |f(x)| \, dx < \infty.
\]

If one has, for some \(a > 0 \),

\[
(3) \quad u(0, y) = c_n \int_{\mathbb{R}^n} f(x) \left(\frac{y}{y^2 + |x|^2} \right)^{(n+1)/2} \, dx = O(e^{-ay}),
\]

as \(y \to \infty \), then the radial part of \(f \) has spectrum disjoint from \(B(0; a) \).

Proof. We may assume \(f \) radial, since the anti-radial part contributes nothing to \(u(0, y) \).

(i) The case \(n \) is odd

Set \((n+1)/2 = l \) and let \(\varepsilon > 0 \) be given. We have

\[
(4) \quad \frac{u(0, y)}{c_n} = \int f(x) \left[\frac{y(1 + \varepsilon|x|^2) - \varepsilon(y^2 + |x|^2)^l}{(y^2 + |x|^2)^l} + \varepsilon y \right] \, dx.
\]

Further we have

\[
(y^2 + |x|^2)^l - |x|^2 = \sum_{k=1}^l \binom{l}{k} g^{2k} |x|^{2l-2k}
\]

and
$$\Delta^k e^{-v|t|} = \sum_{j=1}^{2^k} p_j(|t|) y^j e^{-v|t|} \quad (1 \leq k < l),$$

for some functions p_j, where $r^{2k-1} p_j(r)$ are polynomials in r. Hence we see that

$$\Delta^k e^{-v|t|} \in L^1(\mathbb{R}^n) \quad \text{for} \quad k < l$$

and we have for some constants C_k

$$((-\Delta)^k e^{-v|t|})^\wedge = C_k |x|^{2k} y(y^2 + |x|^2)^{-1} \quad \text{for} \quad k < l,$$

since $(e^{-v|t|})^\wedge = \text{const.} y(y^2 + |x|^2)^{-1}$. Set $G(t) = (f(1 + \epsilon |x|^2)^{-1})^\wedge$. Then (4) can be written by Parseval’s equality in the form

$$\mu(0, y)/c_n = \int G(t)(1 + \epsilon P(y, |t|)) e^{-v|t|} dt + \epsilon y G(0),$$

where $r^{2l-3} P(y, r)$ is a polynomial in y and r. Since one gets by simple calculation

$$\int_{|t| < a} G(t)(1 + \epsilon P(y, |t|)) e^{-v|t|} dt = O(y^{2l} e^{-av}), \quad \text{as} \quad y \to \infty,$$

we have, taking account of the assumption,

$$\int_{|t| < a} G(t)(1 + \epsilon P(y, |t|)) e^{-v|t|} dt + \epsilon y G(0) = O(y^{2l} e^{-av}).$$

Put

$$H(z) = \int_{|t| < a} G(t)(1 + \epsilon P(z, |t|)) e^{-z|t| - a} dt + \epsilon z G(0) e^{az}.$$

Then H is an entire function in z and we have

$$|H(z)| \leq \text{const.} (1 + |z|^2) e^{a|z|} \quad \text{for} \quad z \in \mathbb{C},$$

and

$$|H(z)| \leq \text{const.} (1 + |z|^{2l}) \quad \text{for} \quad z \in \mathbb{R} \quad \text{and} \quad iz \in \mathbb{R}.$$

Hence by the Phragmén–Lindelöf theorem, we see that $H(z)$ is a polynomial of the form

$$H(z) = \sum_{j=0}^{2l} a_j z^j.$$

Hence we obtain

$$(5) \quad \int_{|t| < a} G(t)(1 + \epsilon P(iy, |t|)) e^{-iv|t|} dt + \epsilon y G(0) = \sum_{j=0}^{2l} a_j (iy)^j e^{-iav}.$$

Now let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be a radial function such that support $\hat{\varphi} \subset B(0; a)$. Set $\xi = \psi_1(|t|)$, $y(\xi) = \psi_1(|\xi|)$ for $\xi \in \mathbb{R}$ and $\Phi(y) = (2\pi)^{-1} \int \psi(\xi) e^{iy \xi} d\xi$.

Then $\psi(y), \Phi(y) \in \mathcal{S}(\mathbb{R})$ and support $\psi \subset \{y \in \mathbb{R} ; \ |y| < a \}$. Multiplying the both sides of (5) by $\Phi(y)$ and integrating them with respect to y, we have via Fubini’s theorem

$$\int_{|t| < a} G(t) \hat{\varphi}(t) dt + \epsilon \int_{|t| < a} G(t) g(t) dt + i\epsilon G(0) \int \Phi(y) dy = \sum_{j=0}^{2l} a_j \psi^j(a) = 0,$$

where $g(t) = \int \Phi(y \xi) |t| \Phi(y) e^{-i\xi|t|} dy \in L^1(\mathbb{R}^n)$ and support $g \subset B(0; a)$. By Parseval’s equality we have thus
\[(6) \int \frac{f(x)}{1 + \varepsilon |x|^2} \varphi(x) \, dx + \varepsilon \int \frac{f(x)}{1 + \varepsilon |x|^2} \hat{g}(x) \, dx + i\varepsilon \int \sigma \varphi(y) \, dy \int \frac{f(x)}{1 + \varepsilon |x|^2} \, dx = 0. \]

Since \(\varepsilon (1 + \varepsilon |x|^2)^{-1} \leq (1 + |x|^2)^{-1}, (0 < \varepsilon < 1) \), we have
\[\varepsilon \int \frac{|f(x)|}{1 + \varepsilon |x|^2} \, dx \to 0 \quad \text{as} \ \varepsilon \to 0. \]

Hence by (6) we have letting \(\varepsilon \to 0 \)
\[\int f(x) \varphi(x) \, dx = 0. \]

Since \(f \) is radial, we have thus the desired conclusion.

(ii) The case \(n \) is even.

Let \(\alpha = (n + 1)/2 \). We have, for every \(\varepsilon > 0 \),
\[u(0,y)/c_n = \int \frac{f(x)}{1 + \varepsilon |x|^{n+2}} \frac{y}{(y^2 + |x|^2)} \, dx + \varepsilon \sum_{j=1}^{n} \int \frac{y_j f(x)}{1 + \varepsilon |x|^{n+2}} \frac{|y_j x_j|^n}{(y^2 + |x|^2)^{\alpha}} \, dx. \]
By calculation one can see that the Fourier transform of the function \(y_j x_j |x|^n (y^2 + |x|^2)^{-\alpha} - c y x_j |x|^n (1 + |x|^2)^{-\alpha} \) is of the form
\[(7) \quad P_j(y, |t|) e^{-|t|} + c y_t |t|^{-(n+1)} (e^{-|t|} - e^{-|t|}) - c^2 y P_j(1, |t|) e^{-|t|}, \]
for some constant \(c \) and functions \(P_j \), where \(r^{n-1} P_j(y, r) \) are polynomials in \(y \) and \(r \). Hence each term in (7) is integrable on \(\mathbb{R}^n \). Therefore, modifying the proof of the first part one can easily show the desired conclusion.

3.

To prove our main theorems we need two more lemmas.

Lemma 2. Let \(T \) be a tempered distribution on \(\mathbb{R}^n \). If for an \(a > 0 \),
\[\langle T, \hat{\varphi}(x-b) \rangle = 0 \]
for all \(b \in \mathbb{R}^n \) and all radial \(\varphi \in \mathcal{S}(\mathbb{R}^n) \) with support in \(B(0; a) \), then
\[\langle T, \psi \rangle = 0 \]
for all \(\psi \in \mathcal{S}(\mathbb{R}^n) \) with support in \(B(0; a) \).

Proof. Let \(\psi \in \mathcal{S}(\mathbb{R}^n) \) with support in \(B(0; a) \) and \(\varphi \in \mathcal{S}(\mathbb{R}^n) \) be radial, with support in \(B(0; a) \) and \(\varphi(t) = 1 \) on the support of \(\psi \). Then one can easily see that
0 = \int \hat{\varphi}(-b)\langle T, \hat{\varphi}(x+b) \rangle db = \langle T, \int \hat{\varphi}(-b)\hat{\varphi}(x+b)db \rangle.

Now we have by Parseval’s equality

\[(2\pi)^{-n} \int \hat{\varphi}(-b)\hat{\varphi}(x+b)db = \int \varphi(t)\varphi(t)e^{-it\xi,0}dt = \int \varphi(t)e^{-it\xi,0}dt = \hat{\varphi}(\xi).\]

The third equation follows from the assumption \(\varphi(t) = 1\) on the support of \(\varphi\). Hence we have \(\langle T, \hat{\varphi} \rangle = 0\).

In the one dimensional case we have a stronger result.

Lemma 3. Let \(a > 0\) and \(T\) be a tempered distribution on \(\mathbb{R}\) such that or two distinct points \(b_1, b_2 \in \mathbb{R}\)

\[(8) \quad \langle T, \hat{\varphi}(x+b_j) \rangle = 0 \quad (j = 1, 2)\]

for all even functions \(\varphi \in \mathcal{S}(\mathbb{R})\) with support in \(B(0; a)\). Then one has

\[\langle T, \hat{\varphi} \rangle = 0\]

for all \(\varphi \in \mathcal{S}(\mathbb{R})\) with support in \(B(0, \delta)\), where \(\delta = \min(a, \pi/|b_1 - b_2|)\).

If, in particular, one assumes (8) holds for three rationally linearly independent points in \(\mathbb{R}\), then \(B(0; \delta)\) can be replaced by \(B(0; a)\).

Proof. Let \(\varphi \in \mathcal{S}(\mathbb{R})\) with support in \(B(0; a)\). Then

\[\varphi(x) = e^{-ib_1x}\varphi(x) + e^{ib_1x}\varphi(-x)\]

is even, in \(\mathcal{S}(\mathbb{R})\) and has support in \(B(0; a)\). Further we have

\[\langle \hat{\varphi}(t + b_1) \rangle(-x) = \varphi(x)e^{-2ib_1x} + \varphi(-x)\].

Hence by assumption

\[\langle \hat{T}, e^{-2ib_1x}\varphi(x) + \varphi(-x) \rangle = 0\.

This equation holds also for \(b_2\). Hence we have

\[\langle \hat{T}, (e^{-2ib_1x} - e^{-2ib_2x})\varphi(x) \rangle = 0\.

This implies \(\langle \hat{T}, \Phi \rangle = 0\) for all \(\Phi \in \mathcal{S}(\mathbb{R})\) with support in \(B(0; \delta) \setminus \{0\}\). Therefore there exists a polynomial \(P(x)\) such that

\[\langle (T - P(x))^{\wedge}, \Phi \rangle = 0\]

for all \(\Phi \in \mathcal{S}(\mathbb{R})\) with support in \(B(0; \delta)\). Hence by direct calculation we get

\[\langle T - P, k_{\varphi}(x+b_j) \rangle = O(e^{-a|x|^2/2}) \quad (j = 1, 2),\]
where $k_y(x) = y^{-1}e^{-x^2/y^2}$. By assumption one can get in a similar way the same estimates for T, since k_y is an even function in $\mathcal{S}(\mathbb{R})$. Hence we have

$$\langle \hat{P}, e^{-y^{2a-jb_j}} \rangle = \text{const.} \langle P, k_y(x+b_j) \rangle = O(e^{-a y^{2j/2}}), \quad j = 1, 2,$$

which implies however $P(x) = 0$. Hence we have the first assertion. The last one is then obtained by modifying the above discussion somewhat.

4.

Proofs of Theorems 1 and 2. Theorem 1 follows immediately from Theorem 3 and Lemma 3. Theorem 2 follows from Theorem 3 and Lemma 2.

5.

Remark. By a similar method one can show the same results as Theorems 1, 2 and 3, when one replaces the Poisson kernel by the kernel $k_y(x) = y^{-n}e^{-|x|^2/y^2}$ and f by any tempered distribution. In this case one does not need to introduce ε in the proof of Theorem 3, since the kernel is in $\mathcal{S}(\mathbb{R}^n)$ and one can use Lemma 1.

REFERENCE

MATHEMATICAL INSTITUTE
TÔHOKU UNIVERSITY
SENDAI, JAPAN