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THE DISCRETE FOURIER.-TRANSFORM AND IL»
APPROXIMATION OF FUNCTIONS

PHILIP BRENNER and DAVID C. SHREVE

Abstract.

We prove approximation results in L? for a class of operators, includ-
ing the interpolation operators associated with the cardinal series of a
function, and an interpolating spline function. Making use of the inter-
polation theory of operators on Besov spaces, we are able to give a short
and simple proof of a general error estimate.

1. Introduction.

In this paper we shall consider a class of operators which arise in
interpolation and approximation of functions on R™ using their values
on the mesh AZ", where & is a small positive number. Let us mention two
examples which provide motivation for the assumptions on the operators
that we shall discuss. The first example arises from the modified discrete
Fourier transform considered in [4]. The approximation operator I, is
defined on Cy® functions » by

Lo = FYn(ho)it) ,

where 7 is a C* function which is one in a neighborhood of the origin
and has support in

Q= {eRr; |&l<m,j=1,...,n},
4 denotes the discrete Fourier transform of u,
() = (2m) 2" Tezn u(ph)e™ M
and Fu=14 the Fourier transform of u, defined by
(&) = (2r)—n2 Su(x)e“’;(”’E)dx .

The inverse transform % -y is also denoted u”.
Using the Poisson summation formula, we find that

(1.1) Lu(x) = FYo(xh1,ho)i}(x),
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where .
o(x,&) = z”ez,. n(&— 2n,u)e”2”’(xv ",

It is easy to verify that o(z, o) is C*, and that for all indices «, and any
A>0,

(1.2) sup, | D [o(x, &) —1]| = O(|&[*"1*) as &0,
(1.3) sup,, (| D o(x,€)| < .

In addition,

(1.4) sup, M (o(x,0)) < oo,

where M _(f) denotes the usual norm of the Fourier-Stieltjes transform
f=7 as the total variation norm of the bounded measure ».

The second example is the interpolating spline S,u of order m for «,
which can be defined by

Sy = FADRO)Z ezn Plho — 2rp)] 1} ,
where
(1.5) ®(¢) = T, (2 sin&/2))m,™ .
Then I,u=_S,u is given as in (1.1) with o(z,&)=o0y(2,&)/6,(0,&) and
0y(2,€) = 3, D(§—2mp)e 1)

It follows easily from standard results on splines (cf. Schoenberg [3], or
[4]) that ¢ satisfies (1.2) with A=m, (1.3) and (1.4). Approximation results
for these interpolating splines have been obtained e.g. by Bramble and
Hilbert [1], Silliman [5] and Shreve [4].

Assume now that I, is defined by (1.1) where o(x, o) is C* and satisfies
(1.2), (1.3) and (1.4). We shall then prove LP-estimates of the form

pu—ul, = OR*) as h—0,

for a certain range of s when u is in the homogeneous Besov space B,,*2*
(for a definition see Section 2). This is the content of our first theorem.
The semi-norm in B,%%* is denoted |||, ,.

THEOREM 1. Let 1=p=oco and njp<s<2i. Then there is a constant C
such that for w in B,%>¥,
Iy —ull, £ Cholully, o, h>0.
In Section 2 we present some notation and definitions, and prove the

following result, which has Theorem 1 as a corollary in view of the inter-
polation theory for Besov spaces.
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THEOREM 2. Let 1<p=< o and n/p<s=<A. Then there is a constant C
such that for w in B,%*,

Hu—ull, < Chully,y,, h>0.

If ¢ is independent of #, or e.g. given by the interpolating spline of
order 1, we may for 1 <p<oco and 4 an integer replace the B *1*-semi-
norm in Theorem 2 by the semi-norm 3, _, (D%, (cf. [4]). The proof of
Theorem 2 below shows that, at least for p= 2, this is the case for general
o’s which are sufficiently smooth functions of z, satisfying (1.2) through
(1.4).

In Section 3 we give some extensions. In particular, we consider the

operator L = F(y(ho)i) ,

where y is the characteristic function of @ (cf. [1] and [4]). Although
the o(x,&) obtained in this case does not satisfy (1.3) or (1.4), our esti-
mates for |[[,u—wul|, are still valid for 1 <p< oo, as we shall see in Sec-
tion 3. There we also indicate some results for quasi-interpolants (cf.

(6])-

2. Proof of Theorems 1 and 2.
We define the homogeneous Besov space B,*?* as follows: Choose a

C,™ function ¢ with support in {£ € R*; }<|&| <2} such that
SR @2 =1, E+0.
Let @;(£) =¢(279). For 1<p=<oo, 1£g= 0, and §>0, B,*?* is the com-
pletion of €y (modulo polynomials) in the seminorm
lullp, g0 = {252 -0 [27°ll(es®) " [l,J1 2,

with the usual modification for g=c. An equivalent seminorm on
B,* 7 may also be defined in terms of the LP-modulus of continuity of
certain derivatives of u (cf. Lofstrom [2]).

The following interpolation theorem will be useful in deriving
B,%>~* — L? estimates from B,*1* — L? estimates for the operator I,,.

THEOREM 3. Let 1Sp=<oo, 1=5¢q;, and 0<8y<s,, and let
T: B, %* » L»

with norm Cy, k=0,1. Let 0< 0 <1 and write s=(1—0)sy+s,. Then there
18 a constant C, such that

Tl < CoCo=2C1lully,

p, 00,8 *
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For a proof, see e.g. Lofstrom [2].

Next, we present a simple estimate we shall use repeatedly in the
proof of Theorem 2. Let r(z,£) be such that D,r(x,£) is integrable in &
for 0<|x| <2x and for each x, where » is an integer greater than =/2.
Let k(x,0) be the inverse Fourier transform of r(z, o) in the second vari-
able. Then there is a constant C, independent of r and #, such that for

>0, I3 o,
lk(z,9)] < O+ Ity)~ Zpuyu P NIDE7(, )y -
Integrating over R”, we obtain the estimate

(2.1) (@, 0)lly £ Ot~ 3z, HIDE (2, 0) s -

Proor oF THEOREM 2. Let ¢ and ¢; be as above and let » be in C¢™.
Since o(x,0) =1, we find
Lu—u = 33 _ {(o(@h=1,ho)—1)pa}”
Write u; =% “1({g;_; + @; + @;11}8). Since g0, =0 if |j—k| > 1, we obtain
Lu—w = 322 o {(o(xh=2,ho) = 1)p;;}”
Set 7y, 4, &) =(o(wh~2, k&) — 1)g;(£), and define the operator K, ; by
K, ju(x) = (ry j(z,0)8)7 (2) .

Then
(2.2) Ihu—u = z;?__'_oo Kh'juj .

We shall obtain bounds for the norm of K, ; as an operator on L?. In
fact, we claim that with C independent of «, A and j,

(2.3) IKp,ull, = C min {(2R)%, (27h)"/ }[ull, ,

where we assume that n/p < A.
Let us first prove that (2.3) implies the desired estimate (1.6). From
(2.2), (2.3) and the definition of the seminorm in B,*!* we have

Mau—ully, £ 352 MK, ullp < sup; {279 min((29R), (2ZR)"P)}ully, 1, ,
and hence for n/p<s<1,

Iyu—ull, < Chollulyy,,
which is (1.6).
It remains to verify (2.3). In view of the Riesz-Thorin convexity
theorem it is enough to prove that

Hullw, 2h>1,

(2.4) MHnitlleo = CF iy, 2R<1,
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and that
(2.5) 1Ky il < C (2R |ully, 20AZ1,

(29R)™Mully, 29A>1.

Let &, ;(x,y) be the inverse Fourier transform of r;, ,(x,&) with respect
to £ Then
kh,j(x’y) = 2/n k27h,0(27‘x: 25:’/) ’
and thus
K, (@) = (2m)™/2 2im (ko o (292, 27y)u(x —y)dy .

We immediately obtain
(2.6) 1K, jelloe £ (27)"/2 sUp,[|kyip, o, ©)|l1][]los -
We also have
K, su(@)] < (2m)="/2 297 § Ky, o 2, 2 — 2y) | [u(y) | dy
and thus
(2.7) ”Kh,j'“nl < (2m)-m2 S“Pz”szh,o(° +,0)llyllully -

The first estimate in (2.4) follows immediately from (2.6) and (1.4).
Using (1.2) we see that for |«| <%,

(2.8) ID &1y of@,£)| < C(2RY, 20h=1.

Since 7y o(%,0) has compact support independent of z, j, and A, the
second estimate in (2.4) is a consequence of (2.6), (2.8), and (2.1). Using
(2.7) and (2.8) and the method of proof of (2.1), we obtain the first esti-
mate in (2.5). It follows from (1.3) that for |x| <,

(2.9) [D2 roip @ +7,8)] < C(29R)H,  2h2=1.

Using (2.9) and the method of proof of (2.1) we easily obtain the second
estimate in (2.5). We now established the claim in (2.3), and thus com-
pleted the proof of Theorem 2.
In view of Theorem 3, Theorem 1 is a consequence of Theorem 2.
Although we assumed o(x,0) was C®, it is clearly sufficient that the
estimates in (1.2) and (1.3) hold for |«| £ 2.

3. Extensions.

In this section we mention some consequences and extensions of Theo-
rems 1 and 2. First consider the cardinal series W,u of a function w,
defined by
sin (z; — p;h)w/h
—— G uh)

Wau(@) = 3 ,ezn {H;';l (@ — psh)mh
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Clearly, with y the characteristic function of @,
Wiu(x) = F - (y(ho)a)(x) .

Choose a C* function { which is one on @ and has support in a slightly
larger set. For u € C;* define

Ihu = y—l(c(ho)’ﬁ/) .
Then I,u is given by (1.1) with
0(@,8) = Zezn {(§ — 2ap)e™ >

Clearly o(x,&) satisfies (1.2) and (1.3), for any 1>0. Set 7(z,£)=
eX® Dg(x,£). Then (x,0) is periodic. Since ¢ € 0™ and

(2m)72 §o 7(w, £)eX VdE = L7 (w+9)
we find that

sup, M (o(z,0)) = sup, M (v(x,0)) = sup, D,z [ (@+7)| < + 0.
Thus o(x, &) satisfies (1.4). By Theorem 2 then for s=>n/p

M —ul, < Chullf,,, h>0.

If we write
Wiu—u = (y(ho)[(Lpw)™ —])" + ([x(ho)—112) " ,
and notice that
(Z(’W)— 1)@ = (X(h°) -1) 227‘7@1 P8

using Theorem 2 and the well-known fact that y is a multiplier on FL,,
for 1 <p < oo, we obtain for 1 <p< oo and s2n/p and u in C™,

IWau—ull, < Chully ,,,-

IA

By Theorem 3 then for s> n/p,
W pu—ull,

IIA

C hs”u”;, 0, 8 *

This contains the estimates for |[[y(ho)#] —wu||, proved in [1] and [4].

We shall next briefly indicate some estimates for D?(1,u —u). Assume
that

L = FYt(ho)it) = FYo(xhL,ho)d)(x) ,
so that
Di(Tyu—u) = k™ VF Y {o)(ah1, ho) — (ho)P}i)(x) ,
where
05(@,8) = 3, T(§— 2mp)(& — 2mp)Pem2mn)
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If g4(w,0) is C* and if for all indices «,

sup, |D;[oy(x, &) = &1 = O(§/*)  as &0,
SUP,, ¢ | D"op(x, &) < + o0,
and if
sup, M (o4(x,0)) < +o0,
then a simple modification of the proof of Theorem 2 leads to the estimate

IDP(Lu—w)ll, < C 1Pl

P, 1,82

for 1=p=< oo, n/p<s=A, and |8 <s. Thus

DLy —w)l, < O 7~ Pljar]

D, 00,8 ?
for n/p<s<i and |f|<s. We may also prove similar estimates for
IDP(W yu—w)||,, for 1< p < co.
As for further examples, let

where

() p(@)=1+0(&" as £~ 0,
(ii) Y(E)=0(1&~2nul") as & 2mu € 2nZ*\ {0},

and either
(i)’ ypely”
or else

(iii)”” 1 is an entire function of exponential type such that

\D(&)] < CITT, (2sin(&;/2))~% &4 for £eRn,

0=0;S4, a=(0g,...50p) .

Straightforward computations then show that I,u can be written in the
form (1.1) with a(x,{-')=Zﬂw(§—2ny)e‘2”i<"’”> satisfying conditions (1.2)
through (1.4). In particular, certain of the quasi-interpolants considered
by Strang [6] can be written in this form, with y satisfying conditions
(1), (ii), and (iii)".
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