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INDEX INVARIANTS OF ORBIT SPACES

RICHARD RANDELL*

1. Introduction.

Let M be an oriented smooth closed manifold and p: M—>M' be a
branched cyclic covering. Hirzebruch [4] showed how to compute the
signature of M’ in terms of the signatures of M and certain submani-
folds obtained from the branching locus. In [2] Hattori, using a different
method of proof, generalized Hirzebruch’s results to any genus defined
in terms of the Pontryagin characteristic classes.

Since the signature is the index of an elliptic operator it seemed likely
that other invariants arising from elliptic operators should admit similar
calculations. In this paper we show that this is indeed the case (Theo-
rems 1 and 2). The formula for the arithmetic genus (Theorem 1(c))
leads to results similar to Hattori’s, but for genera defined by the Chern
classes of almost complex manifolds. In all cases it turns out that the
requirement that p be a branched cyclic covering is unnecessarily re-
strictive, and we prove our main results for a somewhat broader class
of maps.

Specifically, suppose G=Z, ®...®Z,, acts on M by orientation
preserving diffeomorphisms so that

i Y;={&eM| (,...,05..., 1) = x,&; + 1}
is an oriented codimension two submanifold.
(*) (ii) Y, intersects Y, transversely, for s + j.
(iif) The submanifold fixed by g = (x,,...,x;) € @ is exactly the
intersection of the Y, for which «; % 1.

If the action satisfies (*) it is not difficult to see that M’'=M/G is a
smooth manifold.

Let e, sign, and y denote euler characteristic, signature, and arithmetic
genus respectively.
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THEOREM 1. If G as above acts on M so that (*) holds, then
(a) eM') = e(TTE (1 + (n;— 1) Y )/ny)

. 14+ )i+ (1= Y,
(b) sign (') = sign ( ?=1§11Y.;n«'t 21— Y-;”" )

If M is a complex manifold and G acts by automorphisms,
(©) 2) = g (TTEA Y (1 - (1= Y™)).

This is to be interpreted as in [4], so that Y ,°=M and Y2=Y,0Y,,
the ‘“‘oriented self-intersection cobordism class”’. With k=1, (b) is due to
Hirzebruch.

Now suppose M is an almost complex manifold (the tangent bundle
TM of M has a complex structure) and the action of G preserves this
structure. Let r(y) be a formal power series with rational coefficients
and leading term y. For a complex bundle & define a characteristic class
R(£) =TI(7/r(z;)), where TI(1+ ;) is a formal factorization of the Chern
class of &. Let [M] denote the fundamental class of M and define the
R-genus of M by R[M]=([M],R(TM)). Our object is to compare R[M]
and R[M'].

To that end, let A,y) be the formal power series with coefficients
equal to the coefficients obtained by expanding r(n,y) in powers of r(y).
Let 2;71(y’) be the inverse formal power series and let Y, =p(Y,).

THEOREM 2. Suppose the tangent bundle of M admits a complex structure
and @ acts as in (*), preserving this complex structure. Then

(a) R[M'] = R[TTi-i(Yifhi( ¥ )]
(b) R[M] = R[TLio( Y [hXY)] -

If M is a complex manifold one can obtain Theorem 1(c) from r(y)=
l1—e¥, the identity 1—e™=1—(1—(1—e?)", and the Riemann-
Roch theorem.

An analogous theorem holds for real manifolds and genera defined by
Pontryagin classes, generalizing the result of Hattori [2].

Theorem 1 (more precisely, its proof) tells how to calculate index
invariants for actions which almost, but not quite, satisfy (*). We illu-
strate this in the last section by computing some invariants for spaces
obtained from Brieskorn varieties.
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2. Index invariants.

In this section we prove Theorem 1. Part (a) is simplest, and also
illustrates the techniques. This result, except for the final form we have
stated, is not new.

o) = 37 o(— 1) mEIM';R)  (m = dimpd)
= E;":O(— 1Y dim Hi(M ; R)¢ ,

where Hi(M ;R)? denotes the subspace of H(M ;R) fixed by the action
of G. We then have

e(M') = 37 o(—1Y|G|7 e tr(glHI(M ;R))

by a well-known result in representation theory. Hence

(1) e(M') = |G| 3yq Lig, M),
where
L(g, M) = 37 (- 1) tr(g|HI(M ;R))

is by definition the Lefschetz number. Thus
(2) e(M') = |G]7 Zyeqe(MO),

where M7 is the fixed point set of g € G. This last step (L(g, M) =e(M?))
follows from the Atiyah-Singer index theorem but was known previously.

For a general action of a finite group G (we have not yet used (*),)
the equation e(M/@) = |G|~13e(M?) is often useful. The application of the
hypothesis (*) quite clearly gives Theorem 1(a).

For (b) and (c¢) the situation is more complicated. Since the proof of
(b) is a generalization of Hirzebruch’s proof in [4] for the case k=1, we
gkip it and instead prove (c).

By [1, Theorem 4.7] we have

®3) AM') = |G| Zyeq

AN (6;)) T (M )} -
det(1—g(No)*)

(3) is the analogue of (2) above. In (3), N¢ is the normal bundle of M7
in M. N9 splits as a sum of bundles N¢(6,), where g acts on N9(9;) by
rotating by ¢"% in each complex line. Thus det (1 —g(N9)*)=[T(1 —e~ "),
where 2* denotes the complex conjugate of the complex number z.
T (M?) is the Todd class of the complex tangent bundle of M9. That is,
J is the characteristic class given by the power series y/(1—e-v). %%
is the characteristic class given by (1 —e~*%)/(1 —e¥~%),
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If the Chern class of N?(6;) is formally factored as ¢(N9(6;))=TT(1 +=;),
then
Ui(N(6;))/det; (1—g(No(6;))*)
= TL(1—e ™)1 = TTt;(t;—e)2,

where t;=¢". But for {1, we have

(4) HE-1)+(1-e=)]?
= t(t—1)1—H1—e2)(t~1)2+4(1—e-2)(t—1)3— ...

We now apply Hirzebruch’s formula [3, p. 94] for the “virtual Todd
genus.”’ From (3) and (4) we have

(6) x(M') = |G| (M) +
F 1G22 {TTC G — D) =81 — %) (8, — 1)=2+ .. ) T (MO)} [Mo].

Here the product is taken over all z; and associated ¢;, where [T(1+z;)
is a formal factorization of ¢(Vv).

We now use the fact that if M?=1Y,, then ¢,(N9)=i*(z;), where ¢:
Y;— M is inclusion and 4,[Y,] is the Poincaré dual of z;. Using this
remark, the virtual Todd genus formula, and (5) we have

(6) x(') = |G 1x(M)+
H1G 2 D TIE Yt — D =4, Y 25— 1)2+ .. )],
the product taken, for a given g=(x;...,x;) € G, over all 7 so that
o *+ 1.
Since as «; € Z,, runs through all possibilities the corresponding ¢; do
also, the result follows from (6) and the following identity:

B AT Yz 1 25 (— 1YY (E—1)7 = y[(1- (1—g)").
Proor. From (4) we see that the left side of the above identity is

ntl4nt Zcezn,tqul t?//((t“ 1) +?/) =27t ztez,, ty/(t—1)+y).

Putting the right side over a common denominator and simplifying
gives the result.

3. Genera.

We now suppose M is an almost complex manifold and @ acts on M
preserving the almost complex structure and satisfying (*). We first
prove Theorem 2 with £=1. Then G=Z, and Y is the fixed point set
of any non-trivial element of G. Let Y'=p(Y).



INDEX INVARIANTS OF ORBIT SPACES 267

ProposITION.
(a) R[M'] = R[Y[WY)]
(b) R[M] = R[Y’'[A"(Y")]

Proor. Let U, and U,(CP>) be the stably almost complex bordism
rings of a point and CP® respectively. Define R:U, — Q,R":U,(CP>)
- Q, and r,: U (CP*) - U, as in [2], and note that, using R to give a
U, -module structure to Q, all these maps are U,-homomorphisms.

Given an action of @ on M as above, we see using [4, section 6] that
r [ M, f1=[M], where M'=M|G and f is the classifying map for a com-
plex line bundle £ over M’ such that E|j, is isomorphic to the normal
bundle of ¥ in M.

Then (b) follows from computations similar to those in [2]: Ror,=R®
on U,-module generators. (a) is proved from (b) as in [2].

Proor oF THEOREM 2. When (*) holds the map p can be factored as a
composition of branched covers

P M|Z,®... L, ~M|Z,®...BL,,,.

To prove Theorem 2 we thus apply the proposition above %k times.
For (a) we work “upward” from R[M'] to R[M]. We need the lemma
described below which for simplicity we state only for k=2.

Suppose we have p: N — N’/ the orbit map of a G=Z,PZ, action
which satisfies (*). Then Z, ={(x,1) | « € Z,} =@ acts on N and we have
an orbit map ¢:N - N’. ¢ is then an n-fold covering branched along
Z<N. Similarly ¢,:N'—> N" is an m-fold covering branched along
Z'cN'. Let Z*=q~YZ') and define Z,=q[(Z')?], Z,=(Z*)?. Then the
result we need is

LemMmA. R[Z,]=R[Z,].

Proor. Let b e H3N',Z) be the Poincaré dual of [Z']. Then clearly
a=q*b is the Poincaré dual of [Z*]=[¢~1(Z’)]. Since the intersection pro-
duct is dual to the cup-product and since ¢ U a=g*(b U d) it follows si-
milarly that both [Z,] and [Z,] are dual to auUa.

By [3, p. 88], Z, and Z, will then have the same R-genus.

Here is how to use this lemma. Suppose we wish to calculate R[N''].
We first use g;: N’ —~ N”’ (branched along Z') to obtain R[N'']=a,R[N']
+a,R[Z']+a,R[(Z’)?]+ .... Then we use ¢:N — N’ and its restrictions
to obtain
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R[N'] = bR[N]1+b,R[Z]+b,R[Z%] + ...
R[Z'] = byR[Z*]+b,R[Z* n Z]+b,R[Z* n Z%]+ . ..
R[(Z')?] = boR[gH((Z")*)]+b:.R[g~((Z')?) n Z] + ...
We must apply the lemma to replace the last by
R[(Z')"] = boRI(Z*P]+ b.RI(Z* 0 Z]+ ...

Repeated use of this lemma then gives the theorem.

Now suppose we have ¢(t), an odd formal power series with leading
term ¢. We define the K-genus, K[M], via the characteristic class K(&)=
T1(¢/q(t;)), where TI(1+¢32) is a formal factorization of the Pontryagin
class of & Let f;(t) be the formal power series with coefficients equal to
the coefficients obtained by expanding g(n) in powers of ¢(t). Let
Ji7Y(¢") denote the inverse formal power series. Then by the same proof
as for Theorem 2, we have the following generalization of the main
result of [2].

THEOREM 3. Suppose G acts on M satisfying (*). Then

(a) K[M'] = K[TT¢-, (Ylfi(Y )]
(b) K[M] = K[TTE (Y [f2(Y )] -

4, An application to generalized Brieskorn spaces.

Suppose
. n+m aj >
fi(zlr- . ':zn+m) T Lj=1 ocijzj lj, 1= 1:- .., m

is a collection of complex polynomials. Let ¥V, be the locus of zeroes of
J; and suppose

(i) V=N7,V,is a complete intersection of the V.
(ii) ¥V has an isolated singularity at O.
(iii) g,; is independent of ¢, where we define

di—':l.C.m. {aij I j= 1, 2, “ e ,n+m} a:nd qi’-=di/aﬁ.
Because of (iii) we write g; for g;;.

K =V n82n+2m-1 jg then called a generalized Brieskorn manifold.
There is a C* action on V given by

to (2. « s Zpim) = (2,. .., 000"z, )

which restricts to an S action on K. Let K*=V —{0}/C*x K[S*.
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In this section we will show how to compute index invariants of K*,
using a particular branched cover.

As proved in [5], K* is independent of {;=g.c.d.(¢y,...,3;- - -, qn+m)-
That is, we may define K* by the polynomials

fi,(zlj e ,Zn+m) —_ ;L:{no‘ijzjai}./t’. )

Thus we obtain d;" and g, as above.
Define M* via the polynomials

- n+m di’
gi(zla' . "zn+m) = Lg=1 &45%5 t

Then G=Z,®...®Z,,,, acts effectively on M*, and M*|G=K*.
Notice that M* is the intersection of projective hypersurfaces of degrees
dy,...,d,., respectively, so that one can easily make calculations in
M*,

ProprosiTION. The fized points of g= (B, . -,Pnim) €G are of two types
(2n homogeneous coordinates)

(1) [215- « s2n4m] Such that z;=0 if B;+ 1.
(2) [215+ + +>Zn1m] Such that some subset of the B; consists of equal elements
not the identity, and the complementary z;'s are 0.

Proor. Obvious.

Denote the set of type (¢) fixed points of g by M ;*9,2=1,2. The follow-
ing is proved in [5].

ProposIiTION. The following are equivalent :

(1) The G action on M* satisfies (*).

(2) My*=@, for all g € G.

(8) g.ed.{g;' | te€l}=1 for all (m+1)-element subsets I of {1,2,...,
n+m}.

(4) K* is a manifold.

So if we assume that K* is a manifold we can apply Theorem 1 directly.
If not, we look at the proof and use (2) or (6).

Here is an example. Let D=T]d,,@=Tlg,’, and let r, be the coeffi-
cient of z* in TJ(1—d;/z+d;%?—...). Let J={1,2,...,n+m} and let
J, run over all k-element subsets of J. The following is then a direct
calculation using (2).
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THEOREM 4. ¢(K*) =

D -k
’6 [ZZ:(; :l’}—k (ra( e )EJIFJ H!e.lk (qj'—l))] +

n—1—-s8—k

D k
+§ [z.r,‘c.m»m k.:(}-m ri(ged.{g; | jeJx}—1) ( )] .

k—m—-1-s
ReMARK. In [5] we show that rank(H, ,(K;Z))=(~1)*Y(e(K*)—mn).

Similar, but more complicated, calculations can be used to compute
the arithmetic genus and signature of K*,
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