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ON CYCLIC CURVES IN THE EUCLIDEAN =»-SPACE
FR. FABRICIUS-BJERRE

To Werner Fenchel on his 70th birthday.

1. Introduction.

Let @1,Q,,...,Q,,, m<n, be m fixed linearly independent points and
P a variable point in a Euclidean n-space R™. If P traverses a curve y,
the distances r;=|@;P| may be considered as functions of the arclength
s of the curve y. In this paper we shall study the real curves for which the
squares of the distances r; are polynomials in s of at most degree two.
It means that m equations

(1.1) r? = a;8%°+2b;s+c,, 1=1,2,...,m,

are satisfied. The coefficients a;, b; and c; are real numbers.
If m=1 the curve is called monocyclic. If m=2 and if in addition the

rank of the matrix 11
by b,

is equal to two, y is called dicyclic. The monocyclic curves in R2 and R3
and the dicyclic curves in R? have been studied in a previous paper [1].
If m=3 and if in addition the rank of the matrix

111
M, = (“1 ag as)
by by by

is equal to three, the curve is called #ricyclic.

In chapter I it will be proved that independently of the number of
conditions (1.1) there exist in R” only these three kinds of curves for
which (1.1) are satisfied. More than three equations implies that the
considered curve is restricted to lie in a subspace whose dimension de-
creases for increasing values of m.

In chapter IT we consider the monocyeclic curves. The properties of a
monocyclic curve » depend on the coefficient a, to s? and the determinant
D, =a,c, —b,2 We shortly examine the well-known class of plane mono-
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cyclic curves which in addition to the epi- and hypocycloids contains the
pseudocyecloids, the logarithmic spiral, the involute of a circle and the
straight line. Next we state some properties of monocyeclic curves in R”,
n> 2, which are mostly generalizations of properties of curves in R3 (see
[1, p. 23-28 and 36-45]).

Chapter IIT deals with the dicyclic curves. According as a,sa, or
a, =a, the curve y is said to belong to the class C; or C,. A dicyeclic curve
y is lying on a hypersurface of revolution @. The meridian curve of @
is a Descartes’ (plane) curve or a conic according as y belongs to C, or
to C,. In both cases the meridian curve may be a circle and @ conse-
quently a hypersphere. The involutes of y are lying on concentric hyper-
spheres or in parallel hyperplanes according as y € C; or y € C,. Most of
the properties of dicyclic curves in R®, n > 3, are generalizations of prop-
erties of dicyclic curves in R? (see [1, p. 46-75]).

In chapter IV we examine the tricyclic curve which exists only in
spaces of four or more dimensions. A tricyclic curve y may be regarded
as a dicyclic curve in a double infinity of ways, and y is a common ele-
ment of the two classes C; and C,. A tricyclic curve is a helix lying on
an (n— 2)-dimensional manifold of revolution, the intersection between
a hypersphere with center O and a hyperquadric of revolution with axis
m where O does not lie on m. This manifold can be generated by a Des-
cartes’ space curve which turns about its plane of symmetry. Finally,
it is shown that the projection of a tricyclic curve y on a hyperplane
perpendicular to the axis m is a dicyclic curve of class C;, and we state
a simple construction of a tricyclic curve in a space of four dimensions.

Chapter I. The three kinds of cyclic curves in R%,

2. The space of poles.

Let y denote a curve in R® for which the equations (1.1) are satisfied,
and let P=P(s) be a point of y. A point @ is called a pole for the curve y
if the square of the distance r=|QP| may be expressed as a polynomial
in ¢ of at most degree two, i.e. there exists an equation

(2.1) r2 = as®+2bs+c

between the distance r and the arclength s of y. We will show that not
only the points @; but all the points in the (m — 1)-dimensional space
IT=1IIm"1, gpanned by the points @,, are poles of y. The space IT is called
the space of poles.

In order to prove (2.1) and find the coefficients a, b and ¢ we remark
that a point @ € IT may be determined by its barycentric coordinates
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with respect to the simplex (Q,) with vertices ;. We choose an arbitrary

— —
origin O in R® and put q=0Q and q;=0Q;. Now it is known that if
@ € II the vector q is a linear combination of the vectors g,

(2'2) q = z /‘I’iQi ’
where
(2.3) Si=1.

The set (4;) is the set of barycentric coordinates of @ with respect to
(@;). The coordinates are independent of the choice of O.
We then use the generalized Stewart’s formula

(2.4) 2 = 2 A — Z 22 9u®

where ¢, =|@;@;|. In the first summation on the right hand side of (2.4)
¢ assumes the integers from 1 to m, in the second one each edge in the
simplex (¢;) shall occur exactly once. A proof of the formula (2.4) and
some applications of it is given in [3].

If we now replace the squares r;2 in (2.4) by the expressions (1.1) we
obtain an equation (2.1) where

(2.53) a = z)’ia“
(2.5b) b = Z/'l,;bi
(2.5¢) ¢ =2 Aci—2 didiqu® -

Hence any point @ € I7 is a pole for y. The space of poles will be re-
duced to a point, a line or a plane according as m=1, 2 or 3.

3. The cyclic curves in R”,

In this section we shall prove that a curve y in R® for which the equa-
tions (1.1) are satisfied, is a monocyclic, a dicyclic or a tricyclic curve,
lying in R” or in a (linear) subspace of R”. For this purpose we eliminate s

between the equations (1.1) choosing m real numbers ¢y,t,,...,, such
that the sum

(3.1) Strd=tas2+23 tbs+> b,

is independent of s, i.e. the numbers ¢; satisfy the equations

(3.2) Sta; =0 and >tb, =0.

Hence (3.1) is reduced to

(3.3) 2t(rd—c) =0.

Math, Scand. 36 — 16
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—_—
Putting p=0P we get r,=|p—gq,| and (3.3) may be rewritten to
(3.4) PP34—-2p 3 tq+3 bt —c) = 0.

The curve y is lying on any hypersurface which is represented by the
equation (3.4). If

(3.5) St =0

and at least one number £, (i.e. at least two numbers #;) is different from
zero, then the vector

—_—
(3.6) n =t = 07 (e — ) = I 0.0

is not a zero vector. Hence (3.4) represents a hyperplane with n as a
normal vector. Consequently, to any non-trivial solution of the homo-
geneous system

corresponds a hyperplane which contains the given curve y.
Let p denote the rank of the matrix

1 1...1
M=M,= (al az...am)
by by ... b,

If p=m the system (3.7) has only the trivial solution (0,0,...,0), and
according to the definitions in section 1 the curve y for m=1,2 or 3 is
monocyclie, dicyclic or tricyclic, respectively.

If p<m there exist m —p linearly independent solutions to (3.7) and
hence m —p linearly independent normal vectors n. The corresponding
hyperplanes (3.4) intersect one another at a subspace U of n—(m—p)=
(n—m)+p dimensions. The curve y is lying in this subspace.

The poles of y lying in U are the points of the subspace S=IInU.
The equation (3.6) shows that the normal vectors n belong to the vector
space of /7 which implies that I7 contains at least one normal space to U
and, consequently, S contains at least one point. The dimension of §
is (m—1)+(n—m+p)—n=p—1, such that the space of poles 8 lying
in U is a single point 89, a line 8* or a plane S?, corresponding to p=1,
2 or 3. We consider each of the three cases separately.

p=1. The curve y has the pole S° and is a monocyclic curve lying in
a subspace U of (n—m)+1 dimensions. The space of poles IT is the
normal space to U at S°.
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p=2. We remark that if @ is a pole of y and @’ its projection on U
then @’ lies on S, and since

|PQI>—|PQ'|2 = |QQ’'|> = const.

we get for the point @' an equation corresponding to (2.1), where the
coefficients @ and b are unchanged while ¢ is replaced by another constant.

Since p=2 there exists a submatrix of M, say M,, having the rank 2.
The projections @," and @," on U of the poles @, and @, are then differ-
ent points on S* and the corresponding matrix M, =M, has the rank 2.
Hence the curve y is a dicyclic curve lying in a subspace of (n—m)+2
dimensions with S* as the line of poles.

p=3. The poles of y are lying in the plane S2. Let M, denote a sub-
matrix of M with rank 3. The projections @,’, @,’ and @," on U of the
poles @;, @, and @, are different points (in S2), since the corresponding
matrix M, =M,. We will show that the poles @," are linearly indepen-
dent. If Q,' lies on the line through @, and @, the equations (2.3),
(2.5a) and (2.5b) for m =2 gives the relations

2-1 + 12 = 1
alll + azlz = a3
blll + balz = b3 .

These equations shall be satisfied for some (4;,4,) which implies that
det M ;=0 contrary to the assumption of M, being a regular matrix.

Thus we have found three linearly independent poles for y in the
space U for which the corresponding matrix M,;'= M  has the rank 3.
Consequently the curve y is a tricyclic curve lying in a subspace U of
(m—m)+ 3 dimensions and with S2 as the plane of poles.

It is seen that the kind of the curve y for which the conditions (1.1)
are satisfied only depends on the rank p of the matrix M, while the dimen-
sion of the subspace U in which y is lying depends on p and on the number
m of equations (1.1).

4. Change of poles and change of parameter.

A. Change of poles. Let @1,Q%,...,Q™ denote m linearlyindependent
points in the space of poles, where @/ is determined by its barycentric
coordinates (A/,4%,,...,49,) with respect to the simplex (@;). Putting
ri=|Q'P| we find from (2.4)

(4.1) (rf)? = Z l’m"—Z MMegul,
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such that (/)% is a linear function of the squares r;2. Conversely, since
the matrix 4 =(4%) is regular, the squares 7,2 can be expressed as linear
functions of the squares (r/)? Hence we may replace the simplex (Q;) by
the simplex (¢), replacing at the same time the system of conditions
(1.1) by the system

(4.2) (r)? = afs?+2bis+¢7

where the coefficients a/, b7 and ¢/ may be found by means of the equa-
tions (2.5), A; being replaced by 1%;.

To the system (4.2) corresponds a matrix M™ analogous to M,,. It is
easily shown that the matrices M,,, M™ and A are connected by the ma-
trix equation

(4.3) Mm = M, A.

Since A is regular the rank p is an invariant under the change of poles.

B. Change of parameter. If we in the equation (2.1) make the substitu-
tion s=s*+k, we find the coefficients in the new expression for 2

(4.4) a* =a, b* =b+ka, c* = ak?+2bk+c.

If we substitute in the m equations (1.1) we find a,*=a,;, and b*=
b;+ ka; which shows that the rank p of the matrix M is an invariant
under the change of parameter.

Further it is seen that

(4.5) a*c* —b*2 = ac—b?,

i.e. the determinant D =ac—b? is an invariant under the change of para-
meter.

In the following three chapters we examine the monocyeclic, the dicyclic
and the tricyclic curves, lying in an n-space R®, where n>2, n=>3 and
n = 4, respectively. It is assumed that the curves do not lie in proper
subspaces of the considered R=,

Chapter II. Monocyclic curves.

5. Basic equations. Central development.

In this chapter we examine the monocyclic curves in R®, n=2, for
which only one equation

(5.1) r2 = as®+2bs+c
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is given. As before r denotes the distance from a fixed point ¢ to a vari-
able point P=P(s) on the curve y.

In the preceding section 4 we have seen that the coefficient a, which
is called the modul of the curve, and the determinant D=ac—b? are
invariants under the change of parameter s — s*+ k. Conversely, if two
polynomials in s and s* of degree two have the same coefficient ¢ and
the same determinant D any one of them may be transformed into the
other by a substitution s=s*+k%. If a=0 this is seen by rewriting

(5.2) r? = a(s+bfa)?+D]a ,
and for a=0 (and D= —b?) it is obvious.
The hypersphere with center @ and the equation
(5.3) r* = Dla, (a=0)
is called the basic hypersphere of the curve y and is denoted S(Q). Depend-
ing on the sign of D/a it may contain an infinity of real points, one real

point or no real points. In the first case the hypersphere will touch y at
a point corresponding to s= —b/a.

—_
In the equation (5.1) we may replace r by the vector r=@QP and by
differentiation we get

(5.4) rr' =as+b.
By means of (5.2) we find
(5.5) ar? = (r-v')2+D.

Conversely, integration of (5.5) gives a solution (5.1) with constants
ay, b; and ¢;, where a,=a and a,c, —b,2=D, such that (5.5) may replace
the equation (5.1).

Now, let M denote the projection of the pole @ on the tangent p to y
at P, and put u= £ (r,7’) (fig. 1). Since |7'(s)| =1, we get

(5.6) MP =r-r' = rcosu,

and using (5.5) we find the following relation between r and u
(5.7 (@a—cos?u)r2 = D.

It may be noted that differentiation of (5.4) gives the equation
(5.8) rr’ =a-1,

The stated equations (5.1)—(5.8) are all independent of the dimension »
of the space in which y is lying.
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Py
Fig. 1.

If n > 3 the pole @ is vertex and the curve y directrix of a conical sur-
face which is called the central cone of y. By development into a plane
of this surface, the central development, the curve y is mapped into a
plane curve with unchanged distance r and arclength s, such that (5.1)
is valid for the plane curve. Hence, the central development of a spatial
monocyclic curve is a plane monocyclic curve, the two curves having
the same constants ¢ and D.

The reverse procedure may be applied to construct a monocyeclic curve
lying on an arbitrary cone, when a plane monocyclic curve is given.
Since the plane monocyclic curves are well-known (see section 6) this
may give some information on the form of a monocyclic curve in the
space.

6. Plane monocyclic curves.

First we examine the kind of the curve for some special values of the
modul @ and the determinant D.

1°. a=0. The equations (5.4) and (5.6) show that MP=»5 (fig.1). If
b+ 0 the normal y are tangents to a circle with center @ and radius |b|,
and y is consequently (an arc of) an inwolute of a circle. If a =b=0, then
y is an arc of a circle.

2°. a=1. From (5.7) and fig. 1 we find QM =rsinu= VD, i.e. the tan-
gents have a constant distance VD from the pole Q. Since y cannot lie
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on a circle, y is (a segment of) a straight line. If D=0 the line passes
through the pole Q.

3°. 0<a<1, D=0. The equation (5.7) shows that the angle u is con-
stant, determined by cosy= }/a, and y is a logarithmic spiral with Q as
the pole. In this case the polynomial (5.1) may be rewritten to a perfect
square such that the distance r is a linear function of the arclength s.

In order to determine the monocyclic plane curves for other values of
a and D we remark that, according to (5.8), the vector "' 40, when
a+1. Hence the curvature has constant sign along the curve. In that
case it is possible to determine y by its supporting functional equation
QM =h(0), where 0 is the angle from a fixed direction in the plane to the
tangent to y at P. It is well-known that MP=~5'(0), and instead of (5.5)
we get the differential equation

(6.1) (@—1)h'(0)2+ah(6)2 = D .

Referring to [1, p. 7] or [2, p. 30] we only write down the results of the
integration of (6.1):

4°, a<0, D <0. The integral curves are epicycloids.

5°. 0<a<1, D+0. The integral curves are pseudocycloids, for D <0
paracyclotds, for D >0 hypercycloids.

6°. a>1, D>0. The integral curves are hypocycloids.

From (5.7) it is seen that when y is assumed to be a real curve then
the combinations ¢<0, D>0 or a>1, D<0 cannot occur. As to the
many properties of this class of curves we refer to [1, p. 1-36].

7. Monocyclic curves in R?, n=3.

In this section we are concerned with A) The special monocyclic curves
in R? for which =0, a=1 or D=0, B) The radius of curvature for an
arbitrary monocyeclic curve y, C) The involutes of y, and D) The connec-
tion between y and the basic hypersphere.

A. The special curves.

1°. a=0. Now the condition MP=>b (b+0) implies that the normal
hyperplanes of y touch a hypersphere with center @ and radius [b].
Conversely, if the normal hyperplanes of a curve y touch a hypersphere,
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then an equation (5.4) where a =0 and b0 is valid, and by integration
we find an equation (5.1), where a =0, i.e. a monocyclic curve with modul
zero. — If a=>b=0, the curve y is lying on a hypersphere.

2°, a=1. Since the central development of y is a line (section 6.2°),

y is a geodesic on the central cone. The constant distance QM = VD
implies that the tangents to y touch a hypersphere with center  and radius

VD which, since a =1, is the basic hypersphere S(Q). The tangent surface
of y is then circumscribed about S(@) and touches it along a curve y*.
This curve is orthogonal to the tangents of ¢ and consequently an involute
of y. Any other involute of y must lie on a hypersphere with center

and radius greater than VD.

Conversely, we will show that a curve y whose tangent surface is cir-
cumscribed about a hypersphere § is monocyclic with modul ¢=1. The
tangents touch S along an involute y* of y. If P and P* denote corre-
sponding points of y and p* we may put |PP* =s-+c¢, and putting
|@P*| =R, the right triangle QP*P gives the desired equation

r2 = (s+¢)?+ R2.

For curves in R? it is known that the normal planes of a curve y are
osculating planes of another curve y,, the locus of the centers of the
osculating spheres of y. From our considerations above it follows that
if a family of planes are tangent planes to a sphere, then the orthogonal
trajectories to the planes are monocyclic curves with modul a =0, while
the edge of regression y, is a monocyclic curve with modul a=1.

3° 0<a<l1, D=0. The curve y cuts the generators of the central
cone at the same angle u, determined by cosu = /a, and y is a lozodrome
on the cone. Since an arbitrary loxodrome y on a cone can be developed
into a logarithmic spiral, it is a monocyclic curve with D=0.

B. The radius of curvature.

Let n denote a unit vector of the principal normal n and g the radius
of curvature at a point P of an arbitrary monocyclic curve y in R=®,
The equation (5.8) may be rewritten to
(7.1) (rn)fo=a-1.

If N denotes the projection of the pole @ on the normal n we have
r-n=NP and consequently

(7.2) PNjo = 1-a,
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i.e. the length of the projection of the vector Q—I-; on the principal normal
to y at P and the radius of curvature g at P have a constant ratio when P
traverses the curve. Since (7.2) is equivalent to (5.8), this property is
characteristic for the monocyclic curves.

If a=0 we get PN =g, and N is the center of curvature corresponding
to the point P. In this case the locus of the centers of curvature is the
pedal curve of the pole with respect to the principal normals of y.

If a=1 the point N lies in P and the principal normal » is perpendicular
to the generator QP of the central cone. Hence n is a normal to the
tangent plane of the cone at P, in accordance with y being a geodesic
on the cone.

When D=0 we have a=cos?y, and (7.2) gives PN =p sin?u. If n=2
this equation leads to a well-known construction of the center of curva-
ture of a logarithmic spiral.

C. The tnvolutes.

We consider for a=0 the involute y* of y which is represented by the
parametric equation

—_
(7.3) QP* = r* = r(s)—(s+bfa)r'(s) ,

and will prove that corresponding points P and P* on y and y* are
conjugate with respect to the basic hypershere S(Q). For this purpose we
calculate the scalar product

(7.4) rer* = r2—(s+bfa)(r-r').

If we in (7.4) replace r2=72 and r-r’ by the expressions (5.1) and (5.4)
we get

(7.5) r-r* = Dfa,

which proves the theorem.

If 8(Q) is a real hypersphere the curves y and ¢* have the point in
common at which y touches S(Q). When y is a plane curve — and only
in this case — the point of contact is a vertex on y, and the involute y*
is a monocyeclic curve with the same modul as y (see [1, p. 11]). In the
case a=1 the tangents to y touch S(Q), and y* is the involute considered
in A,2°. If D=0 the triangle PQP* is right at Q, a property known for
the logarithmic spiral.

Now, let , denote an arbitrary involute of a monocyclic curve y and
P and P, corresponding points on the two curves. The tangent £, to y,
at P, is parallel to the principal normal n to y at P, and consequently
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-
the length of the projection N,P; of QP; on ¢, is equal to the length of
—
the projection NP of QP on n. According to (7.2) we get

P1N1 = Q(l—a) .

If y has constant radius of curvature o, P.N, has constant length and the
normal hyperplanes to y, through P, touch a hypersphere with center @
and radius g|1—a|. Hence the involute y, is a monocyclic curve with
modul a,=0. The circular helix in R® is an example on a curve of this
kind. Its involutes are involutes of a circle, i.e. (plane) monocyclic curves
with modul zero.

D. The basic hypersphere.

Let y denote a monocyeclic curve for which @40 or 1, and let P, and P,
be the (real or imaginary) points where the tangent p to y at P inter-
sects the basic hypersphere S(Q). We will prove that the ratio PP,/PP,
18 independent of the position of P on the curve.

Whether P, and P, are real or imaginary we have (fig. 1)

|MP,|? = Dja—1r2sin?y .
Replacing D by the expression (5.7) we get

|MP,|? = (1—a-1)r2 cos®u
and hence by (5.6)
|[MP2 a-—1

|[MP2 ~ a

Since M is the midpoint of the segment P,P, the equation (7.6) shows
that the ratio f=PP,/PP, only depends on the modul a of the curve
and is independent of the position of P on y.

If a>1 or a< 0 the points P, and P, are real points, and the ratio f
which easily may be expressed by a, is a real number. If 0<a<1 the
points P, and P, are imaginary, and f is a complex number.

The common property of the monocyclic curves expressed by the theo-
rem above is well-known for the epicycloids and the hypocyecloids, and
it is a characteristic property for the monocyclic curves in R* for which
a+0 and a=1. In order to define this class of curves in the plane and in
the space R3 the above mentioned property was heading the quoted paper
[1], and herein applied to give a common treatment of the cycloids and
the pseudocycloids in the plane and the corresponding curves in R3.
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Chapter III. Dicyclic curves.
8. The line of poles.
For a dicyclic curve in R®, » 2 3, two equations
(8.1a) r? = a,82+2b,8+¢,
(8.1b) 7,2 = @y8%+2b,8+ ¢,

are given, where r; and r, denote the distances from the poles @, and @,
to the variable point P=P(s) on the curve y. It is assumed that the

rank of the matrix
11
M, = (a1 a,)
by by
is equal to two.
The space of poles (section 2) is reduced to the line of poles through
@, and @,. To each point @ on that line there corresponds an equation

(8.2) 1?2 = as?+42bs+c,

where r=|QP|, and a, b and ¢ can be determined by means of the results
in section 2. Let the line of poles be chosen as an z-axis and the abscissae
of @, @, and @, be denoted ¢, ¢, and ¢,. Then the equation (2.2) may be
replaced by

9 = M1 +2s9,

and (2.3) by

(8.3) M+l =1.

Using the equations (2.5) we get

(8.4a) a = A0, + A0,

(8.4Db) b = A5y + A5b,

(8.4¢) ¢ = 4161+ 2563 — 2, 25(9s— 1) .

The curve y may be regarded as a monocyclic curve with an arbitrary
point @ on the line of poles as its pole and with constants a and D =ac—b?
which depend on @, i.e. on (4;,4,).

Let « denote the abscissa of the projection of P on the z-axis. Then the
equation

rf—r? = (@—¢;)?—(x—qp)?

is valid, and applying (8.1) we get
(8.5) 2(¢a—q1)% = (@3 —ay)s?+ 2(by — by)s + (61— ¢a) — (11* — 72%)
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and hence

d - -
(8.6) = cosv = 4 %s by bz,
ds 92— 92—

where v denotes the angle from the z-axis to the tangent of y at P.

If we develop the cylinder through y whose generators are parallel to
the line of poles (the z-axis), then y is mapped into a plane curve for
which the abscissa z of a point and the corresponding value of s are con-
nected by the equation (8.5). The equation (8.6) shows that the developed
curve is a simple cycloid if a,+a, and a straight line if a,=a,.

The dicyclic curves fall into two classes C; and C, with different
properties according as a,=a, or a;=a,. In the following two sections
we state the main properties of curves belonging to each of the two
classes.

9. The class C,.

The equations (8.3) and (8.4a) show that if a,a, the coefficient a in
(8.2) assumes any value when the pole @ traverses the line of poles. This
implies that y possesses all the properties which characterize the mono-
cyclic curves with different moduls. Thus the central development of y
may be an arc of any plane monocyeclic curve. To a=0 and a=1 corre-
spond poles denoted @' and @"’. Putting »'=|Q'P| and "’ =|Q"P| and
normalizing s such that b’ =0 we get the equations

(9.1a) r'2 2b's+¢’
(9.1b) 1’2 = g2 +c”.

Referring to sections 7.A,1° and 7.B we find that the normal hyper-
planes to y touch a hypersphere with center @' or go through @' accor-
ding as b'+0 or b’ =0, and that the center of curvature corresponding to
a point P on y is the projection of @' on the principal normal to y at P.

The results in section 7.A,2° show that the tangents to y touch the
basic hypersphere S(Q"') along an involute y* of y and that any involute
of y is a hyperspherical curve. Moreover y is a geodesic on the cone with
vertex Q"'.

Conversely, if the tangents to a curve y touch a hypersphere and its nor-
mal hyperplanes touch another hypersphere not concentric with the first,
two equations like (9.1) are valid, and y is a dicyclic curve of class C;.

If '+0 an elimination of s from the equations (9.la-b) gives the
equation
(9.2) (r'2—c'): = 4b'%(r"'2—c"
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This equation represents a hypersurface of revolution @, on which y is
lying. The meridian curve u is a plane Descartes’ curve with @’ as the
particular focus. The ordinary foci are the points F; on the x-axis for
which D(4,,4,) =0 (cf. section 6.3°). Since this equation is of degree three
in 4, and 4, there are at most three real foci, all of them lying on the seg-
ment @'Q"'. In case of three real foci the meridian curve u is composed
of two conjugate Descartes’ ovals.

If b’ =0 the curve y lies on the hypersphere @ with the equation r'2=¢'.
Since b’ =0 the coefficient b in (8.2) is zero for any pole @, and the equa-
tion D=ac—b2=0 is reduced to a=0 or ¢=0. To a =0 corresponds the
center Q' of @, and ¢=0 gives at most two real points F;. — Whether
b’#0 or b'=0 the curve y is a loxodrome on the cone with vertex F,.

10. The class C,.

When a, =a, the equations (8.3) and (8.4a) show that the coefficient a
in (8.2) has the same value a=a,=a for any pole, and this number may
be ascribed the dicyclic curve as its modul. If a>1 and a <0 the central
developments of corresponding to different poles are arcs of similar hypo-
or epicycloids, and for 0 <a <1 and unchanged sign of D we get arcs of
similar pseudocycloids.

Since the rank of M, is two the condition a,=a, implies b;+b,. The
equation (8.6) shows that the angle v between the x-axis and the tangents
to y is constant and determined by

cosv = (b; —by)/(g9s—q1) «

Hence y is a helixz with the z-axis (the line of poles) as line of reference [6].
Normalizing ¢ the equation (8.5) may be written

(10.1) x = $Cosv .
This equation and an equation
(10.2) r2 = as®+2bs+c,

corresponding to an arbitrary pole @, may replace (8.1a—b) such that
a curve v is dicyclic of class C; when (10.1) and (10.2) are satisfied. It is
seen that a dicyclic curve of class C, can be regarded as a monocyclic
heliz.

Now we consider A) The hypersurface @ on which y is lying, B) The
projection y’ of y on a hyperplane perpendicular to the line of reference
for y, C) The special curves for which the modul =0 or a=1.
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A. The hypersurface D.

Let the origin O be the pole corresponding to (10.2), and let H denote
the hyperplane z=0. The projection of a point P on H is called P’ and
we put [OP’|=r'. Since P’P=x we have

(10.3) 12 = 242,

If we eliminate s between (10.1) and (10.2) and make use of (10.3) we
find an equation

(10.4) r'? = Ax?+2Bx+C,
where
b
(10.5) A=——_1 B=—" C=c.
cos?y cosv

(10.4) represents a hypersurface of revolution @ with the z-axis as axis.
A meridian g in an xy-plane (through the x-axis) has the equation

(10.6) y? = Aa?+2Bx+C .

Hence @ is a hyperquadric of revolution on which y is lying. As above
the foci of u, situated on the z-axis, are determined by D(4,,4,)=0.
Since a is a constant the equation is of degree two.

Conversely, if a helix ¥ belongs to a hyperquadric of revolution @ with
axis m such that m is a line of reference for y, then y is a dicyelic curve of
class C,. Let m be the x-axis and y the helix determined by (10.1), and
let @ be given by the equation (10.4). Using (10.3) and (10.1) we return
to an equation like (10.2) where the constants @, b and ¢ may be found
by means of (10.5). Hence y is dicyclic of class C;. Thus we have proved

THEEOREM 1. A helix y is a dicyclic curve of class C, if and only if it lies
on a hyperquadric of revolution @ whose axis is a line of reference for y.

B. The projection ¥’ of y.

We will prove that the projection 9’ of the dicyclic curve y (given by
(10.1) and (10.2)) on the hyperplan H is a monocyclic curve. The equa-
tions (10.1-3) give

(10.7) r'? = (a—cos?v)s?+2bs+¢,

and since corresponding arclengths s and s’ on the helix y and its projec-
tion y’ are connected by the relation

(10.8) 8’ = gsiny



ON CYCLIC CURVES IN THE EUCLIDEAN n-SPACE 245

(see [6]), we find

(10.9) r'? = a’s'?4+2b's' +¢',
where
, a—cos?y b ,
(10.10) @ =" ¥ =— ¢ =c.
giny ginv

Hence 9’ is a monocyclic curve with the pole O and modul a’.

Conversely, if the projection 9’ of a helix ¢ on a hyperplane perpendic-
ular to the lines of reference for y is a monocyclic curve, then y is a
dicyclic curve of class C,. Let (10.9) be valid for 9’. By means of (10.8)
we find 7’2 as function of s, and using (10.3) and (10.1) we recover an
equation like (10.2) where the constants @, b and ¢ may be found from
(10.10). Hence y is a dicyclic curve of class ', with the normal to H
through O as the line of poles.

Corresponding to theorem 1 we have proved

THEOREM 2. 4 helix y with a line of reference m t8 a dicyclic curve of
class C, if and only if its projection y’ on a hyperplane perpendicular to m
18 a monocyclic curve.

The equation (10.5) and (10.10) show that the constants belonging to
the dicyclic curve y, its projection y’ and the hyperquadric @ are con-
nected by the relations

(10.11a) A cos?v = a’sin?v = a—cos?v
(10.11b) Becosv = b sinv = b
(10.11c) C=c=c.

If A=0 and B0 the meridian (10.6) is a parabola and (10.11a) gives
@' =0 (and a=cos?v). Thus we have obtained a generalization of the
well-known theorem that the projection of a helix, lying on a para-
boloid of revolution, on a plane orthogonal to the axis of the surface is
an involute of a circle, when the axis is line of reference for the helix.
If 440 the hyperplane H may be chosen as hyperplane of symmetry
for @ and we get in this case

B=b=0b=0.
C. The special curves.

1°a=0. We find A= —1 and a' = —cot?v. Since 4 = — 1 the meridian
4 is a circle and @ is a hypersphere. The central developments of y are
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arcs of involutes of a circle apart from the case where the pole is placed
in the center @, of @. According to 7.A,1° the normal hyperplanes of y
touch an infinity of hyperspheres with centres on the line of poles and
pass through @,.

For n =3 the curve is a spherical helix which is identical with a spherical
involute of a circle. Since a’= —cot?v the projection ¢’ of y is an arc of
an epicycloid. For a dicyclic curve in R?, >3, with a =0 the projection
9’ is a monocyeclic curve whose central development is an arc of an epi-
cycloid.

2°, a=1. According to 7.A,2° the curve is a geodesic on any of the cen-
tral cones. Hence the principal normal at a point P of y must be a com-
mon normal to the tangent planes at P to these cones, i.e. the planes
through the tangent ¢ to y at P and the points on the line of poles. If
n =3 this implies that y is a straight line, and, if n > 4, that the principal
normal at P is perpendicular to the 3-dimensional subspace which is
spanned by ¢ and the line of poles.

For a=1 we have a’=1 and 4=tan2v. Only in this case the curve y
and its projection y’ have the same modul. 3’ is a geodesic on its central
cone which is the projection of any of the central cones of .

Since A =tan?v the lines on the hyperquadric @ will be parallel to the
line of its asymptotic hypercone for which a generator in the zy-plane
has the equation y =2 tanv. The lines on @ may be considered as singular
dicyclic curves of class C, with modul a=1. For n=3 the surface @ is
an ordinary hyperboloid of revolution with one sheet (or a cone of revo-
lution), and there exist no other dicyclic curves on @ with a=1 than these
lines, but if » =4 there exist ordinary (non-linear) dicyclic curves with
modul ¢=1 lying on @. This will be proved in the next chapter.

Again referring to 7.2° we note that any tangent to y is a common
tangent to all the basic hyperspheres belonging to y, and the points of
contact with a hypersphere S(Q) is an involute * of y. Since y is a helix
the involute p* is also lying in a hyperplane H perpendicular to a line
of reference [6], and consequently y* lies on the (n— 2)-dimensional
sphere §’(Q) in which H intersects S(@). In the hyperplane H the curve
p* will be an involute of the projection ¢’ of y on H.

Chapter IV. Tricyclic curves.
11. The plane of poles.
A curve y in R®, n >4, is called #ricyclic, when three equations
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(11.1a) 7% = a;82+2by5+¢c,
(11.1b) 792 = @y8%+ 2bys+Cy
(11.1¢) 753 = @g8%+2by8+ ¢4

are valid. r,, 7, and r, denote the distances from three linearly independent
points Q,, @, and @, to the point P=P(s) on y. It is assumed that the

rank of the matrix
111
M, = (al @y a3)
b, by by
is equal to three.
The space of poles is reduced to the plane of poles IT through the points

Q,, and the simplex (@,) is the triangle @,0,@;. To each point Q € IT
corresponds an equation

(11.2) r2 = as?+2bs+c,

where 7= |@P| and @, b and ¢ can be determined by means of the results in
section 2. For n=3 the equation (2.2) and (2.3) give

(11.3) q = 191+ 295+ 2595
and
(11.4) At dgtdg =1,

where q is the position vector and (4,, 4, ;) the barycentric coordinates
of @ with respect to the triangle @,Q,Q;. The equation (2.5) yields the
desired expressions for @, b and ¢

(11.5a) a = hay+ A0+ Az
(11.5b) b = 11b1+12b2+13b3
(11.5¢) € = 2yCy + AgCy+ AgCs — ApAeGBs — Asda01 — MAadis

where g, = |Q,Qyl.

To a=b=0 corresponds a point O with the barycentric coordinates
(4;)=(d;/det M,), where d; denote the cofactors of the elements in the
first row of M,. The equation (11.2) corresponding to the pole O is reduced
to r2=c, i.e. the tricyclic curve y is lying on a hypersphere ¥ with center O.

To a=0 corresponds a line through O which is called the principal line
(with respect to y) and denoted p,. To a=1 corresponds a line p, parallel
to po. The equations (11.5) show that the points @ where D=ac—b*=0
lie on a cubic ¢. In order to study the properties of ¢ we introduce rect-
angular coordinates in I7 and express a, b and ¢ as functions of the
coordinates (z,y) of Q.

Math. Scand. 36 — 17
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—> —
We choose the point @, at O, the vector Q;@,=0Q,=q, as a unit

— —>
vector on p, and @;Q,=0Q,=q, as a unit vector orthogonal to q, (fig. 2).
We then find a;=b;=0, a,=0 and a, =+ 0. Since rank M;=3 we get b;+0
and normalizing s we may obtain b,= 0. Consequently we have

(11.6) @, =a;=0, a,+0; by,=0b;=0, b +0.
Since @, is lying at O the vector g¢;=0, and (11.3) may be written

—
q = 0Q = 4q,+4,9,,

such that 4, and 1, may be regarded as rectangular coordinates of Q.
Thus we can put

(11.7) M=z A=y My=1l-z-y.
Moreover we find in the triangle @;@,@, the sides

(11.8) Gs=¢ =1 quu= Va.

By means of (11.8,7,6) we get for a, b and ¢ the expressions
(11.9) a=ay, b=0bxg, c¢=2a*+y2+2z+2c""y+c"",

"

where ¢’, ¢'’ and ¢’’’ are new constants.

D<0 D>0
Q1A
a<0 O<a<l a>1
Yy
0=Qa Qz
Do V23
14

fig. 2.
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The principal line p, is the z-axis while the line p; has the equation
y=1/a,. Further we get

(11.10) D = D(z,y) = ay(x®+y2+2c'z+2c¢"'y+c'"') — b, 22 .

The equation (11.10) shows that the curve ¢, determined by D=0, is a
circular cubic. It is called the focal cubic. The center O lies on ¢ with the
z-axis as tangent at 0. Since D=0 never will occur when a>1 or a<0
(see e.g. equation (6.1)) the cubic lies in the domain limited by the lines
po and p,, and its asymptote is parallel to these lines (fig. 2). The cubic
may be bipartite. It is seen that D(z,y) <0 when y=0 and z+ 0. Hence
D is negative for any point ¢ apart from O, in the domain of the plane
which is bounded by ¢ and contains the z-axis, and positive in the other
part of the plane. If ¢ is bipartite, consisting of a branch of order three
and and an oval, D must be negative in the interior of the oval.

The lines p, and p, and the curve ¢ divide the plane into domains
corresponding to a<0, D<0, a>1, D>0 and O<a<1 with D>0 or
D <0 (fig. 2). For any choice of the pole @ in one of these domains the
central development of y is an arc of a monocyclic curve for which the
kind is determined in section 6. It may be noted that y is a geodesic on
any central cone with vertex on p, and a loxodrome on any central cone
with vertex on ¢.

12. Tricyclic curves regarded as dicyclic. Descartes’ manifold.

It is easily proved that a tricyclic curve ¥ may be considered as di-
cyclic with an arbitrary line m tn II as line of poles.

Consider the line m through the poles @, and @, for which the equa-
tions (11.1a, b) are valid. Since the matrix M, has the rank 3 the sub-
matrix consisting of the two first columns of M, has the rank 2, and y
may be regarded as a dicyclic curve with m as line of poles. Now, let m
denote an arbitrary line in II. The three poles @,, @, and @, may be
replaced by any other three linearly independent poles in I7, the rank
of M, being unchanged, and choosing @, and @, on m, it is obvious that
y is dicyclic with m as line of poles.

If m intersects then principal line p, the coefficient a in (11.2) assumes
any real value, when the pole @ traverses m, and y will belong to the
class C, of dicyclic curves. If m is parallel to p, the coefficient a is con-
stant, when @ traverses m, and y belongs to the class C,; any number
may be considered as the modul of the curve. For the dicyclic curves in
R3 the classes C, and C, are disjoint, but for the dicyclic curves in R®,
n >4, the classes are not disjoint, the tricyclic curve being a common
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element of the two classes. Consequently the tricyclic curve y has all the
geometric properties concerning its tangents, normal hyperplanes, in-
volutes etc., which belong to the two classes of dicyclic curves as stated
in sections 9 and 10, including the special properties mentioned in section
10.C,1° and 2°.

We will especially be concerned with the hypersurfaces on which y is
lying. As dicyclic curve of class C, the curve lies on a double infinity of
hypersurfaces of revolution with axes inmtersecting p, and for which the
meridians are (plane) Descartes’ curves. For a given meridian u the points
at which the corresponding axis m intersects the focal curve ¢ are ordin-
ary foci of u, while m cuts p, at the particular focus. Moreover, as di-
cyclic curve of class C, the curve y lies on a single infinity of hyperquad-
rics of revolution with axes parallel to p,. The points at which m intersects
@ are foci of the corresponding meridian conic 4. Finally the curve y lies
on the hypersphere ¥ with center O.

All these hypersurfaces have an (n— 2)-dimensional algebraic manifold
A in common on which y is lying. If s is regarded as an arbitrary para-
meter, the equations (11.1) are parametric equations of 4 in tripolar
coordinates. If r,, r, and r, are restricted to denote distances in a 3-dim-
ensional space R?® through the plane of poles, the equations (11.1) are
parametric equations of a space curve d. The manifold 4 can be gener-
ated by rotation of 6 about the plane /7. During this movement any point
of § traverses an (n—3)-dimensional sphere in an (n— 2)-dimensional
space normal to I7.

In order to examine the manifold 4 and the curve  we choose the
poles Q,, @, and @, as in section 11 such that the equations (11.6) are
valid. We then find

(12.1a) rd = 2b;8+ ¢y
(12.1b) 7ol = @y 4y
(12.1¢) ryd = cs.

Let x denote the abscissa of the projection of the point P=P(s) on the
z-axis (the line p,). Since

r?—r? =a2—(x—1)% = 2x—1,

it is seen that z is a linear function of s. Hence the equations (12.1) may
be replaced by the system

(12.2a) x = §cosv
(12.2b) 7,2 = as?+ 2bs+c
(12.2¢) rs2 = R?,
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where a new normalization of s has taken place and new notations of the
constants have been introduced. A curve y is tricyclic if the equations
(12.2) are satisfied.

Elimination of s between (12.2a) and (12.2b) gives, as proved p. 244,
the equation of a hyperquadric of revolution @ with axis m through @,
and parallel to p,. The manifold 4 is the intersection of @ and the hyper-
sphere ¥ with center O, corresponding to (12.2c). Hence the meridian
curve §, lying in the mentioned R3, is the intersection between a quadric
of revolution and a sphere with center O, where O does not lie on the axis
m of the quadric. The curve d is known as a Descartes’ space curve (see
[5], [7] and [8]), and the manifold 4 will be called a Descartes’ manifold
of revolution. The principal line p, (for y) is said to be principal line for
the manifold A and for its meridian é. The line p, may, in relation to 4,
be characterized as the line through the center O of the hypersphere ¥
being parallel to the axis m of the hyperquadric @.

As dicyclic curve of class C, the tricyclic curve y is a helix. It lies on
a Descartes’ manifold A with principal line p, where p, is a line of refer-
ence for y. Conversely, we will prove, that if a helix y lies on a manifold
A such that the principal line for 4 is a line of reference for y, then y is
a tricyclic curve.

Let 4 be the intersection between a hyperquadric of revolution @
with axis m and a hypersphere ¥ with center O, where O does not lie
‘'on m. The axis m is parallel to the principal line for 4 and consequently
a line of reference for y. According to the Theorem 1 the curve y is di-
cyclic of class C, with m as line of poles, and equations like (12.2a) and
(12.2b) may be stated. Moreover y is lying on ¥ such that an equation
like (12.2¢) holds. Hence y is a tricyclic curve having the plane through
the center O and the line m as plane of poles.

Corresponding to theorem 1 we have proved

THEOREM 3. A helix y is a tricyclic curve if and only if it lies on a
Descartes’ manifold of revolution A whoses principal line is a line of refer-
ence for y.

13. Projection and construction of a tricyclic curve.

Let y’ denote the projection of the tricyclic curve y on the hyperplane
H with the equation z=0, i.e. the hyperplane through O and perpendic-
ular to the principal line p,. The hyperplane H intersects the plane of
poles IT at the y-axis (fig. 2). Since y may be regarded as a dicyclic curve
with an arbitrary line m parallel to p, as line of poles we find (section
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10.B) that y’ is monocyclic with any point on the y-axis as pole. Now
the equation (10.10) shows that the coefficient a’, corresponding to ',
agsumes any real value when the coefficient @, corresponding to y, tra-
verses the real numbers. Hence the projection y’ is a dicyclic curve of
class C;.

Conversely we prove that if the projection y’ of a helix y on a hyper-
plane perpendicular to the lines of reference for y is a dicyclic curve of
class C,, then the helix y is a tricyclic curve.

Let m denote a line of reference, H the hyperplane containing the
projection 9’ of y, and ¢ the line of poles for y’. Again referring to sec-
tion 10.B we find that y may be considered as a dicyclic curve of class C,
with any line through a point of ¢ and parallel to m as line of poles.
Since ¢’ is assumed to be of class C,, then o’ assumes any real value when
a pole traverses g, and the same property holds for the coefficienta. Toa =0
corresponds a line p,, and, as shown (section 10.C,1°), the curve p lies on a
hypersphere ¥ with center O on p,. To a=1 corresponds a line p, which
is the axis of a hyperquadric of revolution @ on which y lies. Hence y
is a helix lying on the intersection between ¥ and @, i.e. on a Descartes’
manifold 4, and using theorem 3 we find, that y is a tricyclic curve.

Thus we have proved the following theorem 4 which is the analogue
to theorem 2:

THEOREM 4. A heliz y with a line of reference m is a tricyclic curve if
and only if its projection y’' on a hyperplane perpendicular to m is a dicyclic
curve of class C,.

By means of theorem 4 we state a simple construction of a tricyclic
curve in a fourdimensional space R4: Let 9’ denote a dicyclic curve of class
C, in a hyperplane R3, and let P’ = P’(s’), where s’ denotes the arclength on
y’, be a variable point on y’. Now we lay out on the normal at P’ to R?
the segment P'P=ks’, where k is an arbitrary constant. When P’ tra-
verses y’, the point P will traverse a helix y in R* with the normals to
R3 as lines of reference [6]. According to theorem 4 the helix is a tricyclic
curve.

It may be noted that if ¢’ is a dicyclic curve of class C, then the con-
struction does not lead to a tricyclic curve in R%, but to another dicyclic
curve of class C, lying in a hyperplane R'3 and affinely connected with
y'. It is a consequence of the property of a dicyclic curve of class C, that
the curve itself is a helix. This is a special case of a more general theorem
proved in [6].
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