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A FOLIATION OF TEICHMULLER SPACE BY
TWIST INVARIANT DISKS
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To Werner Fenchel on his 70th birthday.

Let 9 be a non-trivial simple loop on a surface S, of genus g>1, let
T, denote the 3g—3 dimensional Teichmiiller space with origin (S,,id.)
and 7T'[y] the biholomorphic automorphism of 7', resulting from a Dehn
twist about y. A Teichmiiller disk is a one dimensional totally geodesic
(in the Teichmiiller metric) submanifold of 7,. Denote by 9,7, the
39 — 4 dimensional boundary space resulting from pinching y to a point.
For a description of this space, its relation to 7', and a topology we
refer to [2]. Let D={2eC : |z|] < 1}. The purpose of this paper is to prove
the following result.

THEEOREM. There is a parabolic transformation T in D and a one-dimensio-
nal complex foliation of T, given by a homeomorphism F: 0T ;x DT,
with the following properties. For fixed Peod, T, F(P,-) is a holomorphic
map of D onto a Teichmilller disk D' which is tnvariant under T[y]. T[y]
acts as a parabolic transformation on D' and the geodesic rays of D’ exten-
ding towards the fixzed point of T[y] approach P in T,ud,T,. The action
of T[y] on D' is given by F(P,-) F(P, T(-)).

The Theorem has an exact analogue for the Teichmiiller space 7'(g,n)
of an m-punctured compact surface of genus g if (g,2)+(1,0), (0,1),
(0,2), (0,3). This leads to the following result.

CoroLLARY. Fiz (8,,id.) € T(g,n) and a set {y;}, 1SS N=3g9+n-3,
of mutually disjoint simple loops which divide S, into triply connected
regions. There exists a homeomorphism G: DN — T(g,n) such that for fixed
values of the remaining variables, G is a holomorphic map of the k’'th factor
D onto a Teichmiller disk D' in one of the factors of the Teichmiiller space
resulting from pinching yy,. . .y, to potnts. Furthermore D' is invariant
under the Dehn twist about y,,.
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What makes the Theorem possible is that one can locate the extremal
Teichmiiller mapping in the homotopy class of a Dehn twist about
y<8,. This is so because of a result of Jenkins [5] (see also Strebel
[11, 13]) that identifies the quadratic differential, here called the Jenkins
differential, which gives the annulus of largest possible modulus in the
free homotopy class of y that fits on §,. The details of this are carried
out in sections 1, 2,

Given a point @ € T',, the Jenkins differential determines a Teichmiil-
ler disk with origin at @. In section 3 we discuss this disk and show that
T[y] acts on it as a parabolic transformation. Then we apply the recent
results of [8] to identify the fixed point of 7'[y] as a point on 9,7',.

In section 5 the foliation is constructed. Here the development is
based on work of Strebel [12, 13, 14] (see also Jenkins [5]) characteri-
zing by their extremal properties certain quadratic differentials which
can be obtained by degenerating Jenkins’ differentials. These proper-
ties, which are discussed in section 4, have to do with the classical
notion of mapping radius. We show that these differentials have cer-
tain uniformity properties on the entire space 0,7,. Each disk of the
foliation is then indexed by the fixed point of T'[y] where it is “tangent”
to 0,T,.

The map F is unlikely to be very smooth. It certainly is not holo-
morphic. For if it were, there would be a continuous family of biholo-
morphic automorphisms of 7', in contradiction to Royden’s theorem [9].

With respect to the Corollary, more explicit and no doubt smoother
geometric parameters, given in terms of fuchsian groups, are originally
due to Fricke (see Keen [6]) and Fenchel-Nielsen [4]. The ones sug-
gested by the Corollary, on the other hand, depend directly on the N

loops.

1. Twists in an annulus.

1.1 Consider the annulus 4={ze C: 1<|z| <R} with the usual orien-
tation induced from that of the plane. Orient the bounding circles so
that A lies to their left. A Dehn twist of order n is a homeomorphism re-
sulting from holding the inner contour of A4 fixed and rotating the
outer n» times in the positive (negative) direction if >0 (n<0). In
polar coordinates such a map is given by

(r,0) (r,6+1—:—}% 2nn) .

We are actually only interested in the homotopy class of the twist.
Here homotopy is used in the sense that f is homotopic to g if f can be
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continuously deformed to g while keeping 04 pointwise fixed. Twists of
different orders lie in different homotopy classes and any homeomor-
phism of 4 which is the identity on 94 is homotopic to some twist.

1.2. We are looking for extremal quasiconformal maps in the homo-
topy class of a twist. That is, we are looking for maps that minimize the
maximal dilatation. The situation is as follows.

LemMma 1.1. (Strebel [10]). There exists a unique extremal quasiconformal
map 7, in the homotopy class of the Dehn twist of the annulus A of order
n. It is given by the expression

T(2) = z|z|"™M | M = (log R)[2x .
The complex dilatation u(z) of F,(z) is
inj2M  Z Lz

MO = D) T R
where
_ inijem )
o e R Ml < o < e,
Furthermore

Tn = (T

Proor. The basic fact is that an affine map of a parallel strip is the
unique extremal map for its boundary values [10]. The affine map in
question is the map (w=u+1) v v and uu—v(n/M) of the parallel
strip {0=v<M}. The function exp(-—2miw) carries this strip to our
annulus 4.

Note that as |n| - o, k, — 1 and 7, - 0.

1.3. Actually we can twist 4 through any angle 6 and the correspon-
ding extremal map for the boundary values in the homotopy class is
given by 7, where «=0/2x and the same formulas as above with «
replacing n. In particular z, lies between + /2.

The twist maps J, are special cases of the map

Q(a,b) : z 2)z|5*+®,  a,breal,

which is an extremal quasiconformal map when ¢ > — 1 and has the com-

plex dilatation at+ib 32

2+a+ib |22



214 ALBERT MARDEN AND HOWARD MASUR

Q(a,b) maps A onto itself if and only if a=0 in which case it is a twist
7, for o« =Mb. In the case b=0 it is a radial stretch (a > 0) or contraction
(—1<a<0) T, of A4 onto {1< |z| <R}, In the general case, with re-
spect to the appropriate annuli,

Q(a,b) = T,oT, = ToT,.

1.4. The quadratic differential on 4
pd2? = —dz%[2*

plays a special role. Its (horizontal) trajectories are the circles {|z| = r}
in 4, 1<r = R; that is pdz?> 0 along these concentric circles. All of the
extremal maps considered above are of the form

k(ep)/|e®p| = ke=* ¢[|g] .

This means they are Teichmiiller maps associated with the quadratic
differential e®pdz2. In particular J, is associated with e~ n+™gdz2,

2. Dehn twists on a surface.

2.1. Let 8 be a closed Riemann surface of genus g > 2 and y = § a simple
loop not contractible to a point. Fix an annular neighborhood 4 about
y. The orientation of § determines an orientation of 4 and consequently
of 4. A Dehn twist of order n in 4 can be extended to S — A by setting
it equal to the identity there. This is a Dehn twist of order n on 8. We
are only interested in the homotopy class of this map which does not
depend on the choice of y in its free homotopy class or the particular
choice of A. Twists of different orders belong to different homotopy
classes and a classical theorem of Dehn says that a general (orientation
preserving) homeomorphism of S onto itself is homotopic to a product
of Dehn twists.

2.2. According to Jenkins [5] (see also Strebel [11, 13]) there is a holo-
morphic quadratic differential Jd(%=J[y]d(? on S uniquely determined
up to a positive multiplicative constant by the following property. Let
S’ denote the result of deleting from S the critical trajectories of Jd(2,
namely those that pass through the 4g—4 zeros with multiplicities of
Jdg2. Then S’ is an open annulus swept out by a one parameter family
of closed trajectories of Jd{? which are freely homotopic to y and S-8"
is the union of a finite number of analytic arcs. The trajectories sweeping
out 8’ have equal length in the metric |J|}d{|. Normalize Jd(? so that
this length is 2z. See [5, 11, 13] for details.
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The constant C' can be chosen so that

z = p(l) = C exp(iff JJdr)

is a conformal map of 8’ onto 4 = {1 <|2| <R} for some B> 1.
In terms of this change. in coordinates,

—d2?[z? = Jd{?.

2.3. We are now ready to find the extremal quasiconformal map of
S in the homotopy class of a Dehn twist of order n. Let J, denote as
in section 1.2 the extremal twist of order » in A. The quasiconformal
homeomorphism p-17,p: 8§ -8 can be extended to a homeomor-
phism § - § by setting it equal to the identity on the finite number of
analytic arcs composing S-8’. A standard removable singularity theo-
rem says that p~37,p : 8§ - § is quasiconformal.

In terms of the local parameter { in 8’ we find that the complex
dilatation u({) of p~17,p is

() = —kndJ)J]

where k,, v, are defined in section 1.2. It follows that p—7,p is a
Teichmiiller map on S associated with the differential exp —i(t, +n)
Jd{%. By a famous theorem of Teichmiiller (see [1]), such maps are
unique in their homotopy class. Consequently we have proved the
following:

LemMMA. 2.1. The unique extremal quasiconformal map in the homotopy
class of a Dehn twist of order n about y is the Teichmiiller map associated
with the quadratic differential exp —i(z, +x)J[y]d(2.

2.4. There are two generalizations of Lemma 2.1 that we will describe
briefly. The first is that everything can be done on a finitely punctured
compact surface S. For this case one takes a simple loop y which is not
contractible to one of the punctures. The corresponding Jenkins diffe-
rential has at most simple poles at the punctures. In any case the punc-
tures lie on the critical trajectories which when removed from S leave a
single annulus belonging to the free homotopy class of y. All the formu-
las above hold without change.

The second generalization makes use of Strebel differentials [11, 13]
(see also Jenkins [5]). On a closed surface S of genus g=2 choose &
mutually disjoint simple loops y,,. ..,y 1<k<3g—3, which represent
distinet free homotopy classes other than the identity. Fix k positive

Math, Scand. 36 — 15
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numbers My, M,,...,M,. Then there is a unique (up to a positive mul-
tiple) quadratic differential I'd{? with the following property. Let S’
denote the result of removing the critical trajectories of I'd{? from 8.
Then &' is a union of annuli 4,,...,4, which can be indexed so that
for all j

a) y; is freely homotopic to a simple loop separating the components
of 04;,

and
b) for some constant ¢> 0, the modulus 4; is cM;.

Furthermore S—8’ is the union of a finite number of analytic arcs, the
smooth pieces of the critical trajectories.

Now suppose an integer n; =1 is assigned to y; for each j. We want to
find the extremal quasiconformal map homotopic to the product of
Dehn twists T'yo. . .oT; where T'; is the twist of order n; about y; (order
does not matter since these commute up to homotopy).

Set M;=mn,/2 and let I'd{ be the corresponding Strebel differential.
Then there is a C;> 0 such that

z = pil) = Cjexp(2niLj"1ch1_"dC)

maps A; conformally onto A4;={l<|2|<R;} where c¢M;=(logR;)/2n.
Here L, is the common length in the |I'|¥|d{| metric of the trajectories
of I'd;? which sweep out Jj.

The extremal twist 7, in 4; is a Teichmiiller map associated with
the differential exp —i(rnj+n)qadz2 where = —2z-2 and multiplier kn,
(see section 1.2). We find

ko, = (®+ )74, tanv, =c.

The quasiconformal map p;~'.7, p; : A, - 4, is thus a Teichmiiller map
associated with the differential

exp —i(z, +@)IdL? = [(—1+1c)/(1+c?)]IdL?

and the multiplier (1+ ¢2)~* neither of which depend on j.

Define f on §’ by setting it equal to p,7, p,~* on 4,. Extend f to a
homeomorphism S — § by setting it equal to the identity on §-8’. By
the removable singularity property f is quasiconformal on 8. Thus we
see that f is a Teichmiiller map 8§ — § which by Teichmiiller’s theorem
is uniquely determined in its homotopy class.

Exactly as before this result has a direct extension to the case that S
is a finitely punctured compact surface.
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The case that n; < —1 for all j is solved in exactly the same manner.
On the other hand we do not know the extremal map in the case n;=1
for some indices ¢ while n; < —1 for others.

3. Teichmiiller disks.

3.1. Let T, denote the Teichmiiller space of closed surfaces of genus
g = 2. Points of T', can be described as pairs (8,f) where f is a quasicon-
formal map of a fixed surface S, onto S, with the equivalence relation
(S f1) =(8e.fe) if fofi1:8; > S, is homotopic to a conformal map. The
origin of 7, is taken as (S;,id.). We will make heavy use of the Teich-
miiller metric in 7',

If h: 8y - 8, is a homeomorphism not homotopic to the identity then
h determines a non-trivial biholomorphic automorphism (S,f)+ (S,fh)
of T', which is also an isometry in the Teichmiiller metric and conversely,
by Royden’s theorem [9], all automorphisms of T, arise in this way.
Such maps kb, we recall, can be expressed as a product of Dehn twists.

3.2. The results of this section concerning Teichmiiller maps are well
known and are based on the following property. If f: S§; — § is the map
corresponding to the Beltrami coefficient k@/|p| for some quadratic
differential ¢ on S, then in terms of suitable local coordinates on S, and
S, f is an affine map except at the zeros of ¢. We refer to Bers [1] for
details (see also Kravetz [7]).

Suppose ¢ is a quadratic differential on S and consider the map of the
unit disk D={ze C: |z|<1}

20 —2p/lg] .

Each Beltrami coefficient —z@/|p| gives rise to a Teichmiiller map
F,: 8 - 8, which is the unique extremal in its homotopy class. Define
the Teichmiller disk with origin at (8,f) € T, to be

Dlg] = {(S,F.f): z€ D}.

Note that D[¢] depends not only on ¢ and S but also on the particular
point (8,f). If we take the corresponding disk D,[¢] based at (S,f;), the
automorphism f-1f, of S, determines a holomorphic automorphism of
T, that maps (8,f) to (8,f;) and D[¢] onto D,[¢].

The map F:z20 (S, F,fleT,

is a holomorphic injection of D into 7, with F(0)=(S,f). Its image
Di¢] is totally geodesic in the Teichmiiller metric and the pull-back
to D of the restriction of this metric is the hyperbolic (Poincaré) metric.
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Lemma 3.1. Suppose x,,x, € T, are distinct points. Suppose the Teich-
milller disks D, and D, each pass through x, and x,. Then D,= D,.

Proor. At z,=(S,f) there exist quadratic differentials ¢,y on S such
that D,=D[¢] and Dy,=D[y]. Then 2z, D,nD, is determined by a
Teichmiiller map associated with ¢ and also by one associated with .
But Teichmiiller’s uniqueness theorem implies that y must then be a
scalar multiple of ¢.

3.3 Suppose y is a simple loop on 8§, not contractible to a point. Then
a simple loop f(y) =8 is determined at each point (S, f) € T',. Furthermore
a Dehn twist 4 of order 1 about y gives rise to the Dehn twist f7f-2
about f(y) and more generally induces a biholomorphic isometry T'[y] of
T,

’ T[y): (8.f) > (8,47 ) .
T[y] maps one Teichmiiller disk onto another.

Given a point (8,f) € T, let J =J[f(y)] denote the Jenkins differential
on § corresponding to f(y). We are interested in the Teichmiiller disk
D[J] with origin at (S,f).

Lemma 3.2. D[J] ts invariant under T[y]. Furthermore the pull-back T of
T[y] to D ¢s a parabolic transformation with fixed point z=1.

Proor. Using the formulas of section 1.2, T'[y]* sends F(0) € D[J] to
F(k,e'™), n=0, +1,... In particular D[J] and its 7'[y] image share the
points F(0), F(k,e™). Consequently by Lemma 3.1, D[J] and its T[y]
image coincide.

Now the pull-back 7' of T'[y] to D is a biholomorphic automorphism
and hence a Mcbius transformation. It has the property 7(0)=Fk,e™
where k, -1 and 7, > 0 as n > + . Hence 7 is parabolic with fixed
point z=1. The actual formula for 7' is as follows, writing k=Fk,, =1,

(2kets — 1) 2 — ke'*
ketrz —1 )

T(z) =

CoroLLARY 3.3 The two Teichmiiller disks formed by J[fi(y)] at (S1,f1)
and J[fy(y)] at (S,,f,) either coincide or are disjoint.

3.4 In the Teichmiiller disk D[J] with origin F(0)=(S,f) consider the
cusp ray from (8,f). This is the image under F of the ray {0 <Rez<1,
Im z=0} in D and is given by the Beltrami coefficients —kJ[|J|, 0sk< 1.
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Closely following Masur [8] we will describe the surfaces which corres-
pond to the points on this ray.

Start by deleting the critical trajectories of J[f(y)] from S as in sec-
tion 2.2 to get a conformal map of the cut surface S’ onto an annulus
A={l1<|z|<R}.

Let A4, be the annulus

4, = {1<|z| <R}, a = 2k/(1-k)

which arises from 4 by the radial stretch 7',: z — z|z|2.

Form a new Riemann surface from 4, by identifying certain arcs on
04, as follows. Let «,* denote the inner component of 94, and «,* the
outer. Let By¥<A4,, B,¥<A, be annular neighborhoods of «;*, a,* so
thin that the image of B,* under the map g,: z > z of B,* into 4 is dis-
joint from the image of B,* under g,: z — (B/R't%)z.

Now 8 with its conformal structure is formed from 4 by making
certain identifications of 4. Form exactly the same identifications of
04, by using the conformal maps g,,g,. We get a Riemann surface §;
with a natural conformal embedding 4, — S,'<8,. The maps ¢,,9,
determine a conformal map of a neighborhood of S, —8,’ into § which
does not have a conformal extension to §,.

The differential —dz?[2% in A4, lifts to a quadratic differential J; on
8. The only problem in proving this is near 94, but here the situation
is governed by the differential —dz?/22 in 4 which by construction is
known to lift.

The stretch 7,: A - 4, also lifts and determines a quasiconformal
map T,*: § - 8.

However everything is tied together: 7',* is the Teichmiiller map
corresponding to —kJ/|J| and J,, is the Jenkins differential correspon-
ding to T, *(f(»)).

Now let # — 1. Using different normalizations we get A4, to converge
respectively to

Ao ={l <zl <o}, A =1{0<]2] <1};

in the former case we can take &,* to be |z| =1 for all k and in the latter
case «,*. Use g, and g, to make 4, and 4.’ into one twice punctured or
two once punctured closed surfaces S, depending on whether or not y
divides. Again —dz?/22 lifts to S, to give one (if S, is connected) or two
differentials on S, with double poles at the two punctures with the same
leading terms.
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3.5. With the help of section 1.3 the surfaces corresponding to each
point of D[J] also can be described. Given ze D set w=2z/(1-2)¢€
{Rew> — 1}, w=wu+iv. The surface S, corresponding to F(z) € D[J] is ob-
tained from § and its representation as the annulus 4 as follows. First
apply the radial stretch 7', to A. Then apply the twist J,, »=(v/2n)
logR, to the resulting annulus 4,. To form the surface S, make identi-
fications of 94, as dictated by conformal maps of thin neighborhoods of
04, back to neighborhoods of 94 as in section 3.4.

Under a Dehn twist about F,f(y) on S,, the point F(z) is sent
to (T[yloF)(z) = (FoT)(z) as deseribed in section 3.3.

From each point F(z) € D[J] there is a uniquely determined cusp ray
which is the image under F' of the geodesic ray in D from z to 1 (in the
hyperbolic metric). This definition agrees with the geometric signifi-
cance of the term as described in section 3.4, taking the surface corres-
ponding to F(z) as the base of operations rather than that associated
with F(0) (or alternatively, replacing F(0) by F(z) as the origin of D[J]).
Any two cusp rays have zero asymptotic Teichmiiller distance apart.
Therefore, as shown in [8], all cusp rays of D[J] determine the same
surface S,.

4. The differentials on the boundary space.

4.1. Let D[¢] be a fixed Teichmiiller disk with origin at (8,f) e T,
determined by the simple loop y <S8, and let S, denote the surface or
surfaces corresponding to the end point of the cusp ray eminating from
(S,f) € D[¢] as constructed in section 3.4. The construction also gives
a homeomorphism f,: §—f(y) - 8,. Using (S,,id.) as base point form the
Teichmiiller space 7T'(S,)={(X,9)} of complex dimension 3g—4. Here
the quasiconformal map ¢: S, - X can be extended to the two punc-
tures (the ideal boundary components). If S, has two components,
T(8S,) splits into the product of the Teichmiiller spaces of the individual
components.

We will regard 7'(S,) as lying in 0T, (from the point of view of [2],
T(8,) is called a boundary space). However the map gf.f: Sq—y - X,
it should be noted, determines f: S, — S only up to a Dehn twist about
y: two homeomorphism f;: S, - S taking ¥ to f(y) determine homoto-
pic maps gf,f;: Sg—y - X if and only if f,71f; is a power of the twist
about y (see [2]).

If 8, is connected fix an origin O and a set of simple loops «;, &y, B
from O or if 8, has two components fix a pair of simple loops «,, £; «g, 8
on each component. Take these so that «; is retractable to the puncture
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z; of §, and is so oriented that x, lies to its left and assume 8 or 8 and g’
are not freely homotopic to «,*1.

Suppose z is the puncture g(z;) of X, (X,g) € T(S,). Represent the
component Y of X associated with z as a fuchsian group I', in the upper
half plane U in such a way that

(¢) a lift of g(x;) determines the translation L: { - ¢ +1 of I,
and

(¢¢) the element of I', determined by the corresponding lift of g(g)
(or g(B')) has attractive fixed point at {=1.

In this way Y and z uniquely determine I',.

It is known that the natural projection n: U — U/I',=Y sends the
half plane {{: Im¢{>1} to a neighborhood N, of « which is conformally
equivalent to the once punctured disk.

In fact the map P: ¢ — z given by

z = P({) = exp2nil
is a conformal map U/{L} - D(1) where
Diry={z: 0< |2| <r}.

Then Pon~! determines a conformal map N, — D(exp (— 2n)).

Note further that if 2’ is a simply connected region in Y u {x} con-
taining x and 2 =92’ — {x} then Pox~! determines a conformal map of
9 into D(1).

We can use z as a local coordinate in N,. It will be called the canonical
local coordinate and N, the canonical neighborhood of x. The group I,
will be called the fuchsian:equivalent of Y corresponding to x.

4.2 Denote the two punctures of S, by z,,z, and fix (X,g) € T'(8S,).
We will apply a result of Strebel [12] and an extension of this [14] which
allows one to specify the leading coefficient at each g(x;) rather than the
reduced modulus (see also Jenkins [5]). According to his results there is
a quadratic differential J d(2=J [y]d(? on X uniquely determined by
the following properties (if X has two components then the restriction
of Jd¢? to each component is a quadratic differential which is uniquely
determined). Let X’ denote the result of removing the critical trajecto-
ries of J,d{2 from X. Then X’ has two components X,’, X,’ each of which
is conformally equivalent to the once punctured disk. A curve around
the puncture of X, is retractable in X,” to the puncture g(z;) of X'.
Furthermore X,’,X,’ are swept out by the closed trajectories of J d{?
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each of which has length 2z in the metric |J,|t|d{|. Consequently if ¢
is any local coordinate at g(x;) with {(g(z;))=0 then J d(? has expansion
near g(x;)

Jdi? = (—1/02+...)di2.

Consider the function defined in each X,

2 = L) = Crexp(—i §V/J,d0)

where C; is chosen so that the derivative with respect to the canonical
coordinate  at g(x;), {(g(x;)) =0, satisfies (dz/d{)(0)=1. Then p;({) is a
conformal map of X, onto some punctured disk

D(r)) = {z: 0 < |2] < 13}

where r,=7,(X) depends only on X, 1=1,2.
In terms of the parameter z we have

JAdi? = —dz¥[22.

Starting with section 6.1 we are going to show how the differentials
Jd¢% can be used to index Teichmiiller disks D[J] in T,. Before doing
this however we must prove these differentials have certain uniformity
properties on 9,7, with respect to the Poincaré metric on the surfaces.
To do this we must first discuss their extremal properties.

4.3. Suppose D,’,D,’ are two simply connected, mutually disjoint
regions in X u{g(z,)}u{g(x,)} with g(z;,) € D, (X,g9) € T(S,). Set D;=D,’
—{g(x;)}. If  denotes the canonical local coordinate in N, about = =g(x;),
the reduced modulus M (D) of D= D, with respect to x and the associated
canonical coordinate is defined as

M(D) = lim, o (M(r)+ (logr)/2m) .
Here M(r) is the modulus of the annular region

D-{peX,: [tp)] <1}
on X.

Alternatively let f be the conformal map of D onto the punctured
disk D(r,) where r, and f are uniquely determined by the condition
(df/d)(0)=1 in terms of the canonical parameter { at z, {(z)=0. Then
M(D)=(logr,)/2x and r, is called the mapping radius of D with respect
to # and {. Thus it is clear that for D = D*, M (D)< M(D¥*).

If # is the natural projection U — U[I', and P({) is as defined in
section 4.1, z=Pon~({) determines a conformal map of D into the once
punctured unit disk D(1) with 0 > 0 and (dz/d()(0)=1. Hence M(D)
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<M(D(1))=0. On the other hand D can be chosen to contain N, and
in this case
(1) -1=M{N,) < MWD)<O0.

According to Strebel [12, 13] the degenerate differential J d{? on X
has the following extremal property with respect to any D;,D, as con-
structed above:

27(M (D) + M(D,)) £ logry(X)+logry(X),

since M(X,")=(logr;)/2n. Combining this with (1) on choosing D, to
contain N, we obtain

Lrmma 4.1. There exists Ry > 0 such that for all (X,g) € T(S,), ri(X)= Ry,
t=1,2.

4.4. Now we can prove the required uniformity property. For R <
exp(—2n) and { the canonical coordinate in N, set N (R)={peN,:

1¢(p)| < R}.

Lemma 4.2. There exists R* > 0 such that for each (X,g)eT(8S,) and for
each puncture x=g(x;) of X, it is true that N (R*)< X/, i=1,2.

Proor. Using Lemma 4.1 consider the composed map F(z)=Pomlo
p;~Y(2) of D(R,) into X" and then into D(1). F(z) is conformal with F(0) =0
and F'(0)=1. Consequently by the Koebe } theorem, the F-image of
D(R,) contains the punctured disk D(R,) with R,=R,[4. Now set
R*=min(R,, exp (- 2x)).

LemMmA 4.3. Given r< R* set X(r)=X — Ny, (r) = Ny,)(r). There exists
M = M(r) < o such that for all (X,g) € T(8S,),

Wxwldd < M.

Proor. It suffices to prove this for each component X;" of X' with
X,/ (r)=X,/nX(r), 1=1,2. Given r apply the Koebe } theorem to the
normalized map p;({) of Ny, (r) into D(r;). Its image in D(r;) contains
the punctured disk D(g) for ¢ =r/4. Hence comparing moduli of annuli
we have

SSX"(r)lJcI = 2n lOg(T,;/Q) < -2 log Q-

COROLLARY 4.4. J d(? varies continuously on T'(8S,).
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Proor. Suppose (X,,g,) > (X,9) e T(S,) and assume for simplicity that
X has two components. In particular (Y,,g,) > (Y,9) where Y, is one
of the components of X, and Y of X. We can choose fuchsian equivalents
I, of the Y, as to converge to the fuchsian equivalent I" of Y. Let ¢,
denote the automorphic form on U resulting from lifting the differen-
tial J d{% on Y,. Using Lemma 4.3 and passing to a subsequence if
necessary we see that #, converges uniformly on compact subsets to a
non-zero automorphic form _# with respect to I'. # projects to a qua-
dratic differential Hd(? on Y. Examining (cf. [13]) the convergence of
F.in U we see each non-critical trajectory of Hd(? is closed on Y, has
length 2% in the metric |H|}dC| (this is why £ = 0) and is retractable to
either g(x;) or g(x,). These properties are true because each compact
segment ¢ of length >2n+¢ of a non-critical (horizontal) trajectory of
F in U is the limit of a segment ¢, of a non-critical trajectory of £,
with L(s,)no,+D (L is the unit translation in I',). Thus L(c)no+ D
and the projection z(c)< Y is closed and retractable to the puncture
which determines L € I". This trajectory structure in turn implies that
Hd{? has a double pole at whichever of g(z,),g(z,) is associated with Y,
necessarily with expansion (—1/{2+...)d{% But these properties uni-
quely characterize J d(2.

5. A foliation by Teichmiiller disks.

6.1. Fixing a point (8,f) € T, and a non-trivial simple loop y on §,
we constructed the Jenkins differential Jd{? on S in section 2.2. Deno-
ting by 8’ the annular region resulting from the removal of its critical
trajectories from S we saw that Jd(? determines a conformal map of §’
onto the annulus 4={1<|z|<R}. In section 3.4 we constructed the
cusp ray in the Teichmiiller disk D[J] from the origin (S,f) and found a
pinched surface S, corresponding to its end point and consequently to
the end point of the cusp ray from any point of D[J]. Actually S, was
represented as the two punctured disks D(1)={0<|2|<1} and D(1) =
{1<|z]<oo} with certain identifications involving the unmit circles as
dictated by Jd{2. Furthermore the differential —dz?/22 on D(1)uD(1)
lifts to a differential @d{? on §,. This lifted differential is in fact the
degenerate J d(2 for S, because pd(? has the right expansion (—1/{2...)
df? at the punctures and the right trajectory structure which together
characterize J (2.

An “opening up’’ process can be described by reversing these steps,
starting at S, Take the image of the annulus {s-*<|2|<1}<=D(1),
c0>s2 R, under the map z - sz and attach it to the annulus {1 <|z| <
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st}= D(1)’ with the two points at z=}/s corresponding. The identifica-
tions involving the boundary components of the resulting annulus are
as dictated by Jd¢? in the manner suggested in section 3.4. Thus we get
a one parameter family of compact surfaces of genus g, which when
8 =R is the original surface S.

However this opening process as a mapping into 7, is not well defi-
ned. The problem is that the map f.f: So—y — S, determines f only up
to Dehn twists about y (cf. section 4.1) so that a presentation of the
fundamental group #,(S,) does not uniquely determine one of 7;(S).
Before embarking on the opening process a decision must be made fixing
a geometric prescription in D(1)uD(1)’ on how a presentation of the
fundamental group of each opened surface is to be obtained. Once this
is done the opening process described above flows from S, along the
cusp ray of some point @ of the orbit of (8,f) under 7T'[y], terminating

at Q.

5.2. The result S,” of deleting the critical trajectories of J,d¢? from S,
has two components which we label so that 8’,; is obtained from D(1)
and 8’y from D(1)’. Let z; denote the puncture of S’,; and I'; the fuch-
sian equivalent of x; and the component of S, associated with it.

Fix a point &; € U so that

a) &(x;)=n(£;) lies in the universal canonical neighborhood N, (R*)
<8’ of z,,

(here x is the projection U - U/I%), and

b) under the map 8’,; > D(1) or D(1)’, the image of &(x;) lies on the
positive real axis, 1=1,2.

With &,,6,e U and R now fixed and determined from (S,f) we are
ready to move through points (X,g) € T'(S,). By Corollary 4.4 the differen-
tials J d¢? and the associated mapping radii r,(X) vary continuously on
T(8,). The same is true of the points &(g(x;)) € Ny, (R*) determined by
projecting &; using the fuchsian equivalent corresponding to g(x,).

Label the two regions resulting from removing the critical trajecto-
ries of J d¢? from X so that g(x;) is the puncture of X,’. In section 4.2
we introduced p,(§) which maps X, onto D(r;). Now define

¢1(¢) = wl?l(C)/’l’ 7:(0) = "ze”’pz(C)'l

where 0, is determined by the condition that qi(E(g(X,-))) >0, 1=1,2.
¢1(¢) maps X,’ to D(1) and ¢,({) maps X, to D(1)".
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5.3. We have fixed R as determined from (S,f) by the Jenkins diffe-
rential J on S. Let 7' denote the parabolic transformation in D resulting
from pulling back 7T'[y] from D[J] (Lemma 3.2). We will construct a
homeomorphism (in terms of the quotient metrics)

My:T(S,)x D{T} Ta/{T[y]}

where {T[y]} denotes the infinite cyclic and fixed point free subgroup
of the Teichmiiller modular group generated by T'[y].
Fix (X,9) e T(S,). Given z € D set

w = 22/(1-2) = u+ive {Rew > —1}.

Note that 7' corresponds to the translation w > w+ 2ni/logR. Take the
image of the annulus

{(B¥)= < |{] < 1} = D(1)
under the map
H,: [ - e?R", ¢ = vlogR

and glue it to the outer contour of the annulus
{1 < o] < (B9} < Dy
without further rotation obtaining the annulus
4, = {1 < || < R4},

By means of the conformal maps (¢, {~ H,71({) in thin neighbor-
hoods of the components of 94, and the prescriptions concerning iden-
tifications on 8D(1), 8D(1)' as given by ¢,,q, (cf. section 3.4) we obtain
by making identifications on 94, a compact surface S,[X,g].

In particular for z=0 we obtain a surface S[X,g] and a natural ho-
meomorphism given by the construction g,: X — S[X,g]—y" where y’
is an appropriate simple loop on S[X,g]. The homeomorphism ggf,.f:
So—» — 8[X,g9]—y' determines a presentation of z,(S[X,g]) up to Dehn
twists about y’. Correspondingly this is true for each S,[X,g], z € D.

The differential J (% on X determines a Jenkins differential on each
8,[X,g] by lifting —d{?/¢? from A4,. For z=0 this differential J corres-
ponds to ' and the annular region determined by it on S[X,g] has
modulus (log R)/2x.

Comparing the calculations here with those of section 3.5 we conclude
that for fixed (X,g) the map M, determined by the above construction

M,: D[{T} ~ DIJI{T(y1},
with 2=0 mapped to the orbit derermined by S[X,g], is a holomorphic
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homeomorphism. It is, in fact, the projection of a map F described in
section 3.2.

Now let (X,g) vary in 7'(S,). Because the modulus (logR)/2x of the
annulus determined by J on S[X,g] is independent of (X,g), the para-
bolic transformation 7' in D is independent of (X,g) as well. For fixed
z the map M, is continuous because J d(? and hence ¢,,q, vary conti-
nuously on 7'(S,). M, sends (X,g) to a point on some slice D[J]/{T[y]}
where D[J] is uniquely determined by the condition that its cusp rays
terminate at (X,g). That is, M, in injective. Since every point of 7', lies
on some disk D[J], M, is also surjective and therefore a homeomor-
phism.

Because T'(S;) and T, are simply connected, M, can be lifted to a
homeomorphism

M:TS)xD~>T,

which is uniquely determined by the requirement that M map
(S, id.) x {0} to (8,1).
The proof of the Theorem is now complete.

5.4. Except for briefly describing the basic situation for finitely
punctured compact surfaces in section 2.4 we have dealt only with 7',
and its boundary space 9,7, obtained by pinching y. However every-
thing we have done goes through without change if we start with
T(g,n), the Teichmiiller space of a compact surface of genus g with n
punctures S,, and refer this to its boundary space 9,7(g,n), where y is
now a non-trivial simple loop in S, not retractable to any puncture.

In the case of 7'(1,1) or 7'(0,4) our procedure represents the Teich-
miiller space itself as a Teichmiiller disk. The classical modular group
is the Teichmiiller modular group of 7'(0,4) but for 7'(1,1) is a subgroup
of index two.

In general, starting with S, an n-times punctured surface of genus g,
choose 3g+7n—3 mutually disjoint simple loops that together cut S,
into a union of triply connected regions. Start by decomposing 7'(g,n)
into 9, T'(g,n) x D. Then write the (possibly product) Teichmiiller space
2, T(g,n) as the product that results on pinching y,, etc. Alternatively,
T(g,n) can be built up from 7'(1,1) and 7'(0,4) (or 7'(0,3)) as a product
DX, In either way we obtain a proof of the Corollary.

In the germinal paper [3], Fenchel made use of the fact that 7' is a cell
to show that every element of finite order in the Teichmiiller modular
group (mapping class group) can be represented as a conformal auto-
morphism of some Riemann surface of genus g.
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