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ON THE “THREE SPACE PROBLEM”

PER ENFLO*, JORAM LINDENSTRAUSS and GILLES PISIER
To Werner Fenchel on his 70th birthday.

1. Introduction.

Let X be a Banach space and Y a closed subspace of X. In this paper
we will study the so-called three space problem: if one has information
about two of the Banach spaces X, Y and X/Y, what can be said about
the third one. In the sequel we shall have information about ¥ and X/Y
and draw conclusions about X. For other aspects of the problem cf. [7].

It is a classical result [1, I1.4, p. 19-20] that if ¥ and XY are reflexive
then X is also reflexive. D. P. Giesy has shown [3, Th. I1.9] that if ¥
and X/Y are B-convex then X is also B-convex. We prove below that
if ¥ and X/Y are super-reflexive then X is also super-reflexive.

We also solve the following problem (apparently due to Palais): if
each of the spaces ¥ and X/Y is isomorphic to a Hilbert space, is X iso-
morphic to a Hilbert space? We prove that X is in a certain sense close
to being isomorphic to a Hilbert space, but that it need not be isomorphic
to a Hilbert space.

2. Some inequalities.

In this section, we obtain information on the behavior of Rademacher
series (resp. of martingales) with values in X knowing the correspond-
ing information for ¥ and X/Y. We denote by (¢,) the Rademacher
system on the interval [0,1]. Let (£2,%/,P) be a probability space, a
sequence of random variables (X,),s, on (2,9/,P) with values in a
Banach space is called a martingale if there exists an increasing sequence
(o ,)n=0 Of sub-g-algebras of o/ such that Yn=0, X,=E9X,,,).

In this paper we shall say briefly ,,martingale’” meaning ,,martingale
defined on some probability space (£2,%/,P)’; moreover if Z is a Banach
space valued random variable on a probability space (£2,/,P) we shall
write simply ||Z|l, for (§[|Z(w)|2dP(w))t.
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When we wish to distinguish the norms of the Banach spaces involved,
we will write || ||x, |||ly,... for the norms in the spaces X,Y,.... In
particular recall the definition of the norm in X/Y: let = denote the
canonical projection from X onto X/Y, by definition we have

Vze X, |n(@)lxy = inf{le+yl | ye ¥}.

DeriNiTION/NoTATION. Let X be a Banach space and n an integer.
We define a,X as the smallest positive number a such that:

(§1Zi2n ety l2de)t < a(Sicy [lyl2)t

for all n-tuples (x;);<;<, of elements of X.
We define «,X as the smallest positive number « such that:

1Xalle < o(Z3ZT 11X — X4 [3)}

for all martingales (X,),., With values in X and such that X,=0.
Obviously we have a,X=<«,X=<yn for all integers n. The following
theorem motivates the preceding definitions.

THEOREM 1. Let X be a Banach space and Y be a closed subspace of X.
The following inequalities hold for all integers n and k:

(l) ankx

(2 ) ‘xnkx

anY akX +anY akX/Y +anxa’kX/Y

0, ¥ o, X + 200, ¥ 0, X/¥ 4+ 20, X o, XI¥

A TA

Proor. We start with (1): let (x;);<,i be a nk-tuple in X. V6 €[0,1],
let X,(0) denote X _jy;<j<i€(0)2;. Let w denote the canonical projection
from X onto X/Y. Then V0 €[0,1], Yi=1,2,...,n, Vy>O0 there exists
Y,(0) in Y such that: || X,(0)+ Y ,(0)llx < lln(X(0))llx;¥ +7. Let 4(6) be
the integral

(S22 e) X (O)l2de)t;

by convexity of the norm, we have:
A(0) = (SIIZ7-r e Y(O)2dt)E + (SIZEZT es(t)(Xo(6) + Y (0))[Pde)?
go that by the definitions of a,¥ and a,X
A(6) = a, ¥ (ZiZ2 1T 0P +a, X (ZIZT I1IX(6) + Y (0)|12);

but on one hand ||Y,(0)| = )1X;(0)]+]Y:(6)+X,(0)] and on the other
hand || X,(0) + Y ()|l = |ln(X ;(6))]| + 7, so that we have:

A(0) < a, T (ZEZT IX (OB + (2, T +a,X)[(ZiZT (X 4(6)) %)% +yV/m]
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which gives after integration:

(§4(6)2d0) < a, ¥ (ZiZT IXDE + (@, +a,X) (T (XI5 +yV/n]
z [a, 17%“‘+(a ¥ +a, X)akx’y](EZ'""llell2)*+(a Y +a,X)yyn.
By an easy argument of symmetry one finds that
(§4(0)2d0) = (§IZI21F &5(t)y|2de)t;
the result then follows since y > 0 is arbitrary.

Let us now prove (2): Let (X,,),,»0 be a martingale with values in X
such that X,=0, adapted to a sequence of og-algebras (&7,,)n,=e. We
write 4;=X;, — X, 4y, for ¢=1,2,...,n, and set Z;=0 and YA1=1,2,...,
Z,=3,,<24;. Obviously (Z,),., is a martingale with respect to the
sequence of g-algebras (27;;);50. Now, as easily seen, Vy>0,Vi=1,2,...,
there exists an &/;,-measurable random variable Y, with values in Y
such that:

(3) 4+ Yillrax) S (Al axpy+7 -
We define a martingale (U,),., with values in Y by setting Uy=0 and
vi=12,.
Uy = Jiciga BH(Y ) = BT );
(Ua)iz0is a martingale adapted to the sequence of o-algebras (&7;;);50-
We notice that: Vi=1,2,...,n
Ui—Uyy = B¥HY,)—B6H(Y,),
and (since E¥¢-Dk(A,)=0) that:
A4 U= Uyy = B9HA;+ Y) — BFE0HA,+ T )5
by the triangle inequality:
U= Usalle = lAille+ 114+ Uy = Uyl
so that, by the continuity of the conditional expectations on L*X), we
have:

(4) 14;+ U= Uil < 214+ Yz
hence:
(6) U;=Usialle S 114l + 2014+ Yl -

Now, using the definition of «, X, we get:

1Xnill = 1Zall = NUlla+11Z,+ Uylla
o XS U= Uy 3) + 0, X2t 14+ Uy — Uil
o, ¥ (I2T AR + 2(, ¥ + o, D)ZizT i + Y 31H

the last inequality being deduced from (4) and (5).

(8)

IA 1A
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Now fix ¢ between 1 and =», and set V=0 and Vi=1,2,...,
Vi=Su ve<jsti-vr+aX;—X;-1, so that (V;7),5, is a martingale adapted
to the sequence of o-algebras (.7 _jr+1):20; We have therefore:

||Ai||z = ||Vki||z = “kX(Z(i—-l)k<j§ik ”Xj—Xj—xllg)*
and:
llm(4)llz = Hﬂ(Vki)”z = “kX/Y(Z(i~1)k<jgik H”(Xj)"ﬂ(xj—ﬂ”g)*
S XY (E(t—l)k<j§ik ”Xj - X1—1||§)'r .

With (3), (6) and the inequalities above, we finally obtain:
X prlle = (‘xny ‘ka + 20‘ny “kX/Y + 20‘nX0‘kX/Y)(EﬂC1 ”Xj - Xj—l”z%)i +
+2pYn(a,¥ +a,%)

and this concludes the proof of (2) since y > 0 is arbitrary.

3. Applications.
We first recall some definitions:
A Banach space X is called B-convex if there exist an integer n and
&> 0 such that
inf|| 3327 el < n(l—e)

for all n-tuples (z,,%,,...%,) in the unit ball of X and the infimum is
over all choices of n-signs (e;,...,¢&,) in {—1,1}".

Following James, we say that a Banach space Z is finitely represent-
able in a Banach space X if for all £¢>0 and any finite dimensional sub-
space M of Z there exist a subspace N of X and an isomorphism 7'
from M onto N such that

ITIT- < 1+e.

A Banach space X is called super-reflexive if all the Banach spaces Z
which are finitely representable in X are reflexive.

R. C. James has recently produced [4] an example of a B-convex
Banach space which is not super-reflexive. It is proved in [2] that a
Banach space is super-reflexive if and only if there is an equivalent
norm on X for which the space is uniformly convex, i.e. Ve € (0,2)

() = inf{l— |3+l | llell=llyll=1, e —yllze} > 0.

Moreover (cf. [9]) it is possible to choose a renorming for which the
modulus of convexity d8(e) is greater than Ke? for some constant K >0
and some ¢ < oo,
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D. P. Giesy proved [3, th. II.9] that if ¥ and X/Y are B-convex
then X is also B-convex; actually this also follows from (1) since it is
known that a Banach space X is B-convex iff a,X < J/n for some integer
n or iff @, %X[)/n tends to 0 when n tends to infinity (cf. [8, exp. VIL.
p- 12-13]. The situation is quite similar in the case of super-reflexivity;
the following proposition is used and discussed in [10].

ProposITION 1: Let X be a Banach space; the following conditions are
equivalent :
(i) X is super-reflexive.
(i) «,X <yn for some integer n.
(iii) «,%/Yn — 0 when n — oco.
(iv) There exists a real number p>2 such that

x,X[nt? >0 when n > oo .

REeMARK 1. The equivalence of (ii), (iii) and (iv) can be easily deduced
from (2) which becomes, when taking Y=X, o, X<«,XoyX (since
x, =0 for all ne N).

THEOREM 2. If a Banach space X has a closed subspace Y such that
both Y and X|Y are super-reflexive then X is super-reflexive.

Proor. From (2) we deduce: (since obviously «,X < )z for all n e N)
VaeN, a,,X £ nfe,Y[Yn+20,Y Yo, XY [Yn+2x, XY [Yn] .

If Y and X/Y are super-reflexive, then (proposition 1) «,Y/y/n — 0 and
x,X'¥ [Yn — 0 when n - co; hence when n is sufficiently large we must
have «,,X <n which implies (proposition 1) that X itself is super-reflexive.

We will now focus our attention on the case where both Y and X/Y
are isomorphic to a Hilbert space. The sequences (2,%X),>; and (x,%),>1
give information on the isomorphic structure of the Banach space X.
For instance, S. Kwapien has proved in [5] that sup,.,a,%a,X" is finite
if and only if the Banach space X is isomorphic to a Hilbert space.
Also, it is proved in [10] (see also [9]) that sup,.,«,¥ is finite if and only
if the Banach space X has an equivalent norm | | for which the modulus
of smoothness

ot) = sup{}(|lz+ty|+|x—ty)) -1 | z,y e X, |2|=]y|=1}

satisfies o(t) < K12 for all >0, for some constant K.
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The Banach spaces X for which sup,.,a,X is finite are usually re-
ferred to as spaces of type 2.

THEOREM 3. Let X be a Banach space and Y a closed subspace of X.
a) If both spaces Y and X|Y are of type 2 (i.e. both sup,.,a,¥ and
BUP,~18,~X'Y are finite) then there exist constants ¢ and « such that:

vn 2 2, a,X = c(Logn)*.

b) If both sup,.,«,X and sup,.,x,X'¥ are finite then there exist con-
stants ¢ and « such that:

vn 2 2, «,X £ c(Logn)*.

Proor. Let ¢, =sup,.,a,¥, ¢c,=sup,,a,X’¥ ; the inequality (1) yields:
Vn,keN, a,%X = o X +cca+a,%cy;

since obviously (unless X = {0}), 1<a,X for all integers n, we obtain in
particular:
(7 VreN, a,.X £ (c;+cct¢5)a,% .

Let « be such that 2*=c;+c,c,+¢, and set b,=a,X/(Logn)* for all
n=2,3,...; then (7) becomes:

(8) VneN, b,=0,.
Let n be an integer, n> 2; there exist £ =0 such that:
N,=2"<n< 2™ =N,2.
Since (@,%),>; is clearly increasing, we can write:
by = a,%[(Logn)* < ay2*[(Logn)* = 2%ay2X[(Log N;?)* = 2%by1 ;

from (8) it follows that Vk=0 by, <by,=b,, hence b, =<2, for all
integers n = 2; this completes the proof of (a). It is clear that the proof
of (b) is entirely similar.

COROLLARY 1. In the situation of theorem 2, if each of Y and X|Y 1s
isomorphic to a Hilbert space, then for all p<2 there exists a constant
¢, > 0 such that:

oIS IR lP )P S |X nally S (3 [lw,lIP)1P

Jor all finite sequences (x,) in X.
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Proor. The assumptions imply that ¥ and X/Y are of type 2, and
also that X*/Y* and Y* are of type 2. By theorem 3.a we have:

VneN: a,X < ¢(Logn)*, a,X" < c(Logn)*,

for some constants ¢ and «. By a known argument (see [8, exp. 7, p. 5])
one can prove that for all p <2 there exists a constant ¢, such that:

”z enxnllz é Cp(z ”xn”p)llp

for all finite sequences (z,) in X and

”z Enxn*nz § cp(z ”xn*”p)llp

for all finite sequences (z,*) in X*. The conclusion follows then from an
argument of duality.

CorROLLARY 2. If each of the spaces Y and X|Y is isomorphic to a Hilbert
space, then for all p <2 there exists an equivalent renorming of X for which
the modulus of smoothness o satisfies V¢>0: o(t) < K t?, for some constant
K,,; moreover, for all ¢> 2 there exists an equivalent renorming of X for
which the modulus of convexity & satisfies Ve<2: d(e)z K9, for some
constant K,> 0.

Proor. The assumptions imply, using theorem 3.b, that there exist
constants ¢ and « such that:

VneN: x,X < ¢(Logn)* and «,X" < c(Logn)*.

As proved in [10], [9], this is sufficient to imply the conclusions of
corollary 2.

REMARK 2. It is proved in [6] that if a Banach space X has an equiv-
alent norm for which the modulus of smoothness g satisfies V{>0:
o(t) < Kt? and an equivalent norm for which the modulus of convexity &
satisfies Ve € (0,2): d(¢) = Le?, for some constants K and L >0, then X
is isomorphic to a Hilbert space.

REMARK 3. A Banach space is called of type p if there exists a con-
stant ¢ such that:

(§IZ eatzpllrat)? < e [lzaliP)H

for all finite sequences (z,) in X; let us call briefly p-smooth a Banach
space for which there is an equivalent norm such that the modulus of
smoothness o satisfies V¢ > 0: o(t) £ Kt?, for some constant K.
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If in the definitions of ¢, X and «,X we replace 2 by a number p in
(1,2), then clearly Theorem 1 is still valid. This can be used to prove
in an entirely similar way as the preceding lines: If X has a closed sub-
space Y such that both Y and X/Y are of type p (respectively are
p-smooth) then X is of type ¢ (respectively is g-smooth) for all ¢ < p.

REMARK 4. C.Stegall proved that if both [X/Y]* and Y* have the Radon—
Nikodym property then X* also has the Radon-Nikodym property
[11, corollary 6]. We mention this result because (cf. [9]) super-reflexivity
happens to be equivalent to the super-Radon-Nikodym property.

4. The counterexample to Palais’ problem.
We turn now to a construction of an example which shows that if ¥
and X/Y are both Hilbert spaces X itself need not be a Hilbert space.
We start by mentioning an elementary numerical inequality which we
shall need in the sequel. Let ¢ and s be real numbers and consider the
complex numbers u=1+14s, v=1+1t. Then

J6(1+£3)7 —s(1 +83)4[2 = (Tmag(u/|ul —f|o])?
(9) < |u/lul—v/lo||* = 2—2 Rea ud/|u| - |v]
= 2((1+£2)¥(1 +82)t — (1 +15))/|u] - [o] < 2((1 +£2)H(1 + 82)} — (1 + 18)) .

We define now a class B, of functions from the n dimensional real
Hilbert space 12, into the infinite-dimensional Hilbert space 2. These
functions are defined so as to resemble linear operators. The main point
in the construction below is to show that if n is large there are however
functions in B,, whose distance (in a natural definition of such a notion)
from the set of linear operators is large.

DerFINITION. Let » be an integer. A function f: I2,—I2 is said to belong
to the class B, if

(10) fQx) = Af(x), xel?,, A real
and
(11) Ik f @l < 3kl

whenever {z;}f_, < 2, are such that 3%_2,=0.

Clearly every linear operator belongs to B,. The next lemma enables
an inductive construction of members of B, whose non-linearity incre-
ases with ».
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LeMma 1. Let n be a positive integer and let feB,. Then the map g:
12,,—>1% defined by

(12) g@y) = (f(), f(9) @Iyl (=] +[51P)Y), @y €l
belongs to By,.

In (12) the pair (z,y) denotes an element in [2,, =12, @ 12, (the direct
sum in the Hilbert sense). Similarly the element in the right hand side
of (12) determines in an obvious way an element in /2. The third compo-
nent in the right hand side of (12) is taken as 0 if x=y=0.

" Proor. It is trivial that g satisfies (10) and thus we have only to
check (11). Let {x;}¥_, and {y;}*_, be elements in 12, such that

(13) bam= 20y =0.
Put
(14) oy = lyll/ e+l ¢ = 1....k

(we assume as we clearly can that |jz;]|2+ |ly;||*> 0). By (11) (for the given
J) and (13) we get that for any choice of the scalar ¢

129 y)lB = (oS (@), 2ef(@e), Daovaws—c 22|12
(15) = |2 f@NP 12 F@IE+ 1125 (o — )2
S Called)® + Csllyal)? + Cilos — el [l -

Put now ¢ =3, a,/%[|/Z; lz;]. Then

S lag—cllled)?* £ 3 llwill 3 l2ell(or; — )
= D llwill g llowgll(oeg® + €2 — 205¢)
= 2 llwgll 2 lmilloes — (3 [l 2c?
3 Zi E,- [l 1| (o — o¢5)?

By (9), (14), (15) and (16) we get that
12 9@ew)l® = (X lldl)?+ G llyal)2+
+ 30 2 [l + Nyl )l l12 -+ Nlyl12))E = (sl el + Dlvall 51D ]

= D el 4 35 IallB+ 2, 5, 645 (2l + el )yl + Nly112))
= (24 (P4 lyal)? = (s (@ yl)?

and this concludes the proof of the lemma.

(16)



208 PER ENFLO, JORAM LINDENSTRAUSS AND GILLES PISIER

We introduce next a natural notion of the distance of a function
f: 1%, — 2 from the set of linear operators.

DerFintTION. Let f: 12, — 12 be a bounded function. Put

D,(f) = infpsupy_,|f(x)—T=| ,

where the infimum is taken over all linear operators 7': 12, — I2. Put also

Dn = BuP{Dn(f); feBn}'

(Observe that every f € B, is automatically bounded).

From Lemma 1 it is easy to get an estimate from below on the growth
of D,.

LeMMA 2. For every integer n we have

D2, = D2, +1/16.

Proor. Let ¢>0 and let fe B, be such that D, (f)>D,—e. Let
g € B,, be the function given by (12). Let 7" be a linear operator from
I2,, into 2. In accordance with the decomposition of /%,, and I? into
direct summands appearing in (12) we define six linear operators from
12, into [? by the relations

T(x,0) = (U, Uy, Ugx)

T0,y) = (V1y, Vay, Vsy) -
By the definition of D, (f) there are z, and y, in I%,, both of norm 1,
so that

(17) Uz —f (@)l > Mp—e, [IVayo—f@ll > M, —=.
By considering the point (x,,0) in I2,, we get that
(18) D2, 2 D?,(9) 2 Uwmo—f(@o)lP+11UsZol* 2 (M, —e)2+[[Ugwol® .

Consider next the points (z,, + yo)/l/§ in I%,,. We have by (10) and (12)
that

g(zof V“_’-‘» + 3/0/1/5) —T(xof VE’ + Yol VE)__
= (f (29) — Uyzy, — Upgy, xo/V2 - Ua“;o)/‘/5 F _
F (Vayo, Va¥o—f(%0)s Vsyo)lv 2.
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Since for every two vectors z and w in I, there is a sign 6 such that
llz+ Bul[2 2 Jlz][* + [l][* we get that

(19) D%, 2 D%,(9)
2 3(1f(xo) = Uyoll®+ |U 5|12 + onll/g— Ul 2+ Vo9l +

+ IV oyo—F (o)l +|] Va?/ouz)
2 (M, — )2+ [l3wy — Uso]) 212 -

One of the numbers ||Usx,|| and ||}z, — Uaxo/l/§|| must be larger than £.
Since ¢ was arbitrary the lemma follows by comparing (18) with (19).

CororrARY. There is a constant C >0 so that D, =C(Logn)k.

For the construction below it is convenient and also of interest to
note that the fact that the range of the functions in B, was allowed to
be the infinite-dimensional Hilbert space I* was not really used. We
could just as well have defined B,, by considering maps from 2, into I2,.

Let n be an integer, let f: 12, —I?,, be an element of B, and let || ||
denote the usual inner product norm in /%, and I2,,. In the direct sum
Z,=1%, @2, we introduce a norm |||-]||| by taking as its unit ball the
closed convex hull of all the points of the form (0,y) with |jy]| <1 and all
the points of the form (x,f(x)) witn |l«|| £ 1. The subspace of Z, of all the
points of the form (0,y) is denoted by Y, . With these notations we have

ProrosrrioN 2. The space Y, 18 isometric to 12,,. The space Z,]|Y,, 13
tsometric to 12,. Any linear projection of Z, onto Y, has norm zD,(f).

Proor. Whenever ||y||< 1 the point (0,y) is in the unit ball of Z, and
hence |||(0,y)]|| < 1. Assume conversely that |||(0, y)|[| <1. Then there is
a y, €%, and {x;}]_, €2, so that

2:% =0, yo+3:f(x) =y, lyoll+2:llzl 1.
Hence, by (11)
Il = ol + 112 f @I = Nlgoll + 34 el < 1.

This proves the first statement of the proposition.
Consider now Z,/Y,. For every z €12, we have

inf,cp, [I(2,0) +ylll = [ll(z.f @)l < Il

Also assume that |||(x,0)+ Y, ||| < 1. Since the first (i.e. the 12,) coordinate
of the points in the unit ball of Z, has ||-|| less or equal to 1 we get that
llwl| £ 1. This proves the second statement in the proposition.
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Finally let P be a bounded linear projection from Z, onto Y,. Then
P(x,0)=(0,Tx) for some linear operator 7' from 12, to I2,,. Hence

P(z,f(x)) = P(x,0)+P(0,f(x))=(0,Tx)+(0,f(x))
and thus

P 2 supg_ [[1P(2.f(@))]]]| = supg_ [Tz +f (@)l 2 D,f .

THEOREM 4. There exists a Banach space Z and a subspace Y of Z so
that ¥ and Z[|Y are both isometric to l, but Z is not isomorphic to 1,.

Proor. By the Corollary to Lemma 2 we may choose for every integer
n a map from 2, to 1%, so that if Z,> Y, are the spaces constructed
above any projection from Z, onto Y, will have norm 2= C(Logn)!.

The spaces Z = ($.8%,):2 Y = (T.®Y,)s

have the properties required in the statement of the theorem.

RemARK. If 1<p<oo the spaces Z,=(3,HZ,), and ¥,=(3,DY,),
are examples of spaces such that Y, and Z,/Y, are both isomorphic to
l, but Z, is not an &, space.

REFERENCES

1. N. Dunford and J. T. Schwartz, Linear operators, Part I (Pure and Applied Ma-
thematics 7), Interscience, New York, 1958.
2. P. Enflo, On Banach spaces which can be given an equivalent uniformly convexr norm,
Israel J. Math. 13 (1972), 281-288.
3. D. P. Giesy, On a convexity condition in normed linear spaces. Trans. Amer. Math.
Soc. 125 (1966), 114-146.
4. R. C. James, A non reflexive Banach space that is uniformly non octahedral, Israel J.
Math. 18 (1974), 145-156.
5. S. Kwapien, Isomorphic characterization of inner product spaces by orthogonal series
with vector valued coefficients, Studia Math. 44 (1972), 583-595.
6. T. Figiel and G. Pisier, Séries aléatoires dans les espaces uniformément convexes ou
uniformément lisses. C. R. Acad. Sci. Paris Sér. A 279 (1974), 611-614.
. J.Lindenstrauss and H. P. Rosenthal, The £ spaces, Israel J. Math. 7 (1969), 325-349.
. Maurey-Schwartz, Séminaire, Ecole Polytechnique, Paris, 1973-74.
. G. Pisier, Martingales & valeurs dans les espaces uniformément convexes, C. R. Acad.
Sci. Paris Sér. A 279 (1974), 647-649.
10. G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. (to appear).
11. C. Stegall, The Radon-Nikodym property in conjugate Banach spaces, Trans. Amer.
Math. Soc. (to appear).

© w3

STANFORD UNIVERSITY, STANFORD, CALIFORNIA, U.8.A,
THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL
ECOLE POLYTECHNIQUE, PARIS, FRANCE



