ON THE "THREE SPACE PROBLEM"

PER ENFLO*, JORAM LINDENSTRAUSS and GILLES PISIER

To Werner Fenchel on his 70th birthday.

1. Introduction.

Let X be a Banach space and Y a closed subspace of X. In this paper we will study the so-called three space problem: if one has information about two of the Banach spaces X, Y and X/Y, what can be said about the third one. In the sequel we shall have information about Y and X/Y and draw conclusions about X. For other aspects of the problem cf. [7].

It is a classical result [1, II.4, p. 19–20] that if Y and X/Y are reflexive then X is also reflexive. D. P. Giesy has shown [3, Th. II.9] that if Y and X/Y are B-convex then X is also B-convex. We prove below that if Y and X/Y are super-reflexive then X is also super-reflexive.

We also solve the following problem (apparently due to Palais): if each of the spaces Y and X/Y is isomorphic to a Hilbert space, is X isomorphic to a Hilbert space? We prove that X is in a certain sense close to being isomorphic to a Hilbert space, but that it need not be isomorphic to a Hilbert space.

2. Some inequalities.

In this section, we obtain information on the behavior of Rademacher series (resp. of martingales) with values in X knowing the corresponding information for Y and X/Y. We denote by (ε_n) the Rademacher system on the interval $[0,1]$. Let (Ω, \mathcal{A}, P) be a probability space, a sequence of random variables $(X_n)_{n \geq 0}$ on (Ω, \mathcal{A}, P) with values in a Banach space is called a martingale if there exists an increasing sequence $(\mathcal{A}_n)_{n \geq 0}$ of sub-σ-algebras of \mathcal{A} such that $\forall n \geq 0$, $X_n = E^{\mathcal{A}_n}(X_{n+1})$.

In this paper we shall say briefly ,,martingale” meaning ,,martingale defined on some probability space (Ω, \mathcal{A}, P)”; moreover if Z is a Banach space valued random variable on a probability space (Ω, \mathcal{A}, P) we shall write simply $\|Z\|_2$ for $(\int \|Z(\omega)\|^2 dP(\omega))^{\frac{1}{2}}$.

* Research was partially sponsored by NSF Grant GP 43083.
Sections 1-3 received November 25, 1974. Section 4 received February 3, 1975.

Math. Scand. 36 — 14
When we wish to distinguish the norms of the Banach spaces involved, we will write \(\| \cdot \|_X, \| \cdot \|_Y, \ldots \) for the norms in the spaces \(X, Y, \ldots \). In particular recall the definition of the norm in \(X/Y \): let \(\pi \) denote the canonical projection from \(X \) onto \(X/Y \), by definition we have

\[
\forall x \in X, \| \pi(x) \|_{X/Y} = \inf \{ \| x + y \| \mid y \in Y \}.
\]

Definition/Notation. Let \(X \) be a Banach space and \(n \) an integer.

We define \(a_n^X \) as the smallest positive number \(a \) such that:

\[
\left(\int \| \sum_{i=1}^n \varepsilon_i(t)x_i \|^2 dt \right)^{1/2} \leq a \left(\sum_{i=1}^n \| x_i \|^2 \right)^{1/2}
\]

for all \(n \)-tuples \((x_i)_{1 \leq i \leq n} \) of elements of \(X \).

We define \(\alpha_n^X \) as the smallest positive number \(\alpha \) such that:

\[
\| X_n \|_2 \leq \alpha \left(\sum_{i=1}^n \| X_i - X_{i-1} \|_2^2 \right)^{1/2}
\]

for all martingales \((X_n)_{n \geq 0} \) with values in \(X \) and such that \(X_0 = 0 \). Obviously we have \(a_n^X \leq \alpha_n^X \leq \sqrt{n} \) for all integers \(n \). The following theorem motivates the preceding definitions.

Theorem 1. Let \(X \) be a Banach space and \(Y \) be a closed subspace of \(X \). The following inequalities hold for all integers \(n \) and \(k \):

1. \(a_{nk}^X \leq a_n^Y a_k^X + a_n^Y a_k^{X/Y} + a_n^X a_k^{X/Y} \)
2. \(\alpha_{nk}^X \leq \alpha_n^Y \alpha_k^X + 2 \alpha_n^Y \alpha_k^{X/Y} + 2 \alpha_n^X \alpha_k^{X/Y} \).

Proof. We start with (1): let \((x_j)_{j \leq nk} \) be a \(nk \)-tuple in \(X \). \(\forall \theta \in [0, 1] \), let \(X_i(\theta) \) denote \(\sum_{i=(i-1)k < j \leq ik} \varepsilon_j(\theta)x_j \). Let \(\pi \) denote the canonical projection from \(X \) onto \(X/Y \). Then \(\forall \theta \in [0, 1], \forall i = 1, 2, \ldots, n, \forall \gamma > 0 \) there exists \(Y_i(\theta) \) in \(Y \) such that: \(\| X_i(\theta) + Y_i(\theta) \|_X \leq \| \pi(X_i(\theta)) \|_{X/Y} + \gamma \). Let \(A(\theta) \) be the integral

\[
\left(\int \| \sum_{i=1}^n \varepsilon_i(t)X_i(\theta) \|^2 dt \right)^{1/2};
\]

by convexity of the norm, we have:

\[
A(\theta) \leq \left(\int \| \sum_{i=1}^n \varepsilon_i(t)Y_i(\theta) \|^2 dt \right)^{1/2} + \left(\int \| \sum_{i=1}^n \varepsilon_i(t)(X_i(\theta) + Y_i(\theta)) \|^2 dt \right)^{1/2},
\]

so that by the definitions of \(a_n^Y \) and \(a_n^X \):

\[
A(\theta) \leq a_n^Y \left(\sum_{i=1}^n \| Y_i(\theta) \|^2 \right)^{1/2} + a_n^X \left(\sum_{i=1}^n \| X_i(\theta) + Y_i(\theta) \|^2 \right)^{1/2}.
\]

But on one hand \(\| Y_i(\theta) \| \leq \| X_i(\theta) \| + \| Y_i(\theta) + X_i(\theta) \| \) and on the other hand \(\| X_i(\theta) + Y_i(\theta) \| \leq \| \pi(X_i(\theta)) \| + \gamma \), so that we have:

\[
A(\theta) \leq a_n^Y \left(\sum_{i=1}^n \| X_i(\theta) \|^2 \right)^{1/2} + (a_n^Y + a_n^X) \left[\left(\sum_{i=1}^n \| \pi(X_i(\theta)) \|^2 \right)^{1/2} + \gamma \sqrt{n} \right].
\]
which gives after integration:

\[(\int A(\theta)^2 d\theta)^\frac{1}{2} \leq a_n^X(\sum_{i=1}^{\frac{\gamma n}{2}} ||X_i||_2)^\frac{1}{2} + (a_n^Y + a_n^X)[(\sum_{i=1}^{\frac{\gamma n}{2}} ||\tau(X_i)||_2)^\frac{1}{2} + \gamma \sqrt{n}] \]

\[\leq [a_n^X a_k^X + (a_n^Y + a_n^X)a_k^X/X](\sum_{i=1}^{\frac{\gamma n}{2}} ||x_j||_2)^\frac{1}{2} + (a_n^Y + a_n^X)\gamma \sqrt{n} \]

By an easy argument of symmetry one finds that

\[(\int A(\theta)^2 d\theta)^\frac{1}{2} = (\int ||\sum_{j=1}^{j=n_k} \varepsilon_j(t)x_j||^2 dt)^\frac{1}{2} \]

the result then follows since \(\gamma > 0\) is arbitrary.

Let us now prove (2): Let \((X_m)_{m \geq 0}\) be a martingale with values in \(X\) such that \(X_0 = 0\), adapted to a sequence of \(\sigma\)-algebras \((\mathcal{A}_m)_{m \geq 0}\). We write \(A_t = X_{tk} - X_{(t-1)k}\) for \(i = 1, 2, \ldots, n\), and set \(Z_0 = 0\) and \(\forall \lambda = 1, 2, \ldots, Z_\lambda = \sum_{i \leq t \leq \lambda} A_t\). Obviously \((Z_\lambda)_{\lambda \geq 0}\) is a martingale with respect to the sequence of \(\sigma\)-algebras \((\mathcal{A}_{tk})_{k \geq 0}\). Now, as easily seen, \(\forall \gamma > 0, \forall i = 1, 2, \ldots,\) there exists an \(\mathcal{A}_{tk}\)-measurable random variable \(Y_t\) with values in \(Y\) such that:

\[(3) \quad ||A_t + Y_t||_{L^2(X)} \leq ||\tau(A_t)||_{L^2(X/Y)} + \gamma \cdot \]

We define a martingale \((U_\lambda)_{\lambda \geq 0}\) with values in \(Y\) by setting \(U_0 = 0\) and \(\forall \lambda = 1, 2, \ldots,\)

\[U_\lambda = \sum_{1 \leq i \leq \lambda} E_{\mathcal{A}_{ti}}(Y_t) - E_{\mathcal{A}_{(t-1)i}}(Y_t) \]

\((U_\lambda)_{\lambda \geq 0}\) is a martingale adapted to the sequence of \(\sigma\)-algebras \((\mathcal{A}_{tk})_{k \geq 0}\).

We notice that:\(\forall i = 1, 2, \ldots, n\)

\[U_t - U_{t-1} = E_{\mathcal{A}_{tk}}(Y_t) - E_{\mathcal{A}_{(t-1)k}}(Y_t) \]

and (since \(E_{\mathcal{A}_{(t-1)k}}(A_t) = 0\)) that:

\[A_t + U_t - U_{t-1} = E_{\mathcal{A}_{tk}}(A_t + Y_t) - E_{\mathcal{A}_{(t-1)k}}(A_t + Y_t) \]

by the triangle inequality:

\[||U_t - U_{t-1}||_2 \leq ||A_t||_2 + ||A_t + U_t - U_{t-1}||_2 \]

so that, by the continuity of the conditional expectations on \(L^2(X)\), we have:

\[(4) \quad ||A_t + U_t - U_{t-1}||_2 \leq 2||A_t + Y_t||_2 \]

hence:

\[(5) \quad ||U_t - U_{t-1}||_2 \leq ||A_t||_2 + 2||A_t + Y_t||_2 \]

Now, using the definition of \(\alpha_n^X\), we get:

\[(6) \quad ||X_{nk}||_2 = ||Z_n||_2 \leq ||U_n||_2 + ||Z_n + U_n||_2 \]

\[\leq \alpha_n^X(\sum_{i=1}^{n_k} ||U_t - U_{t-1}||_2^2)^\frac{1}{2} + \alpha_n^X(\sum_{i=1}^{n_k} ||A_t + U_t - U_{t-1}||_2^2)^\frac{1}{2} \]

\[\leq \alpha_n^X(\sum_{i=1}^{n_k} ||A_t||_2^2)^\frac{1}{2} + 2(\alpha_n^Y + \alpha_n^X)(\sum_{i=1}^{n_k} ||A_t + Y_t||_2^2)^\frac{1}{2} \]

the last inequality being deduced from (4) and (5).
Now fix \(i \) between 1 and \(n \), and set \(V_0^i = 0 \) and \(\forall \lambda = 1, 2, \ldots, V_{\lambda}^i = \sum_{(\lambda - 1)k < j \leq (\lambda - 1)k + k} X_j - X_{j-1} \), so that \((V_\lambda^i)_{\lambda \geq 0} \) is a martingale adapted to the sequence of \(\sigma \)-algebras \((\mathcal{A}_{(\lambda - 1)k})_{\lambda \geq 0} \); we have therefore:

\[
\|A_\lambda^i\|_2 = \|V_k^i\|_2 \leq \alpha_k^X \left(\sum_{(\lambda - 1)k < j \leq \lambda k} \|X_j - X_{j-1}\|_2 \right)^\lambda
\]

and:

\[
\|\pi(A_\lambda^i)\|_2 = \|\pi(V_k^i)\|_2 \leq \alpha_k^X \left(\sum_{(\lambda - 1)k < j \leq \lambda k} \|\pi(X_j) - \pi(X_{j-1})\|_2 \right)^\lambda
\]

\[
\leq \alpha_k^X \left(\sum_{(\lambda - 1)k < j \leq \lambda k} \|X_j - X_{j-1}\|_2 \right)^\lambda.
\]

With (3), (6) and the inequalities above, we finally obtain:

\[
\|X_n^k\|_2 \leq \left(\alpha_n^Y \alpha_k^X + 2 \alpha_n^Y \alpha_k^X + 2 \alpha_n^X \alpha_k^X \right) \left(\sum_{j=1}^{k} \|X_j - X_{j-1}\|_2 \right)^k + 2\gamma \sqrt{n} \left(\alpha_n^Y + \alpha_n^X \right),
\]

and this concludes the proof of (2) since \(\gamma > 0 \) is arbitrary.

3. Applications.

We first recall some definitions:

A Banach space \(X \) is called \(B \)-convex if there exist an integer \(n \) and \(\epsilon > 0 \) such that

\[
\inf \|\sum_{i=1}^n \epsilon_i x_i\| \leq n(1 - \epsilon)
\]

for all \(n \)-tuples \((x_1, x_2, \ldots, x_n)\) in the unit ball of \(X \) and the infimum is over all choices of \(n \)-signs \((\epsilon_1, \ldots, \epsilon_n)\) in \((-1, 1)^n\).

Following James, we say that a Banach space \(Z \) is finitely representable in a Banach space \(X \) if for all \(\epsilon > 0 \) and any finite dimensional subspace \(M \) of \(Z \) there exist a subspace \(N \) of \(X \) and an isomorphism \(T \) from \(M \) onto \(N \) such that

\[
\|T\| \|T^{-1}\| \leq 1 + \epsilon.
\]

A Banach space \(X \) is called super-reflexive if all the Banach spaces \(Z \) which are finitely representable in \(X \) are reflexive.

R. C. James has recently produced [4] an example of a \(B \)-convex Banach space which is not super-reflexive. It is proved in [2] that a Banach space is super-reflexive if and only if there is an equivalent norm on \(X \) for which the space is uniformly convex, i.e. \(\forall \epsilon \in (0, 2) \)

\[
\delta(\epsilon) = \inf \{1 - \|\frac{1}{2}(x+y)\| \mid \|x\| = \|y\| = 1, \|x - y\| \geq \epsilon\} > 0.
\]

Moreover (cf. [9]) it is possible to choose a renorming for which the modulus of convexity \(\delta(\epsilon) \) is greater than \(K\epsilon^q \) for some constant \(K > 0 \) and some \(q < \infty \).
D. P. Giesy proved [3, th. II.9] that if Y and X/Y are B-convex then X is also B-convex; actually this also follows from (1) since it is known that a Banach space X is B-convex iff $a_n^X < \sqrt{n}$ for some integer n or iff $a_n^{X/\sqrt{n}}$ tends to 0 when n tends to infinity (cf. [8, exp. VII. p. 12–13]). The situation is quite similar in the case of super-reflexivity; the following proposition is used and discussed in [10].

Proposition 1: Let X be a Banach space; the following conditions are equivalent:

(i) X is super-reflexive.

(ii) $\alpha_n^X < \sqrt{n}$ for some integer n.

(iii) $\alpha_n^{X/\sqrt{n}} \rightarrow 0$ when $n \rightarrow \infty$.

(iv) There exists a real number $p > 2$ such that

$$\alpha_n^{X/n^{1/p}} \rightarrow 0 \quad \text{when } n \rightarrow \infty.$$

Remark 1. The equivalence of (ii), (iii) and (iv) can be easily deduced from (2) which becomes, when taking $Y = X$, $\alpha_{nk}^X \leq \alpha_n^X \alpha_k^X$ (since $\alpha_n^{(0)} = 0$ for all $n \in \mathbb{N}$).

Theorem 2. If a Banach space X has a closed subspace Y such that both Y and X/Y are super-reflexive then X is super-reflexive.

Proof. From (2) we deduce: (since obviously $\alpha_n^X \leq \sqrt{n}$ for all $n \in \mathbb{N}$)

$$\forall n \in \mathbb{N}, \quad \alpha_n^{x_n^X} \leq n[\alpha_n^Y / \sqrt{n} + 2\alpha_n^X / \sqrt{n} \cdot \alpha_n^{X/Y}/\sqrt{n} + 2\alpha_n^{X/Y}/\sqrt{n}] .$$

If Y and X/Y are super-reflexive, then (proposition 1) $\alpha_n^Y / \sqrt{n} \rightarrow 0$ and $\alpha_n^{X/Y}/\sqrt{n} \rightarrow 0$ when $n \rightarrow \infty$; hence when n is sufficiently large we must have $\alpha_n^{x_n^X} < n$ which implies (proposition 1) that X itself is super-reflexive.

We will now focus our attention on the case where both Y and X/Y are isomorphic to a Hilbert space. The sequences $(a_n^X)_{n \geq 1}$ and $(\alpha_n^X)_{n \geq 1}$ give information on the isomorphic structure of the Banach space X. For instance, S. Kwapien has proved in [5] that $\sup_{n \geq 1} a_n^X a_n^{x_n^X}$ is finite if and only if the Banach space X is isomorphic to a Hilbert space. Also, it is proved in [10] (see also [9]) that $\sup_{n \geq 1} \alpha_n^X$ is finite if and only if the Banach space X has an equivalent norm $\| \cdot \|$ for which the modulus of smoothness

$$q(t) = \sup \left\{ \frac{1}{2}(|x+ty| + |x-ty|) - 1 \mid x, y \in X, |x| = |y| = 1 \right\}$$

satisfies $q(t) \leq Kt^2$ for all $t > 0$, for some constant K.

The Banach spaces \(X \) for which \(\sup_{n \geq 1} a_n^X \) is finite are usually referred to as spaces of type 2.

Theorem 3. Let \(X \) be a Banach space and \(Y \) a closed subspace of \(X \).

(a) If both spaces \(Y \) and \(X/Y \) are of type 2 (i.e. both \(\sup_{n \geq 1} a_n^Y \) and \(\sup_{n \geq 1} a_n^{X/Y} \) are finite) then there exist constants \(c \) and \(\alpha \) such that:

\[
\forall n \geq 2, \quad a_n^X \leq c (\log n)^\alpha.
\]

(b) If both \(\sup_{n \geq 1} \alpha_n^X \) and \(\sup_{n \geq 1} \alpha_n^{X/Y} \) are finite then there exist constants \(c \) and \(\alpha \) such that:

\[
\forall n \geq 2, \quad \alpha_n^X \leq c (\log n)^\alpha.
\]

Proof. Let \(c_1 = \sup_{n \geq 1} a_n^Y, \ c_2 = \sup_{n \geq 1} a_n^{X/Y} \); the inequality (1) yields:

\[
\forall n, \ k \in \mathbb{N}, \quad a_{nk}^X \leq c_1 a_k^X + c_1 c_2 + a_n^X c_2;
\]

since obviously (unless \(X = \{0\} \)), \(1 \leq a_n^X \) for all integers \(n \), we obtain in particular:

(7)

\[
\forall n \in \mathbb{N}, \quad a_{n^2}^X \leq (c_1 + c_1 c_2 + c_2) a_n^X.
\]

Let \(\alpha \) be such that \(2^\alpha = c_1 + c_1 c_2 + c_2 \) and set \(b_n = a_n^X/(\log n)^\alpha \) for all \(n = 2, 3, \ldots \); then (7) becomes:

(8)

\[
\forall n \in \mathbb{N}, \quad b_{n^2} \leq b_n.
\]

Let \(n \) be an integer, \(n \geq 2 \); there exist \(k \geq 0 \) such that:

\[
N_k = 2^{2^k} \leq n < 2^{2^{k+1}} = N_{k+1}^2.
\]

Since \((a_n^X)_{n \geq 1} \) is clearly increasing, we can write:

\[
b_n = a_n^X/(\log n)^\alpha \leq a_{N_k^2}^X/(\log N_k^2)^\alpha \leq 2^\alpha a_{N_k^2}^X/(\log N_k^2)^\alpha = 2^\alpha b_{N_k^2};
\]

from (8) it follows that \(\forall k \geq 0 b_{N_k} \leq b_{N_0} = b_2 \), hence \(b_n \leq 2^\alpha b_2 \) for all integers \(n \geq 2 \); this completes the proof of (a). It is clear that the proof of (b) is entirely similar.

Corollary 1. In the situation of theorem 2, if each of \(Y \) and \(X/Y \) is isomorphic to a Hilbert space, then for all \(p < 2 \) there exists a constant \(c_p > 0 \) such that:

\[
c_p^{-1} (\sum \|x_n\|p')^{1/p'} \leq \|\sum \varepsilon_n x_n\|_2 \leq c_p (\sum \|x_n\|p)^{1/p}
\]

for all finite sequences \((x_n) \) in \(X \).
Proof. The assumptions imply that Y and X/Y are of type 2, and also that X^*/Y^\perp and Y^\perp are of type 2. By theorem 3.a we have:

$$\forall n \in \mathbb{N}: a_n^X \leq c(\log n)^\alpha, \ a_n^{X^*} \leq c(\log n)^\alpha,$$

for some constants c and α. By a known argument (see [8, exp. 7, p. 5]) one can prove that for all $p < 2$ there exists a constant c_p such that:

$$\left\| \sum \varepsilon_n x_n \right\|_2 \leq c_p(\sum \left\| x_n \right\|^p)^{1/p}$$

for all finite sequences (x_n) in X and

$$\left\| \sum \varepsilon_n x_n^* \right\|_2 \leq c_p(\sum \left\| x_n^* \right\|^p)^{1/p}$$

for all finite sequences (x_n^*) in X^*. The conclusion follows then from an argument of duality.

Corollary 2. If each of the spaces Y and X/Y is isomorphic to a Hilbert space, then for all $p < 2$ there exists an equivalent renorming of X for which the modulus of smoothness ϱ satisfies $\forall t > 0: \varrho(t) \leq K_p t^p$, for some constant K_p; moreover, for all $q > 2$ there exists an equivalent renorming of X for which the modulus of convexity δ satisfies $\forall \varepsilon \leq 2: \delta(\varepsilon) \geq K_q \varepsilon^q$, for some constant $K_q > 0$.

Proof. The assumptions imply, using theorem 3.b, that there exist constants c and α such that:

$$\forall n \in \mathbb{N}: a_n^X \leq c(\log n)^\alpha \quad \text{and} \quad a_n^{X^*} \leq c(\log n)^\alpha.$$

As proved in [10], [9], this is sufficient to imply the conclusions of corollary 2.

Remark 2. It is proved in [6] that if a Banach space X has an equivalent norm for which the modulus of smoothness ϱ satisfies $\forall t > 0: \varrho(t) \leq K t^2$ and an equivalent norm for which the modulus of convexity δ satisfies $\forall \varepsilon \in (0,2): \delta(\varepsilon) \geq L \varepsilon^2$, for some constants K and $L > 0$, then X is isomorphic to a Hilbert space.

Remark 3. A Banach space is called of type p if there exists a constant c such that:

$$\left(\int \left\| \sum \varepsilon_n(t) x_n \right\|^p dt \right)^{1/p} \leq c(\sum \left\| x_n \right\|^p)^{1/p}$$

for all finite sequences (x_n) in X; let us call briefly p-smooth a Banach space for which there is an equivalent norm such that the modulus of smoothness ϱ satisfies $\forall t > 0: \varrho(t) \leq K t^p$, for some constant K.
If in the definitions of a_n^X and α_n^X we replace 2 by a number p in $(1, 2)$, then clearly Theorem 1 is still valid. This can be used to prove in an entirely similar way as the preceding lines: If X has a closed subspace Y such that both Y and X/Y are of type p (respectively are p-smooth) then X is of type q (respectively is q-smooth) for all $q < p$.

Remark 4. C. Stegall proved that if both $[X/Y]^*$ and Y^* have the Radon-Nikodym property then X^* also has the Radon-Nikodym property [11, corollary 6]. We mention this result because (cf. [9]) super-reflexivity happens to be equivalent to the super-Radon-Nikodym property.

4. The counterexample to Palais’ problem.

We turn now to a construction of an example which shows that if Y and X/Y are both Hilbert spaces X itself need not be a Hilbert space.

We start by mentioning an elementary numerical inequality which we shall need in the sequel. Let t and s be real numbers and consider the complex numbers $u = 1 + is$, $v = 1 + it$. Then

\begin{equation}
|t(1 + t^2)^{-1} - s(1 + s^2)^{-1}|^2 = (\text{Imag}(u/|u| - v/|v|))^2
\end{equation}

\begin{equation}
\leq |u/|u| - v/|v||^2 = 2 - 2 \text{ Rea } u\overline{v}/|u| \cdot |v|
\end{equation}

\begin{equation}
= 2((1 + t^2)(1 + s^2) - (1 + ts))/(|u| \cdot |v|) \leq 2((1 + t^2)(1 + s^2) - (1 + ts))
\end{equation}

We define now a class B_n of functions from the n dimensional real Hilbert space l^2_n into the infinite-dimensional Hilbert space l^2. These functions are defined so as to resemble linear operators. The main point in the construction below is to show that if n is large there are however functions in B_n whose distance (in a natural definition of such a notion) from the set of linear operators is large.

Definition. Let n be an integer. A function $f: l^2_n \to l^2$ is said to belong to the class B_n if

\begin{equation}
f(\lambda x) = \lambda f(x), \quad x \in l^2_n, \lambda \text{ real}
\end{equation}

and

\begin{equation}
\|\sum_{i=1}^k f(x_i)\| \leq \sum_{i=1}^k \|x_i\|
\end{equation}

whenever $\{x_i\}_{i=1}^k \subseteq l^2_n$ are such that $\sum_{i=1}^k x_i = 0$.

Clearly every linear operator belongs to B_n. The next lemma enables an inductive construction of members of B_n whose non-linearity increases with n.
Lemma 1. Let \(n \) be a positive integer and let \(f \in B_n \). Then the map \(g : \ell^2_{2n} \to \ell^2 \) defined by
\[
(12) \quad g(x,y) = (f(x), f(y), x \cdot y/\|(x\|_2^2 + \|y\|_2^2)^{1/2}), \quad x,y \in \ell^2_n
\]
belongs to \(B_{2n} \).

In (12) the pair \((x,y)\) denotes an element in \(\ell^2_{2n} = \ell^2_n \oplus \ell^2_n \) (the direct sum in the Hilbert sense). Similarly the element in the right hand side of (12) determines in an obvious way an element in \(\ell^2 \). The third component in the right hand side of (12) is taken as 0 if \(x = y = 0 \).

Proof. It is trivial that \(g \) satisfies (10) and thus we have only to check (11). Let \(\{x_i\}_{i=1}^k \) and \(\{y_i\}_{i=1}^k \) be elements in \(\ell^2_n \) such that
\[
(13) \quad \sum_{i=1}^k x_i = \sum_{i=1}^k y_i = 0.
\]
Put
\[
(14) \quad \alpha_i = \|y_i\|/(\|x_i\|_2^2 + \|y_i\|_2^2)^{1/2}, \quad i = 1, \ldots, k
\]
(we assume as we clearly can that \(\|x_i\|_2^2 + \|y_i\|_2^2 > 0 \)). By (11) (for the given \(f \)) and (13) we get that for any choice of the scalar \(c \)
\[
(15) \quad \|\sum_i g(x_i, y_i)\|_2^2 = \|\sum_i f(x_i), \sum_i f(y_i), \sum_i \alpha_i x_i - c \sum_i x_i\|_2^2
\]
\[
= \|\sum_i f(x_i)\|_2^2 + \|\sum_i f(y_i)\|_2^2 + \|\sum_i (\alpha_i - c)x_i\|_2^2
\]
\[
\leq \left(\sum_i \|x_i\|_2^2 + \sum_i \|y_i\|_2^2 + \sum_i \alpha_i - c \|x_i\|_2^2 \right).
\]
Put now \(c = \sum_i \alpha_i \|x_i\|_2 / \sum_i \|x_i\|_2 \). Then
\[
(16) \quad \left(\sum_i |\alpha_i - c| \|x_i\|_2 \right)^2 \leq \sum_i \|x_i\|_2 \sum_i \|x_i\|_2 (\alpha_i - c)^2
\]
\[
= \sum_i \|x_i\|_2 \sum_i \|x_i\|_2 (\alpha_i^2 + c^2 - 2\alpha_i c)
\]
\[
= \sum_i \|x_i\|_2 \sum_i \|x_i\|_2 (\alpha_i^2 - (\sum_i \|x_i\|_2)^2 c^2
\]
\[
= \frac{1}{2} \sum_i \sum_j \|x_i\|_2 \|x_j\|_2 (\alpha_i - \alpha_j)^2.
\]
By (9), (14), (15) and (16) we get that
\[
\|\sum_i g(x_i, y_i)\|_2^2 \leq \left(\sum_i \|x_i\|_2 \right)^2 + \left(\sum_i \|y_i\|_2 \right)^2 +
\]
\[
+ \sum_i \sum_j \left[\left(\|x_i\|_2^2 + \|y_i\|_2^2 \right)(\|x_j\|_2^2 + \|y_j\|_2^2)^{1/2} - (\|x_i\|_2 \|x_j\|_2 + \|y_i\|_2 \|y_j\|_2) \right]
\]
\[
= \sum_i \|x_i\|_2^2 + \sum_i \|y_i\|_2^2 + \sum_i \sum_{j, i \neq j} \left(\|x_i\|_2^2 + \|y_i\|_2^2 \right)(\|y_j\|_2^2 + \|y_j\|_2^2)^{1/2}
\]
\[
= \left(\sum_i (\|x_i\|_2^2 + \|y_i\|_2^2)^{1/2} \right)^2 = \left(\sum_i ||(x_i, y_i)||_2 \right)^2
\]
and this concludes the proof of the lemma.
We introduce next a natural notion of the distance of a function \(f : l^2_n \to l^2 \) from the set of linear operators.

Definition. Let \(f : l^2_n \to l^2 \) be a bounded function. Put

\[
D_n(f) = \inf_T \sup_{|x| = 1} \| f(x) - Tx \|,
\]

where the infimum is taken over all linear operators \(T : l^2_n \to l^2 \). Put also

\[
D_n = \sup \{ D_n(f) \mid f \in B_n \}.
\]

(Observe that every \(f \in B_n \) is automatically bounded).

From Lemma 1 it is easy to get an estimate from below on the growth of \(D_n \).

Lemma 2. For every integer \(n \) we have

\[
D_{2n}^2 \geq D_n^2 + 1/16.
\]

Proof. Let \(\varepsilon > 0 \) and let \(f \in B_n \) be such that \(D_n(f) > D_n - \varepsilon \). Let \(g \in B_{2n} \) be the function given by (12). Let \(T \) be a linear operator from \(l^2_{2n} \) into \(l^2 \). In accordance with the decomposition of \(l^2_{2n} \) and \(l^2 \) into direct summands appearing in (12) we define six linear operators from \(l^2_n \) into \(l^2 \) by the relations

\[
T(x,0) = (U_1x, U_2x, U_3x) \quad T(0,y) = (V_1y, V_2y, V_3y).
\]

By the definition of \(D_n(f) \) there are \(x_0 \) and \(y_0 \) in \(l^2_n \), both of norm 1, so that

\[
\| U_1x_0 - f(x_0) \| > M_n - \varepsilon, \quad \| V_2y_0 - f(y_0) \| > M_n - \varepsilon.
\]

By considering the point \((x_0, 0) \) in \(l^2_{2n} \) we get that

\[
D_{2n}^2 \geq D_{2n}^2(g) \geq \| U_1x_0 - f(x_0) \|^2 + \| U_3x_0 \|^2 \geq (M_n - \varepsilon)^2 + \| U_3x_0 \|^2.
\]

Consider next the points \((x_0, \pm y_0)\sqrt{2} \) in \(l^2_{2n} \). We have by (10) and (12) that

\[
g(x_0/\sqrt{2}, \pm y_0/\sqrt{2}) - T(x_0/\sqrt{2}, \pm y_0/\sqrt{2})
\]

\[= (f(x_0) - U_1x_0, -U_2x_0, x_0/\sqrt{2} - U_3x_0)/\sqrt{2} \mp (V_1y_0, V_3y_0 - f(y_0), V_3y_0)/\sqrt{2}.
\]
Since for every two vectors \(z \) and \(w \) in \(l_2 \) there is a sign \(\theta \) such that
\[
||z + \theta w||^2 \geq ||z||^2 + ||w||^2
\]
we get that
\[
(19) \quad D_{2n}^2 \geq D_{2n}^2(g)
\]
\[
\geq \frac{1}{2}(\|f(x_0) - U_1x_0\|^2 + \|U_2x_0\|^2 + \|x_0/\sqrt{2} - U_3x_0\|^2 + \|V_2y_0\|^2 + \|V_3y_0\|^2)
\]
\[
\geq (M_n - \varepsilon)^2 + \|\frac{1}{2}x_0 - U_3x_0/\sqrt{2}\|^2.
\]
One of the numbers \(\|U_3x_0\| \) and \(\|\frac{1}{2}x_0 - U_3x_0/\sqrt{2}\| \) must be larger than \(\frac{1}{4} \).
Since \(\varepsilon \) was arbitrary the lemma follows by comparing (18) with (19).

Corollary. There is a constant \(C > 0 \) so that \(D_n \geq C(\log n)^4 \).

For the construction below it is convenient and also of interest to note that the fact that the range of the functions in \(B_n \) was allowed to be the infinite-dimensional Hilbert space \(l^2 \) was not really used. We could just as well have defined \(B_n \) by considering maps from \(l^2_n \) into \(l^2_{n^2} \).

Let \(n \) be an integer, let \(f: l^2_n \to l^2_{n^2} \) be an element of \(B_n \) and let \(\| \| \) denote the usual inner product norm in \(l^2_n \) and \(l^2_{n^2} \). In the direct sum \(Z_n = l^2_n \oplus l^2_{n^2} \) we introduce a norm \(\| \| \) by taking as its unit ball the closed convex hull of all the points of the form \((0, y) \) with \(\|y\| \leq 1 \) and all the points of the form \((x, f(x)) \) with \(\|x\| \leq 1 \). The subspace of \(Z_n \) of all the points of the form \((0, y) \) is denoted by \(Y_n \). With these notations we have

Proposition 2. The space \(Y_n \) is isometric to \(l^2_{n^2} \). The space \(Z_n/ Y_n \) is isometric to \(l^2_n \). Any linear projection of \(Z_n \) onto \(Y_n \) has norm \(\geq D_n(f) \).

Proof. Whenever \(\|y\| \leq 1 \) the point \((0, y) \) is in the unit ball of \(Z_n \) and hence \(\|((0, y))\| \leq 1 \). Assume conversely that \(\|((0, y))\| < 1 \). Then there is a \(y_0 \in l^2_n \) and \(\{x_i\}_{i=1}^n \in l^2_n \) so that
\[
\sum_i x_i = 0, \quad y_0 + \sum_i f(x_i) = y, \quad \|y_0\| + \sum_i \|x_i\| \leq 1.
\]
Hence, by (11)
\[
\|y\| \leq \|y_0\| + \sum_i \|f(x_i)\| \leq \|y_0\| + \sum_i \|x_i\| \leq 1.
\]
This proves the first statement of the proposition.

Consider now \(Z_n/ Y_n \). For every \(x \in l^2_n \) we have
\[
\inf_{y \in Y_n} \|((x, 0) + y)\| \leq \|((x, f(x))\| \leq \|x\|.
\]
Also assume that \(\|((x, 0) + Y_n)\| \leq 1 \). Since the first (i.e. the \(l^2_n \)) coordinate of the points in the unit ball of \(Z_n \) has \(\| \cdot \| \) less or equal to 1 we get that \(\|x\| \leq 1 \). This proves the second statement in the proposition.
Finally let P be a bounded linear projection from Z_n onto Y_n. Then
\[P(x,0) = (0, Tx) \] for some linear operator T from l^2_n to $l^2_{n_2}$. Hence
\[P(x,f(x)) = P(x,0) + P(0,f(x)) = (0, Tx) + (0, f(x)) \]
and thus
\[|||P||| \geq \sup_{||x||=1} |||P(x, f(x))||| = \sup_{||x||=1} ||Tx + f(x)|| \geq D_n f. \]

Theorem 4. There exists a Banach space Z and a subspace Y of Z so that Y and Z/Y are both isometric to l_2 but Z is not isomorphic to l_2.

Proof. By the Corollary to Lemma 2 we may choose for every integer n a map from l^2_n to $l^2_{n_2}$ so that if $Z_n \supseteq Y_n$ are the spaces constructed above any projection from Z_n onto Y_n will have norm $\geq C(\log n)^t$. The spaces
\[Z = (\sum_n \oplus Z_n)_2 \supseteq Y = (\sum_n \oplus Y_n)_2 \]
have the properties required in the statement of the theorem.

Remark. If $1 < p < \infty$ the spaces $Z_p = (\sum_n \oplus Z_n)_p$ and $Y_p = (\sum_n \oplus Y_n)_p$ are examples of spaces such that Y_p and Z_p/Y_p are both isomorphic to l_p but Z_p is not an \mathcal{L}_p space.

REFERENCES

STANFORD UNIVERSITY, STANFORD, CALIFORNIA, U.S.A.
THE HEBREW UNIVERSITY, JERUSALEM, ISRAEL
ÉCOLE POLYTECHNIQUE, PARIS, FRANCE