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To Werner Fenchel on his 70th birthday.

Introduction.

As the term is used here, a reduction of a set is a direct sum decompo-
sition into a finite number of indecomposable summands. Our main goal
is to find conditions under which reductions are ‘‘unique”, and it is
important at the outset to distinguish two kinds of uniqueness—unique-
ness ‘“up to isomorphism” and strict uniqueness. These notions are for-
malized later but an example should make the distinction clear: R®
reduces as the direct sum of » lines through the origin, but these lines
may be chosen in infinitely many different ways; on the other hand,
R,™ reduces as the direct sum of » half-lines in only one way. Our first
goal is to study the latter sort of uniqueness. Previous results on unique
reducibility in R® were obtained by Isbell [7] in studying factorizations
of Banach spaces and by Heller [5] in studying decompositions of
stochastic transformations. Isbell proved unique reducibility for com-
pact convex sets symmetric about the origin 0, Heller for pointed poly-
hedral cones with apex 0. One of our main results is a rather broad
generalization of these, asserting that any set X < R” is uniquely reduc-
ible if 0 € X and X or X has an extreme point (convexity turns out to be
irrelevant here). Here extreme point is taken in the very general sense
of a point that is not midway between two others; that is, x is extreme
in X if there do not exist distinct points y and z of X such that z+z=
y+z. Note that this definition makes sense in any commutative group
G, and indeed our theorem holds in that more general context. Thus,
for example (as a very special case), if 0 € X =@, where X is finite and
G is a torsion-free commutative group, then X is uniquely reducible.

As to unique reducibility up to isomorphism, it is conjectured that all
convex sets in R™ have this property and it is proved for a very wide
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class of convex sets. Indeed, all the examples in R™ in which this sort of
uniqueness fails seem to be related to some examples of commutative
groups discovered by Joénsson [8].

The problem of unique reducibility is of course a classical one in many
contexts. The fundamental theorem of commutative groups and the
Krull-Schmidt theorem are probably the best known instances, but
there are many others concerned with rings, modules, lattices and so on.
(For example, the fundamental theorem of arithmetic is a special case of
a unique reduction theorem for pointed semigroups established here.)
The method of proof used in the present study exploits the key geometric
notion of extreme point in conjunction with combinatorial methods in-
volving the notion of the refinement property.

Section headings of this paper are as follows: 1. Some basic definitions;
2. The direct sum; 3. Semigroup preliminaries; 4. Extreme points; 5. The
refinement property; 6. Unique reducibility in semigroups; 7. Group
preliminaries; 8. Unique reducibility in groups; 9. Applications; 10.
Additional comments. The main results on unique reducibility appear
in sections 6, 8 and 9; the reader who wants to scan them should first
consult the definitions in sections 1-2 and the standing hypotheses in
sections 2 and 7. The notation (*¥) refers to comments in section 10.

The first author acknowledges support from the National Science
Foundation and a helpful comment from Ilan Adler; the second ac-
knowledges support from the Office of Naval Research and helpful com-
ments from Ross Beaumont, Isaac Namioka, Robert Phelps and Robert
Warfield.

1. Some basic definitions.

Suppose that a commutative and associative direct sum @ has been
defined for the subsets of a commutative semigroup G with neutral ele-
ment 0. A finite collection {X;}? of subsets of G is then said to be a
decomposition of a set X and the individual X;’s to be summands of X if

(1-1) X=X0®..0X,.

A set is decomposable if it admits a decomposition into two or more (and
hence by associativity into precisely two) nonsingleton summands. A
reduction of X is a decomposition of X into one or more indecomposable
nonsingleton summands, or into X itself when X is a singleton. A set is
reducible (resp. uniquely reducible) if it is empty or admits at least (resp.
precisely) one reduction. A reduction (1-1) is basic if each summand of X
is of the form
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(1-2) Seex Xy forsome K < {1,...,n},

where the sum (1-2) is interpreted as {0} when K is empty.

Though our main goal is to find conditions under which reducibility
implies unique reducibility, we also consider weaker sorts of uniqueness.
When J is a group of one-to-one transformations of G onto itself, a
reducible set X is said to be J -uniquely reducible if the members of any
two reductions of X are paired by .7 -equivalence and strongly 7 -uniquely
reducible if the pairing can always be effected by a single member of 7.
A reduction (1-1) is J -basic if each summand of X is J -equivalent to
a set of the form (1-2).

A set X =@ has the refinement property if

(1-3) X = Y1@Yz = Z1®Zz

implies there exist sets X,;; © G satisfying the four equalities of the dia-
gram

X11®X12 = Yl
® D
le@Xzz = Yz
|
Zl Zz

which is henceforth abbreviated as

@ X 11 X12 Y 1
Xy Xu| T,
Z 1 Z2

(1-4)

An extreme point of a set X <@ is a point x € X such that x=y==z is
the only solution of x+x=y+2z with y,z € X.

2. The direct sum.
Our attention is restricted to definitions of @ for which (1-1) implies

(2-1) X=X +...+4X,.

Decompositions of commutative groups into direct sums of their subsets
have been studied extensively (see Fuchs [4, Chap. XV]), defining (1-1)
by (2-1) in conjunction with

(2-2) for each x € X there are unique z, € X, such that x=z,+ ... +x,.
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However, that definition does not yield the desired results on unique
reducibility. For example, if & is an infinite cyclic group and @ is as
indicated then

X = {0,13®{0,2,4} = {0,3}D{0,1,2}

provides two different reductions of the set X ={0,1,2,3,4,5}. In con-
trast, the definition of @ adopted below assures the unique reducibility
of X whenever 0 € X <@, X is finite, and G is a torsion-free commutative
group. (%)

In preparation for the definition of @ to be employed here, we adopt
the following

StanpING HYPOTHESES AND NOTATION:

G 1s a commutative topological semigroup with neutral element O;

& s a lattice of closed subsemigroups of G such that G € &, every mem-
ber of & includes 0, S+8'€ & for all 8,8’ € & (2), and NR € & for
each A< &,

for each X <@, (X)) is the smallest member of & containing X.

All that follows is relative to &, but specific mention of % is suppressed
when there is no danger of confusion.
Our direct sum is defined by (2-1) in conjunction with

(2-3) the natural homomorphism of (X;)x ... x{(X,) into G is a
homeomorphism onto (X).

When all the X,’s belong to & that becomes the usual definition of
internal direct sum in topological semigroups.

Note that, in the presence of (2-1), (2-3) is equivalent to the conjunec-
tion of

(2-4) for each ze(X) there are unique x,€(X,) such that
r=%+...+x,
and

(2.5) for each ¢ the natural projection =;: (X) - (X,) is continuous.

Of course the conjunction of (2-1) and (2-4) implies (2-2), but (2-4) re-
quires much more ‘“‘independence’ of the X;’s than (2-2).

Our direct sum @ is plainly commutative. For associativity it suffices
to show that if X=(A®B)®C and Z=B+C then Z=BPC and X =
A@Z. That follows from a standard argument when the topology is
discrete (use 3.1 below) and is easily verified in the general case with
the aid of (2-5).

Math. Scand. 36 — 12
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3. Semigroup preliminaries.
The results of this section are required for later use.

3.1 (X)+(X"Y=(X+X') for all X,X'<Q.
32 If X=X,®...®X,, then X=X,®...0X,,.

33 If X=X,®...®X, then 0 € X implies 0 N?_, X,, and 0 N}_, X,
tmplies Ul X, < X.

34. If X=Y ,®Y,=Z,®Zyand Y, &L or {Y,) is a group then
Y, 2KY)pnZi+{¥pnZ,.

Proor. 3.1 follows from the assumption that & is closed under addi-
tion, 3.2 from a standard property of product topologies and the fact
that each member of & is closed. 3.3 is immediate from the definition
of @.

3.4 is obvious when Y, € &. Suppose, on the other hand, that (Y,)
is a group, and consider arbitrary points z; € (Y ;)nZ;. Then z,+2,€ X
and hence there exist y; € ¥; with 2z, +2,=¥, +y,. Thus

Ys = 21+t2—y YN Y, = {0}
and
2y+2, =y, €Y.

3.5 THEOREM. Hvery finite subset of G is reducible, and if the lattice &
satisfies the descending chain condition then every subset of G is reducible.

Proor. If (1-1) holds and no X, is a singleton then the cardinality of
X is 22~ If X is finite and of cardinality > 1 there is a decomposition
of the described sort for which % is maximum, and it is a reduction of X.

If X is not reducible it admits an infinite sequence of decompositions,

X =X/®..0X,; (=12...)

such that no X7 is a singleton and for each j the (j+ 1)th decomposition
is obtained from the jth one by replacing a single set of the latter with
two of its summands. Since (¥Y)>2(Z) wherever Z is a summand of ¥
other than Y itself, it follows with the aid of Konig’s lemma that there
is an infinite sequence #(1),%(2),... of indices such that

Koy 2 X 2 -+- >

contradicting the descending chain condition.
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4. Extreme points.

The following result is the key to the relevance of extreme points in
our investigation.

4.1 THEOREM. If X =Y ,®Y ,=Z,DZ,, 0 is an extreme point of X, and
for each W e {Y,Y,,Z,,Z,} it is true that W € & or (W) is a group, then

Y nZ, Y,nZ,| Y,

69anz1 Y,nZ,\| Y,
Zl Z2
Proor. To prove
(4-1) Y, <« (Y1nZ)+(Y1nZ),

consider an arbitrary point y, € Y,. Since y, € X by 3.3, there exist
z; € Z; with y,=2,+2,, and since z; € X there exist y,; € ¥, with z;=
Y1j+Yq;- But then

Y1 = (Y11 +¥12) + (Yar +Y20)

where y;;+¥;, € (Y,) and consequently y,=y;,+ ¥y, While 0=y, + ¥,,.
But 0, being an extreme point of X, is also by 3.3 an extreme point of
Y,, whence 0=y, =y,, and z;=y,; € Y,nZ;. That establishes (4-1), and
with the aid of 3.4 we conclude that

Y, =(Y1nZ)+(¥Y1n%,).
But then
(Y =LY nZ)+Y,nZy)

by 3.1, and (Y,) is the image of {(¥,nZ,>x (Y ,nZ,) under the natural
homomorphism of the product into @. To see that the homomorphism
is a homeomorphism, recall (2-5) and note that the present hypotheses
imply the continuity of the appropriate projections. Thus

Y, =(Y1nZ)®(Y nZ,).
The other equalities of 4.1 follow by symmetry.

5. The refinement property.
5.1 THEOREM. For each X <@ the following five conditions are equiv-
alent (3):

(a) X has the refinement property;
(b) each summand of X has the refinement property;
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(c) whenever X=Y,®...®Y,,=Z,®...DZ, there exist X ;<G such
that
Xy . X, | Y,
® : : :
X X | Yo
Z,...2,

(d) whenever X =Y ,®Y,=2,DZ, there exist X;; <G such that
+ Xll X12 Yl
Xo1 Xoo | Y,y
Zy Zy
(e) whenever X =Y ,DY,=2Z,DZ, there exist S;; € & such that

oSu Su|{¥)
S21 SZZ <Y2>

(Zy) (Zyp

Proor. Plainly (b) => (a), (¢) = (a) and (a) = (d). We shall prove
() = (b), (a) = (c), (d) = (e), and (e) => (a).
If (a) holds, X=A®B and A=U,pU,=V,®V,, then
X = U,®(U,®B) = V,®(V,®B)
and there are sets X;; =@ such that
@ Xll X12 Ul
‘X21 X22 UZ®B
V, V,®B

If n: {(X) — (4) denotes the natural projection then

@ Xll X12 Ul
Xo1 Xy | Uy
Vi, V,
and hence (a) = (b).
Now let A(k,n) denote the assertion that (¢) holds whenever m <k

and X has the refinement property. Then A(2,2) is given by (a) and
A(1,n) is obvious for all n. If A(k,») is known and

X=Y,®. .0V, =20.. 0%,

then from (a) and A(k,n) there follows the existence of sets W,; such
that
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Wy . W, |Y,
@ : : :

W(k—l)l e W(k—-l)n Y k-1

W o Wi | V@Y

Z, ...Z,

while the existence of sets 7';; such that

ol - T | Y,
Ty - Top | Y
Wit - Win

follows from (b) and 4(2,n). With X,;=W,; for 1<i<k, X;;=T;; and
Xg+n;=T,;, the sets X;; are as desired in (c) and hence it follows by
induction that (a) = (c).

To see that (d) => (e) let all sets be as in (d) and define S;;=(X;;).
Then
Su S | (Tp
E%L_S22 <Y2>
{Zy) {Zy)

by 3.1 and our task is to replace + by @. In the discrete case it suffices
to note that

+

8 N8 < {Zy) n{Zy) = {0}

and hence each point of (Y,) admits a unique expression as the sum of
a point in §;; and a point in S;,. To handle the general case, recall (2-5)
and note that the natural projection of (Y,) onto §;; is the restriction
to (¥;) of the natural projection of (X} onto Z;. Thus (¥ ;»=_8;;®S;..
By symmetry, {(Z;)=8,;®S,; and hence (d) = (e).
To show, finally, that (e) => (a), let the notation be as in (e), so that
(X) = 811D81:D85:DSss »

and let m;:(X) — §;; denote the natural projection. We claim (1-4)
holds with X;;=x;,X, and first show

(5‘1) Xil+Xi2 < Y’i fOI' i=1,2.
Consider an arbitrary pair of points z, ' € X with
T = Ty + Tyt oy +Tap, T = Ty +yy Ty + Ty

and z;;, z;; € S;;. Since
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%y;+ Z,; is the image of x under the natural projection of (X onto (Z;)
and hence z,;+x,; € Z;. Similarly, z,;’+x,;’ € Z;. But then

Tyt To1+ X1 + 9y €21+ 2, = X
and there exists & such that

Tyt Ty + T+ T = FeX .
Since
T+ ' € 8®S = (¥,
Z;+ %, is the image of & under the natural projection of (X) onto

(Y;> and therefore z; +x;,’ € Y;. That proves (5-1), and equality in
(5-1) then follows from the observation that

X e X+ Xp+Xp+Xy <« V@Y, = X.

The proof that X;;PX,;,=17Y,; is completed as was the proof of 4.1, and
the equalities X,;0X,;=Z; follow by symmetry.

5.2 COROLLARY. If the closure X has the refinement property then so
has X. (%)

Proor. If X=Y,®Y,=2Z,PZ, then by 3.2
X =Y,0Y, = 72,0%,.
Since X has the refinement property and (a) = (e) there exist S;; € &
with

S S (YD

Oy 8w |(T
VR

But (W)=(W) for all W <@, because all members of & are closed, and
the desired conclusion then follows from the fact that (e) = (a).

6. Unique reducibility in semigroups.

6.1 THEOREM. Consider the following conditions on the set X :

(a) X 18 reducible and has the refinement property;

(b) X admits a basic reduction;

(¢) X is uniquely reducible.
Then (b) tmplies (a) and (c) for all X <@, while (a) implies (b) ¢f 0 € X
or singletons in X are closed and 0 e X.
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Proor. We may assume X is not a singleton, as that case is easily
handled.
To see that (b) = (a), let

(6-1) X =X0...X,

be a basic reduction of X and consider two decompositions X = Y,®Y,=
Z,®Zy of X. Then there are subsets K,, K,, L, and L, of {1,...,n} such
that

(6-2) Y, =D, Xp and Z; = ZheLjX
where plainly
(6-3) K, and K, are complementary in {1,...,n}, as are L; and L,.
But then
ZheKlnL, Xy herinzy Xn Yl
ZhngnLl Xy Dnexanz, Xn| Yo
Zy Zy

To see that (b) = (¢), let (6-1) be as above and consider another
reduction X=Y,®...®Y,, of X. Since (6-1) is basic and each Y, is an
indecomposable nonsingleton, each Y, belongs to {X;}7 and it then
follows easily that (Y,,...,Y,,) is merely a permutation of (X;,...,X,).

Suppose, finally, that (a) holds, and consider an arbitrary reduction
(6-1) of X and summand Y, of X. Let Y, be such that X=Y,®Y,,
whence by 5.1(c) there exist sets X,; <G such that

X X Y
6-4 11 - in 1
(6-4) %, ... X, |7,

X,... X,

But then

(6-5) each column of the matrix (X};) includes a unique nonsingleton,
for each set X, is an indecomposable nonsingleton. If 0 € X it follows
from 3.3 that O belongs to each set appearing in (6-4) and hence

(6-6) each singleton in (6-2) is equal to {0}.
If 0 € X it follows from 3.2 and 3.3 that 0 belongs to the closure of each
set appearing in (6-4) and hence (6-5) continues to hold if singletons in
G are closed. From (6-2), (6-5) and (6-6) it follows that Y =3, X,
with H={j: X,;+{0}}.

6.2 COROLLARY. Suppose that singletons in G are closed, 0 ts an
extreme point of X, and & includes X and also all summands of its own
members. If the set X is reducible it has the properties (a)—(c) of 6.1.
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Proor. The set X has the refinement property by 4.1, whence X has
the refinement property by 5.2 and the desired conclusion then follows
from 6.1.

A pointed semigroup is a semigroup having 0 as an extreme point.
The following result may be regarded as a generalization of the uniqueness
part of the fundamental theorem of arithmetic.

6.3 CorOLLARY. If G’s topology is discrete and & consists of all pointed
semigroups in G then every reducible member of & has the properties

(a)—(c) of 6.1.

Proor. Use 6.2 and the fact that each summand of a pointed semi-
group is itself a pointed semigroup.

6.4 COROLLARY. Suppose that all members of & are groups, and 0 is
an extreme point of X or singletons in G are closed and 0 is an extreme
point of X. If the set X is reducible it has properties (a)—(c) of 6.1.

Proor. Apply 6.1 after using 4.1 and 5.2 to see that X has the refine-
ment property.

The main goal of the next two sections is to reduce the role of the
special point 0 and thus obtain relatives of 6.1 and 6.4 that are more
nearly translation-invariant.

7. Group preliminaries.
In sections 7-9 the standing hypotheses of section 2 are strengthened

by adding the
SUPPLEMENTARY STANDING HYPOTHESES AND NOTATION :

all members of & are groups, and {0} € F;
G’s topology is Hausdorff;
for each X =@, |X| is the smallest & -coset containing X.

We have the following results.

7.1 |X|+p=|X+p| for all X<G and peG.
7.2 (X —2z)c{X) for all X <G and x € (X).
7.3 (X—2z)=|X|—z for all X<@Q and 2z € | X|.
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7.4 If xe|X| then the following are equivalent: |X|=(X); 0e|X|;
X —2)=(X).

7.5 If X=X,®...®X, then 0 € |X| implies 0 N, |X,|.

7.6 If X=X,®...0X, and x=2,+ ... +x, with z, € (X,)
then
(7-1) X—z=X,—2)®.. ®X,—=,).

.7 If Y®...®Y,=2,®...®Z,,, where no Y is a singleton, and if for
each je{l,...,n} the point t;€ G and set M;<{1,...,m} are such that
Zj=t;+Ziem; Yy then the sets M; (1 <j<n) are pairwise disjoint and their
union is {1,...,m}.

Proor. 7.1-7.3 are routine, as is the first equivalence in 7.4. For the
second equivalence, suppose 0 € | X| and note that if S e & withS>X —«
then S+x> X, whence S+2>|X|5 0 and S+x is a group. Since z € | X]|
we have S+ x> X +x and §> X, showing that (X —2) > (X). Conversely,
suppose (X —x)=(X) and consider Se & and pe G with S+p>X.
Then S+p—2>2|X|—x30,s0 S+p—=xis a group and therefore belongs
to . Since S+ p—x> X —x it follows that

S+p—z 2 (X—2) = (X)
and hence S+p—x3 —2. But then S+ 50 and we conclude 0 € | X]|.

To prove 7.5, suppose x € X =X,®...®X, and let 2, € X; be such
that x=z,+ ... +z,. If 0€ |X| we see with the aid of 7.4, 3.1 and 7.2
that

Xy = (X—a) = (Ky—w)+ . .. + (K=,
< XY@ .. X,y = (X,
whence (X;—z;)=(X,) for all + and 0 € |X,| by 7.4.

Suppose next that the hypotheses of 7.6 are satisfied, whence plainly
(7-1) holds with @ replaced by +. But (X —z)<{(X) and X;—z,<{X;)
for all ¢, so it is clear that for each y € (X —x) there are unique y; €
(X;—=;ysuch that y=y,+ ... +y,, and the natural projection of (X —z)
onto (X;—w,) is the restriction to (X —z) of the natural projection of
(X)) onto {X,). The desired conclusion then follows with the aid of (2-5).

Turning now to 7.7, we note that if there exist A, j and k such that
he M;,nM,, and if u; and u, are distinct points of Y, then it is easy to
find points p; and p,, of G such that

ti+pj+u;€Z; and L+ptu€Z, (1=1,2),
whence
0+ uy—uy €(Z;) N<Zy) = {0},
an impossibility.
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To complete the proof of 7.7, let M =U?_, M;and M'={1,...,m}\ M;
we want to show M’ =@. Suppose, on the contrary, that h e M’, let v,
and v, be distinct points of Y, and let t=¢,+ ... +¢,. Since

Diem Yi+2uem Yi' = 2jci Zy = t4+ 2 ¥,

there exist w € G and wy,w, € 3.5, Y; such that u +v,=t+w, for =1, 2.
But then v; —w;=t—u=v,—w, and v, —vy=w, —w,, whence

(Y0 Csemr Yo + {0},

a contradiction completing the proof.

When X <@, a property & is said to be invariant for X if either all
translates of X have &£ or all lack &; and & is fully tnvariant in G if it
is invariant for all X = @. Analogously, when 0 € X and J,(X) is the family
of all translates ¥ of X such that 0 € Y, the property & is O-invariant
for X if either all members of J(X) have & or all lack #; and Z s fully
O-invariant in @ if it is O-invariant for all X <@ such that 0 € X.

Decomposability need not be fully invariant under our definition,
even when the topology is discrete and & is the lattice of all subgroups
of G.(5) For example, if G is the direct sum of two infinite cyclic groups,
X ={(0,0),(0,1),(2,1),(2,2)} and ¢t=(1,1), then X is decomposable but
X +t is not. However, we do have the following results.

7.8 If X is indecompsable and 0 € X then all translates of X are indecom-
posable.

7.9 If X is decomposable so is X +1t for all t € (X).

7.10 If X has the refinement property then so does X +t whenever t € (X +t).
If 0 € | X]| that is true of all t € G.

7.11 Decomposability and the refinement property are fully invariant for
all X <@ such that | X|=G.

7.12 Decomposability, the refinement property, reducibility, basic reduci-
bility and unique reducibility are all fully 0-invariant in G.(%)

We say the situation is pleasant if
(7-2) X +t=(X,Pt)DX, whenever X <G, X =X ,PX,, and t € G\ (X).

7.13 If the situation is pleasant then decomposability, the refinement
property, reducibility, translation-basic reducibility, and translation-unique
reducibility are all fully invariant in @, while basic reducibility and unique
reducibility are invariant for all X <@ such that | X|=G.
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Proor. For 7.8 note that if 0 € X and X —t=X,®X, then
(7-3) there exist z; € (X,;) with t=x,+x,, whence
X = (X, +2,)D(Xp+ )

by 7.6. (The example preceding 7.8 shows it does not suffice to assume
0el|X])

For 7.9 note that if X =X,PX, and ¢ € (X) then (7-3) holds and

X+t = (X;+2)D(Xp+ )

by 17.6.

Now suppose that X has the refinement property, consider two de-

compositions
X+t =Y,®Y, = Z,DZ,

of X +1¢, and let the points y; € (¥,;) and z; € (Z;) be such that

E=Y1tYs =212,
Since

X = (Y1-y)®(Ye—¥s) = (Z1—2)D(Zy—2,)
there exist sets X;; such that

@ X Xie Yi-u
Xon X Ys—v
Zy—2y Zy—2,
and with
T11 %12 | Y1
1 2
we have
Xiu+2y Xppt+a| ¥,
Xo1+%g Xop+%pe | ¥,
Zy Zy
It then follows with the aid of 5.1(d) that X +¢ has the refinement
property.

To complete the proof of 7.10 note that if 0 € | X| and ¢ € G then
te|X|+t = X+t < (X+1).

7.11 is an immediate consequence of 7.9 and 7.10.

For 17.12 it suffices to show that if & is any of the listed properties,
X is a subset of G having property &, and {0,t}< X, then the set X —¢
also has property Z. For decomposability and the refinement property
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that is immediate from 7.9 and 7.10 respectively. For reducibility, note
that if X=X,®...®X,, is a reduction of X and the points z; € X, are
such that ¢=a,+ ... +x,, then

(7-4) Xt = (X-2)®. . .OX,—2,)

by 7.6. And since 0 € N?_, X, by 3.2 and 3.3, it follows from the full
O-invariance of decomposability that (7-4) is a reduction of X —¢.

The remaining two properties in 7.12 are left to the reader, for their
full 0-invariance is not actually used here.(?)

The proof of 7.13 is similar to that of 7.12. For example, if X is de-
composable the decomposability of X +¢ follows from 7.9 when ¢ € (X))
and (7-2) when ¢ ¢ (X). If X is reducible the reducibility of X +¢ follows
from the full invariance of decomposability in conjunction with 7.6
when ¢ € (X) and (7-2) when ¢ ¢ (X). If X has the refinement property,
8o does X+t by 7.10 when ¢ e (X +t), while if ¢t ¢ (X +¢) and X +¢=
Y, ®Y,=2Z,8Z, it follows from (7-2) that

X = (Y,-0)®Y, = (Z,-1)DZ, .
But then there are sets X,;; such that
X4 X12] Y,—t

Xy Xu|T,
Z,—t Z,
whence
n X+t Xpp| Y,y
X0y _&2_ Y,
Zy Z,

and X +¢ has the refinement property. The remaining properties are
left to the reader.(”)

8. Unique reducibility in groups.

Assuming the supplementary as well as the original standing hypo-
theses, this section extends the reasoning of 6.1 and 6.4 to establish
analogues of those results that are more nearly translation-invariant.

8.1 THEOREM. If 0 € |X| then (a) and (b) are equivalent and tmply (c),
where the conditions are as follows:

(a) X s reducible and has the refinement property;
(b) X admits a basic reduction;
(¢) X 8 uniquely reducible.
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Proor. It suffices in view of 6.1 to prove (a) = (b). Let the notation
be as in the last paragraph of the proof of 6.1. Then (6-4) and (6-5) are
still valid and it remains only to establish (6-6). Since 0 € |X| it follows
with the aid of 7.5 that 0 € |W]| for each set W appearing in (6-4). Then
recall that {0} € &, whence |W|=W whenever W is a singleton.

The simplest examples show that 8.2 may fail when 0 ¢ |[X]|. In par-
ticular, let G be R3 with its usual topology, let &% be the lattice of all
subspaces of R3, and let X =Y +Z+ p where p is the origin and Y and
Z are the segments joining the origin to the points (1,0,0) and (0,1,0)
respectively. Then X is reducible and has the refinement property, but
X is not uniquely reducible because it admits the two reductions

X =(Y+p)®Z = YO(Z+p).

However, we are able to prove the following analogue of 6.1 and 8.1.

8.2 THEOREM. For all X =@, (a) and (d) are equivalent and imply (e),
where (a) 18 as tn 8.1 and the other conditions are as follows:

(d) X admits a translation-basic reduction;
(e) X is translation-uniquely reducible.

Proor. The proof parallels that of 6.1, and we may assume as in 6.1
that X is not a singleton.

To see that (d) = (a), let X=X,@...HX, be a translation-basic
reduction of X and consider two decompositions X =Y ,®Y,=2Z,DZ,.
Then there are subsets K,, K,, L, and L, of {1,...,n} and points p,,
P, ¢4, and g, of G such that

Y; = pi+hex; Xn a0d Z; = ¢+ Zper; Xp -
It follows from 7.7 that (6-3) is still valid, whence with

Tyq T
4+ T2 P1
To1 Toz | P2
4 92
we have
Y,

+ 7'11+ZheK1nL1 X, r12+2hex, Ly Xn
Y,

791+ zhngnLl Xj Teat EhEKgnLg X5
Z, Zy

and the desired conclusion ensues.
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Now suppose (a) holds, let X=X ,P...3X,, be a reduction of X, and
consider a decomposition X =Y ,@Y,. As in the proof of 6.1 there exist
sets X;; for which (6-4) and (6-5) are valid. For i=1,2, let

P; = {j: X,;is a singleton} and p; = zjepi Xy
Then X,; is a singleton for all j ¢ P;, whence

Y, = P1+21¢P1 Xy = P1+21¢P1 (X;—Xy)) = (pl—p2)+2,-¢pl X;.

It follows, therefore, that (a) and (d) are equivalent and imply that every
reduction of X is translation-basic.

To see, finally, that (d) = (e), let X=Y,®...@Y,, be a reduction of
X for which the number m of summands is minimum, and consider an
arbitrary reduction X=2,®...®Z,. If the sets M; are as in 7.7, it
follows from 7.7 and the minimality of m that each M; consists of a
single member of {1,...,m}, whence the reductions {¥,}T" and {Z;}] are
translation-equivalent and it follows that X is translation-uniquely
reducible.

The following is the major result of the paper.(®)

8.3 THEOREM. Suppose that X is reducible and X or X has an extreme
potnt. Then

(a) if 0 X, X admits a basic reduction;
(b) <f the situation is pleasant, X admits a translation-basic reduction,
and a basic reduction when 0 € | X|.

Proor. If z is an extreme point of X or X, then 0 is an extreme point
of the set X —x or its closure, whence it follows from 4.1 and 5.2 that
X —z has the refinement property. Then X has the refinement property
by 7.12 or 7.13 and the stated conclusions follow from 8.1 and 8.2.

The remaining results of this section assure the applicability of 8.3(b).

8.4 PROPOSITION. Suppose that G is a vector space over a field @, and
@ s topologized in such a way that all standing hypotheses are satisfied by
@G together with the lattice & of all closed subspaces. Suppose that for
each S € & and t € G\ 8 the subspace S, generated by Su{t} belongs to &
and the natural projections of S; onto S and onto Dt are continuous. Then
the situation ts pleasant.
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Proor. Suppose that X =X,PX, and ¢t € @\ {(X). Then
XU {t}) = X = (X&)
so each point y € (X U{¢}) admits a unique expression in the form
Yy = m(y)+a(y) with m(y) € D1, a(y) e (X).

The natural projections 7;: (X), -~ @t and =n: (X)), -~ (X) are continuous
by hypothesis, as are the natural projections x,: (X) — (X,). Now note
that

(8-1) X+t = (X;+)+ X,
and

(8-2) (X +8) = X+ +(Xp),
where

(Xy+8) e (X, u{t}) =X

X+ n Xy = {0}

It follows that the sums in (8-1) and (8-2) are direct when the topology
is discrete, so to establish (7-2) in the general case it remains only to
show the natural projections &: (X +1¢) — (X, +¢t) and 7: (X +) > (X,
are continuous. But note that if ¢(y)=um(y)+ 7, (7(y)) then

(8-3) y €{X +t) implies ¢(y) e {X;+1),

and hence

an implication that is obvious when y € X +¢, follows by linearity of ¢
and (X,;+t) when y belongs to the subspace generated by X +¢, and
then follows for all y € (X +t) by the continuity of ¢ and closedness of
(X, +1t). Since y=(y) +my(n(y)) for all y e (X +t)=(X),, and ny(n(y)) €
(X,), it follows with the aid of (8-3) that £=¢ and 5 =n,n, thus estab-
lishing the desired continuity and completing the proof.

8.5 CorROLLARY. If G is a vector space over a field @ and & is the lattice
of all subspaces of G, then each of the following implies the situation is
pleasant:

(a) the topology ts discrete;
(b) G is finite-dimensional, @ is an ordered field or a complete non-
discrete valued field, and the topology ts the usual “product” topology.

8.6 COROLLARY. If G is a torsion-free divisible group, the topology is
discrete, and & 1s the lattice of all subgroups of G, then the situation is
pleasant.
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Proor. 8.5(a) is an immediate consequence of 8.4. For 8.6, recall that
a torsion-free divisible group @ is isomorphic with a (possibly infinite)
direct sum of full rational groups (see Fuchs [4, p. 64]) and hence has
the additive structure of a rational vector space. With & (resp. ')
denoting the lattice of all subgroups (resp. subspaces) of @, it is not hard
to verify that direct sums in @ relative to & are the same as those rela-
tive to &', and hence the desired conclusion follows from 8.5(a).

For the case of a valued field in 8.5(b), see Bourbaki [1, p. 28]. The
case of an ordered field is handled similarly.

9. Applications.

For the sake of simplicity, this section proceeds under the assumption
that 0 € |X]| (%), the most interesting cases being those in which 0 e X
or |[X|=0.

9.1 THEOREM. Let G be a torsion-free commutative group with discrete
topology, & the lattice of all subgroups of G, and X a finite subset of G.
Then X admits a basic reduction (and hence is uniquely reducible) if

(a) 0eX
or
(b) @ is divisible (1°) and 0 € | X|.

Proor. In view of 3.5, 8.3 and 8.5 it suffices to show X has an ex-
treme point. The smallest subgroup of G containing X is for some & a
free commutative group on k generators and hence is isomorphic to the
subgroup of R¥* consisting of all lattice points. But every finite subset
of R¥ has an extreme point (take any extreme point of its convex hull).

It follows from 8.3 and 8.4, in conjunction with various extreme point
theorems of functional analysis (1), that if G is a certain sort of topo-
logical vector space, & is the lattice of all subspaces (3) of G, and % is
a second topology such that (G, %) is a topological group and all members
of & are %-closed, then relative to (%,.%) certain kinds of subsets of G
admit at most one reduction. However, these results are not very satis-
factory except when @ is finite-dimensional and the two topologies can
be made to coincide.

9.2 THEOREM. Let G be R¥ with the usual topology, & the lattice of all
subspaces of @, and X a subset of G whose affine hull includes the origin.
If the convex hull of X is line-free (and hence, in particular, if X is bounded),
then X admits a basic reduction and hence is uniquely reducible.(!?)
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Proor. In view of 3.5, 8.3 and 8.5 it suffices to show X has an extreme
point. If the convex hull C of X contains no line it is easily verified that
C is also line-free. It then follows from results of Klee [9] that C has an
extreme point z and z € X.

When X is a subset of R¥ whose closure has no extreme point, X may
fail even to be affine-uniquely reducible when k= 3.(1%) For k=3 that
can be seen from an example of Jonsson [8] as simplified by Fuchs
[4, p. 154]. Let P and @ be disjoint infinite sets of primes with 5 ¢ Pug,
let P (resp. @) be the set of all squarefree products of members of P
(resp. @), and let 4, B, C and D denote the additive subgroups of R3
having respectively the following generating systems:

{(1/r,0,0) : re P"};

{(0,1/r,0) : re P*}u {(0,0,1/s): se @} u {(0,1/5,1/5)};
{(8[r,3/r,0) : re P};

{(5[r,2[r,0) : re P*} U {(0,0,1/s): se€@"}u{(3,6/5,1/5)}.

Fuchs shows B and D are indecomposable but not isomorphic, and of
course 4 and C are indecomposable. But

A+B =C+D and {4)n{B) = {0} =C)n D),
80
X = A®B and X = C®D

are two reductions of the set X that are not affine-equivalent. For a
striking extension of this example to higher-dimensional spaces and
geveral summands, see Corner [2].

We believe that theorem 9.4 below remains valid when the set X is
assumed merely to be convex, but the proof given here relies heavily on
the following additional assumption about X:

(9-1) X contains every line that lies in X and intersects X.

9.3 LEMMA. Suppose that E is a finite-dimensional real vector space,
the origin is interior to the convex subset X of E, X satisfies (9-1), and L
18 the union of all lines through 0 in X. Then L is a subspace and X =
LB(XnA) for each subspace S supplementary to L in E. Every representa-
tton of S as the direct sum of a subspace and a line-free set is of this form.
If 8; and S, are subspaces supplementary to L and the linear transforma-
tions U;: E -~ L and V;: E — S; are defined by the condition that I=
U;+ V; (where I is the identity transformation on E), then X is carried onto
itself by the linear transformation W=I1+U,—U,.

Math, Scand. 36 — 13
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Proor. Parts of 9.3 are well-known when X is closed ; see, for example,
Klee [9] and Hirsch and Hoffman [6]. Using the methods of those papers
it is a routine matter to prove 9.3 in the form stated above. Details are
left to the reader.

9.4 THEEOREM. Let G be R with the usual topology, & the lattice of all
subspaces of G, and X a convex subset of G whose affine hull includes the
origin. If the set X satisfies (9-1) then it is strongly affine-uniquely re-
ducible. That is, for any two reductions

X =Y,0..07,=20.. 05,

of X there is a nonsingular affine transformation T of G onto itself that
carries the Y;'s onto the Z,'s.

Proor. A routine argument based on 7.5, 7.6, 7.13 and 8.5 shows
that it suffices to consider the case in which the origin 0 is interior to X.
We may also assume without loss of generality that there are integers
mqy and n, such that Y; (resp. Z;) is line-free if and only if ¢>m, (resp.
j>mng). It follows with the aid of 9.3 that the summands Y, for < <m,
and Z; for j <n, are all lines through 0, 3™ Y, and 31°Z; are both equal
to the lineality space L of 9.3, and there are supplements S, and S, of L
such that

XﬂSl = ﬂlo+1®' . .@Ym arnd X nlgz = Zn0+1®' . .@Zﬂ .

The linear transformation W of 9.3 carries Xn S, onto X NS, and hence
by 9.2 induces a pairing of the Y,’s for 1>m, with the Z,’s for j>n,.
Let T be a linear transformation of G onto itself such that 7' has the
same restriction to S; as W has and 7”s restriction to L induces a pairing
of the lines Y, for s <m, with the lines Z, for j <n,=1m,.(}4)

10. Additional comments.

() When @ is a torsion group of rank > 1, ambiguity of reduction of
finite sets persists no matter what reasonable definition of @ is chosen.
Consider, for example, the three different reductions of the Klein four

group.

(3) It would be nice to avoid this condition and hence cover the case
in which @ is an infinite-dimensional topological linear space and & is
the lattice of all closed subspaces. However, the additive closedness of
& ig required in the present treatment to justify the often-used identity
3.1 and even to show that @ is associative.
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(3) Other equivalent conditions result from replacing @ by + in the
diagrams of (c) and (e).

(4) The converse of 5.2 is false. For example, let @ be R¥ with the usual
topology, let & be the lattice of all subspaces of G, and let Y be a subset
of G such that 0 € Y and each point of Y is a condensation point. Then
even though Y itself may be closed and lack the refinement property
(for example, take Y =R¥ when k> 1) it is easy to produce a countable
dense subset X of Y such that 0 is an extreme point of X and hence X
has the refinement property by 4.1.

(%) It would be of interst to know the structure of the commutative
groups G in which decomposability is fully invariant when & is as
described. See 8.6 for a sufficient condition.

(®) The stronger refinement property of 4.1 is also of interest. The set X
is said to have the strong refinement property if

Z, 2,

whenever X=Y,®Y,=2Z,8Z, We do not know whether X must have
this property if 0 € X and X has an extreme point, nor whether the
property is fully O-invariant in the weaker sense obtained by deleting
all closure operators in the former definition.

() The characterizations in 8.1 and 8.2 can be used to deal with basic
and translation-basic reducibility.

(8) The following additional result on unique reducibility can be derived
from 6.4. If decomposability is fully invariant 1n G, X is reducible and X
or X has an extreme point, then X is translation-uniquely reducible and is
uniquely reducible when 0 € | X]|.

(?) Without that assumption it would be necessary in 9.1(b) and 9.2 to
replace basic by translation-basic reducibility, and in 9.4 to replace
strong affine-unique by affine-unique reducibility.

(19) Perhaps the assumption of divisibility can be deleted, at least when
| X]=G.
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(1) If X is a closed subset of a topological vector space E, each of the
following conditions implies X has an extreme point:

(a) E is locally convex and X is compact (use the Krein-Milman
theorem and Milman’s converse — see Day [3, pp. 78-80];

(b) E is a metrizable locally convex space and X lies in a weakly
compact subset of E (use a renorming theorem of Troyanski [13] and a
theorem of Lindenstraus [11] on strongly exposed points);

(¢) EZ is a Banach space with the Radon-Nikodym property (in par-
ticular, a separable conjugate space or a reflexive space) and X is bounded
(Phelps [12]).

(12) By using a theorem of Klee [10] it is possible to establish a close
relative of this theorem in a finite-dimensional vector space over an
arbitrary ordered field.

(13) With SLas in 9.2, X is of course uniquely reducible when k=1 and
probably affine-uniquely reducible when k=2, though we have not
actually settled the latter case.

(1) There is independent interest in the problem, which we encountered
in an earlier approach to 9.4, of finding geometric conditions on a convex
set X that assure the validity of a converse of 3.2. The result established
below involves the following strengthening of (9-1):

(10-1) Jp,q[=X whenever pe X and qe X.

Condition (a) below is quite restrictive and it would be of interest to
find a weaker one. For example, if X is a d-polytope P with d = 3 then X
satisfies (a) if and only if X =P or there is a set & of pairwise disjoint
facets of P such that X is the union of the relative interior of P with the
relative interiors of the various members of &.

As the term is used in (b) below, a face of X is a convex set Y <X
such that ¥ contains every segment Ju,o[ for which ,v € X and Ju,?[
intersects Y.

ProposrtioN. If 0 e X <Rk then (a) and (b) are equivalent and imply
(c), where the conditions are as follows:

(a) X satisfies (10-1), and whenever two segments Ip,z[ and lg,z[ in X
are not collinear then x € X or X contains a third segment that starts on one
of the first two and crosses the other;

(b) X satisfies (10-1), and YnZ <X for each pair of proper faces ¥
and Z of X;
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(c) for each decomposition X =C,®...@DC, of X there exists a decom-
position X =X,®...®X,, of X such that X,=C, for all 1.

Proor. Since (a) <= (b) is straightforward, we prove only (a) = (c).
We first establish
(10-2) if 0 € X, (a) holds and X =A®B, then
X = (A)nX)@(BYNX) .
To prove (10-2) we show that if e X, a€ 4, be B and x=a+b then

xz € X if and only if {a,b}=X. Indeed, if {#,6}<X but « ¢ X it follows
from several applications of (10-1) that

{(x,8): x20,8>0,xa+pbe X} = ([0,1]1x]0,1])\{(1,1)},
while if 2 € X but a ¢ X it follows from (10-1) that
{(0,B): x20,B<1,xa+pbe X} = ([0,1]x[0,1[)\{(1,0)};
in both cases the second part of (a) is contradicted.
To prove (a) => (c) it suffices, in view of 3.2, to show that if (a) holds
and X=0,@...@C, then
X = (CpnX)D...AKCHNX) .
The case in which n =2 is settled by (10-2) and the general case follows
by induction. For if 4=37C,, (10-2) yields
X = 4H)nX)@(CnX),
it can be seen with the aid of (a) that
ADHNX =Al)nX =4,
and since the set (A>NX also satisfies condition (a) it follows from the
inductive hypothesis that
AYn X = ((C) N (AND))D. .. BLCHIN(AINT))
= (CPnX)®. .. ®(KCHNX) .
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