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SEMIGROUPS OF CONVEX BIFUNCTIONS GENERATED
BY LAGRANGE PROBLEMS
IN THE CALCULUS OF VARIATIONS

R. TYRRELL ROCKAFELLAR*

To Werner Fenchel on his 70th birthday.

Abstract.

Duality theorems previously obtained for certain convex problems in
the calculus of variaticns are applied to the study of the behavior of
convex bifunctions under the operation of inf-multiplication. It is shown
that each convex bifunction F from R™ to R® generates a one-parameter
semigroup of convex bifunctions from R” to R® having F as its infinite-
simal generator. The polar semigroup is defined and its infinitesimal
generator is also investigated. The results generalize the classical theory
of one-parameter groups of linear transformations.

1. Introduction.

A bifunction from a space X to a space V is a mapping F which assigns
to each x € X a function
Fx:V - [—o0, +00].

The value of the function Fx at the point » € V is denoted by (Fz)(v).
There is thus a one-to-one correspondence between bifunctions from X
to ¥ and extended-real-valued functions on X x V (the “graph functions”
of the bifunctions). The bifunction F is said to be convex if its graph
function is convex, i.e. if X and V are real linear spaces and (Fz)(v)
depends convexly on (z,v).

Convex bifunctions were introduced in [2] in order to bring out a
far-reaching analogy between many results on optimization, such as
duality theorems and minimax theorems, and certain classical formulas
of linear algebra. By means of Fenchel’s theory of conjugate convex
functions, a “convex algebra’ parallel to linear algebra was developed.
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In this context, a linear transformation A4 :R” — R» is identified with its
indicator bifunction, namely the convex bifunction ¢, from R» to R»
defined by -
0 if v=Ax
(L1) v ={ o it vre.

The purpose of this note is to pursue a further analogy. It is well-
known that each linear transformation A4 :R” — R® generates a one-para-
meter group of linear transformations B®:R” > R* having A as its in-
finitesimal generator, namely

(1.2) B® = g4 for —co<T< +00.

We shall show that, similarly, each convex bifunction from R® to R»
belonging to a certain “regular’ class generates a one-parameter semi-
group of convex bifunctions also belonging to this class. Moreover, such
semigroups correspond to certain convex problems of Lagrange in the
calculus of variations, and they reflect the many duality properties that
have been demonstrated for such problems [3], [4], [5].

The semigroup operation in question is that of inf-multiplication of
bifunctions, which is defined as follows. If F, and F, are bifunctions
from R™ to R®, then F',F", is the bifunction from R" to R® whose values are
given by

(1.3) (F1Fyx)(v) = inf, pn{(Fx)(u) + (Fiu)(v)} ,
where in the sum one uses the convention:
(1.4) —o0+00 = 0o+ (—o0) = +oo.

This operation is associative and convexity-preserving [2, p. 406]. More-
over, it generalizes the operation of multiplication of linear transforma-
tions, in the sense that

(1.5) Y4¥p = YaB -

The bifunction yp; (where I is the identity transformation) serves as the
identity for inf-multiplication.

By a one-parameter semigroup of bifunctions from R” to R?, we mean
a parameterized family £®, 0 < v < + oo, with the property that

(1.6) E@F@ = Fe+o)  for all 7>0,0>0.
(The property can always be extended to 7=0 and ¢=0 by taking

E®=y,) Every one-parameter group of linear transformations as in
(1.2) yields such a semigroup with
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(1.7) E® = ypw;

in fact property (1.6) holds in this case for all real r and ¢ by virtue of
(1.5) and the identity

(1.8) B®B©@ = B&+o)  forall 7eR, ceR.

The close relationship between one-parameter semigroups of bifunc-
tions and problems in the calculus of variations is easily perceived. Given
any extended-real-valued function L on R”x R*, or equivalently the bi-
function F from R” to R™ having

(1.10) Fx = L(z,*),
let us define the bifunction E;® for 0 < tv< + o by
(1.11) (B#Pa)(b) = inf {S L(x(t),2(t))dt | 2(0)=a, x(r)=0b},

where the infimum is over all absolutely continuous functions z:[0,t] -
R™ satisfying the given terminal conditions. Here the integral is (in the
possible absence of measurability) to be interpreted as the upper integral,
i.e. the infimum of {jx(f)dt over all summable functions «:[0,7] —
[— o0, + oo] satisfying x(¢) = L( (t),2(t)) for almost every ¢ € [0, 7] at which
the derivative z(¢) exists. (If there are no such functions «, the integral
is + oo by convention.)

Note that in the case of F'=y,, where 4 is a linear transformation,
E @ is the bifunction in (1.7). Indeed, one has

§ [waz®](#()dt < +oo
if and only if x(t) = Ax(f) almost everywhere, i.e.
z(t) = edz(0), O0=t=~,

in which case the integral vanishes; thus in this case (E;®a)(b) is 0 if
b=e"4g and + oo if b+e™q.

In this sense, the general definition of the family E,® extends the
notion of the exponential of a linear transformation to that of the expo-
nential of a bifunction. The following result confirms the analogy and
sets the stage for our main efforts.

THEOREM 1. The family E® defined by (1.1) is a one-parameter semi-
group of bifunctions from R™ to R* (called the semigroup generated by the
bifunction F in (1.10)). If F is convex, then so is E® for all 7> 0.
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Proor. We must prove that
(1.12) (EF*+a)(b) = inf,cpn {(E57a)(c) + (Ex%c)(b)} .
First we fix any ¢ € R* and demonstrate that
(1.13) (Bpt+a)(b) = (Eg9a)(c)+ (ExPc)() .

If (Ez9%)(c)= + o0 or (Ez9c)(b)= + oo, then (1.13) holds trivially (in
view of convention (1.4)). Suppose therefore that there are numbers u
and » with

(1.14) (Ez9a)(c) < u and (Ep%%)0b) < v.
To establish (1.13), it will be enough to check that
(1.15) (Bgf+9a)(b) < p+v.

By virtue of (1.14), there exist functions y:[0,0] -~ R* and $:[0,0] —
[ — o0, + o] such that y is absolutely continuous with y(0)=a and y(o)=c,
while § is summable with (JA(¢)dt < u and L(y(t),y(t)) < f(t) almost every-
where that y(¢) exists. At the same time, there exist functions z:[0, 7] - R"
and y:[0,7] > [—o0, + 00], such that z is absolutely continuous with
2(0) =c and z(7) =b, while y is summable with {§y(t)dt <» and L(z(t),2(t)) <
y(t) almost everywhere that 2(t) exists. Define

N0 for ¢ € [0,0]
x(t) = {z(t-o’) for teo,7+0],

for ¢t €[0,0)
for te (o,7+0].

_|8@®
o) = {V(t—ﬂ)

Then x:[0, v+ 6] - R™ is absolutely continuous with #(0)=a and z(t+ o)
=b, while «:[0,7+40] - [— o0, + o] is summable with L(x(t),%(t)) < «(t)
almost everywhere that x(¢) exists. It follows that

T+0

(B z&+9a)(b) < s;” L(=(t), 2(t))dt < {7 «(t)dt
= §o BYdt+§ y(®)dt < p+v,

which yields the desired inequality (1.15). Thus (1.13) is valid for all
a, b, ¢, and in consequence the inequality < holds in (1.12).

We now argue towards the inequality in (1.12). This is trivial if
(E z5*+9a)(b) = + oo, so it may be supposed that there is a number y with

=
2

(1.16) (BEptt9a)(d) < p .
The task is to demonstrate the existence of ¢ € R* with

(1.17) (Epa)(0)+ (E%e)(b) < .
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The definitions imply from (1.16) that there exist functions z:[0, 7+ o] -
R” and «:[0, 7+ 0] — [ — o0, 4 o] such that x is absolutely continuous with
x(0)=a and x(r+0)=>b, while « is summable with {J*°«(t)dt <pu and
L(a(t), 2(t)) < «(f) almost everywhere that %(t) exists. Let ¢ =(¢). Then in
particular we have

g

(Ega)(c) < §; L{w(t), &) dt < § a(t)dt .

On the other hand, setting y(¢) =(t — o) for ¢ € [0, 7] we have y absolutely
continuous with y(0)=c and y(z)=b, so that

(Bpe)(b) = §, Liy(t),9(t)dt < § x(t—o)dt .
It follows that

(Ex9a)(c) + (ExPc)(b) < Sg (x(t)dt+S:+a a(t)dt = Sgw(x(t)dt <u.

Thus (1.17) holds and the identity (1.12) has been established.
It remains only to prove the convexity assertion in Theorem 1. This
amounts to showing that if

(1.18) (BEpPa;)(®,) < pu; for i=1,2,

and

(1.19) (a,b) = (1—A)ay,by) +A(ay,b,), O0<A<1,
then

(1.20) (Bp9a)(B) < (L—A)pty+ Apty

By (1.18), there exist for ¢=1,2, certain functions z,:[0,7] > R® and
%;:[0,7] = [ — 00, 4+ oo] such that x; is absolutely continuous with z,(0)=a,
and x,(v)=b;, while «; is summable with {; «,()dt < u; and

(1.21)  L(z;(t),2,(t)) S x,(t) almost everywhere that z,(t) exists .

Let
x(t) = (1—2A)zy(t) + Axy(t) ,

a(t) = (1—2)xy(t) + Axy(t)

where the convention (1.4) is used in the second formula. Then z is
absolutely continuous with 2(0)=a and z(z)=b. Also, « is summable (the
convention in the sum cannot affect this, since «; and «, can be infinite
only on a set of measure zero). We have

() = (1—2)%,(f) + Azy(t)
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for almost every ¢ e [0,7] at which %(¢) exists, and hence the assumed
convexity of L implies by (1.21) (still using (1.4)) that

L{=z(t),2(t)) = (1—2A)L(zy(t),%,()) + AL(a(t), Z(t)) < ox(t)
for almost every ¢ at which #(f) exists. Therefore
(Bpa)(d) < § L{x(t), %(t))dt < §, x()de
= (1-2)§, ;cy(t)de+ 2§ xo(t)dt < (1— Ay + Ay .

This gives the relation (1.20), and the proof of Theorem 1 is finished.

To what extent is the ‘“infinitesimal generator” F of the semigroup
E;9,0< v < + oo, uniquely determined by the semigroup ? If it is uniquely
determined, can it be recovered from the semigroup by some kind of
differentiation ? These are intriguing questions, and except for the special
classical cases, they are completely open.

We shall not tackle such questions here, but concentrate rather on
duality properties in the convex case related to the theory of conjugate
convex functions. The main goal is to describe a “‘regular” class of convex
bifunctions # which is preserved not only by inf-multiplication but by
passage to the semigroup K ®, and which is also closed under certain
duality operations defined below. The chief results are given in section 3.

Some indications of the relationship between one-parameter semi-
groups of bifunctions and the dynamic evolution of certain economic
models and their duals is furnished in [6].

2. Duality.
The polar of a bifunction F from R™ to R™ is the bifunction F* from R®
to R» defined by

(2.1) (F¥c)(d) = sup,,,{b-d—a-c—(Fa)(®)} .

The graph function of F* is thus the conjugate of the graph function of F,
except for a change of sign in the first argument. It follows from Fen-
chel’s theorem on conjugate functions (see [2, Theorem 12.2]) that F*¥
is always a closed convex bifunction (i.e. its graph function is either iden-
tically — oo or it is convex, lower semicontinuous and nowhere — oo),
while F*# is the greatest closed convex bifunction <F. If F=y, for a
linear transformation 4, then F¥=y 4, where A%=(A4%)-1,

The remarkable property of the polarity operation is that it is “‘essen-
tially”’ an automorphism on the semigroup of convex bifunctions. To state
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the precise result, we introduce the following notation. If f is any ex-
tended-real-valued function on R™, we set

(2.2) domf = {& | f(x) < +o0}.
If F is a bifunction from R™ to R?, we set
(2.3) domF = {a € R* | domFa+ 2}
= {a e R*| 3b e R* with (Fa)(b)< + oo},
(2.4) rgeF = | J,ern dom Fa

= {beR*| JaeR" with (Fa)(b)< +oo} .

These sets are convex if f and F are convex. We denote by riC the
relative interior of a convex set [2, § 6].

TraeoreM 2 [2]. If F, and F, are convex bifunctions from R™ to R™ such
that

(2.5) ridomF, nrirgeF, = @,
then
(2.6) (F1F2)$ = F1#F2# .

Proor. This is shown on p. 406 of [2] in the case where the graph
functions of F; and F, nowhere have the value —oo. (In the notation
of [2], the polar F* is Fy*.) The general case is only a slight extension.
Suppose, for instance, that the function fi(a,b)=(F,a)(b) has the value
— oo somewhere. Then by definition (2.1) we have

(2.7) (F¥e)d) = +o0 forall ¢,d,

so that

(2.8)  (FFFyfo)(d) = infeq, {(Ffo)(w) + (Ffw)(d)} = +oo.

On the other hand, the fact that f, is convex and takes on — oo implies
(2.9) fi(@,b) = —oo for all (a,b) e ridomf,

[2, Theorem 7.2]. But since dom F', is the projection of domf; in the first
argument, we have

(2.10) ridomf;, = {(a,b) | @ eridomF,, b eridom(F,a)}

[2, Theorem 6.8]. Thus, taking w to be any element of the non-empty
intersection in (2.5), there exists b with (F,w)(b) = — oo, while at the same
time there exists @ with (F,a)(w) < + co. Then

(FiF3)(0) < (Fg)(w)+(Fw)(b) = —eo,
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implying from the formula for the polar (F,F,)¥ that
((F Fy)kc)(d) = +oo forall c,d.

Comparing this with (2.7), we see that, again in this degenerate case,
(2.6) is valid. The argument is similar if it is the graph function of F,,
rather than that of F';, which takes on the value —oo.

The interesting consequence of Theorem 2 for the study of one-para-
meter semigroups is the following.

CoroLLARY. Ifthe family E®, 0 < v < + oo, is a one-parameter semigroup
of convex bifunctions from R™ to R™ such that dom E® is nonemply and
open for all T, then the polar family E®* is also a one-parameter semigroup.

Proor. Let 7>0 and ¢> 0. Since E¢+9=F®FE) we have
(2.11) dom E¢+9 & @ < domE® Nnrge B@ + @
<>ridomE® nrirge £@ + @,

the second equivalence holding by virtue of the openness of dom E®.
Thus the hypothesis of the theorem is satisfied for all >0 and ¢> 0,
yielding the identity

(2.12) EG+of = R FoF

which says that the polar family forms a semigroup.

This corollary raises a question in the case where it is applicable to a
semigroup of the form E ®. Is the polar semigroup Ep®* of the form
E @ for some other convex bifunction G'? This is true if F is the indicator
y4 of a linear transformation A4, since then K ® is the indicator of B®=
€4, and hence E ¥ is the indicator of

((e-zA)*)—l -
The polar semigroup is thus generated by the indicator p_ «, where A*

is the adjoint of A.
We now prove a generalization in terms of the bifunction

(2.13) (@p)(w) = sup,,,{z-w+p-v—(Fz)(v)}.

(If F=v,, then G=1y_4..) Observe that in the notation of (1.10) we have
(2.14) @p = Mp,"),

where

- (2.15) M(p,w) = L*(w,p)
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(L* = conjugate of L). The function M was termed in [3], [4], the Lagran-
gitan dual to L.

THEOREM 3. Let F be a convex bifunction from R™ to R™ such that
dom F'=R". Then

(2.16) domE®+R* as 70,

and there exists T € (0, + o] such that dom Ez® is nonempty and open if
0<7<T but empty if T <t < + c0. Moreover, one has

(2.17) E% = O for 0<t<T,
where @ 13 the bifunction defined in (2.13).

The proof of Theorem 3 will be based on duality theorems in [4] and
the following result.

Lemma. Let F be a convex bifunction from R™ to R® with dom F = Rn,
and let L be the graph function of F, as in (1.10). Let xy:[7y,7,] — R™ be
an absolutely continuous function such that

(2.18) g:; L(zo(t), %o(t))dt < +o0.

Let re (0, +o0) be such that r> |zy(t)| for all t €[ty 1,] (|°|=Euclidean
norm), let I be any bounded open real interval containing [t4,7,], and let

(2.19) D = {(t,x) e IxR*| |x|<r}.
Then there 18 a function ¢:D — R™ with the following properties.

(a) L(z,(t,z)) < «(t) for all (t,x) € D, where o:I — [ — o0, + 0] 18 a cer-
tain summable function.

(b) 2,(t) = q(t,xo(t)) for almost every ¢ € 7y, 74].

(c) @(t,x) ts summable as a function of t € I for fixed x € R* and Lip-
schitz continuous as a function of x € R® for fixed t € I. In fact, there is a
summable function k:I — [0, + o) such that

(2.20) lpt,2') —o(t,z)| = k(t)|' —2| .
(d) If xF2,(t), then
(2.21) (=, @(t,x)) eridom L .

Proor. Let 8 be an n-dimensional simplex containing every « with
|z] < 3r. Let agy,a,,. . .,a, be the vertices of S. Each a; belongs to dom F

Math, Scand. 36 — 10
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by hypothesis, and hence the convex set dom Fa,; is nonempty; choose
an element v; of ridom Fa; for :=0,1,...,n. Then

(2.22) (a;,v;) eridomZL for +=0,1,...,n,
because in general the convexity of F implies

(2.23) ridomZ = {(x,v) | x eridomF, v € ridom Fx}

[2, Theorem 6.8]. Let @ be the unique linear transformation from R»
to R” such that

Qa,—ay) = v;—v, for i=1,...,n,
and let ¢ =v,—@a,. Then
(2.24) v; = Qa;+q for ¢+=0,1,...,n.

If e S, then u can be expressed as a convex combination of the ver-
tices of S:

w = >r o Aa; where 2,20, 37 (A,=1.
We then have

(u, Qu+q) = 37 A:(as,v))

by (2.24), and hence via (2.22) and the choice of S:
(2.25) (u,Qu+q) eridomL whenever |u|<3r,
(2.26) L(u,Qu+q) < max,_,,,...,,L(a;v;) whenever |u|<3r.

Now let I, be the set of ¢ € [y, 7,] such that #y(¢) exists and (z(¢),%,(t)) €
dom L; the complement of I, in [y, 7;] is of measure zero. For ¢ € I, and
|z| <7, define

(2.27) ot,x) = (1=2D)z(t) +A(Qu+q) ,

where the elements A € [0,1) and % € R® are determined by the relations
(2.28) z = (1-A)zo(t)+u, |u—xy(t)] = 2r,

or in other words

(2.29) A= |x—xy(t)|/2r, Au = x—[1—(lx—=z(t)]/2r)]r,(2) -

For t € I,,, we then have

(2.30) @lt,7) = dot) + Q(z— (1)) + |z —zo(8) elt)

where

(2.31) c(t) = (lz—xo(t)|/2r)[g — Zo(£) + Qo(8)] -
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Note that c(t) is summable over ¢ € I,. We complete the definition of ¢
by setting
(2.32) ot ) = Qu+q if t&l,.

Properties (b) and (c) of the lemma are then evident. Expressions (2.27)
and (2.28), with 02 A< 1, yield via (2.25) and the relation (xo(t),%(t)) €
dom L for ¢ € I, the fact that property (d) holds. The same expressions
also give us from (2.26) that

L(z,g(t,2)) < (1= D) L(o(0), 5o(t)) + AL{w, Qu-+a)

max {L(xo(2), %y(t)), L(ag, vy), - - -, L@y, v,)}

if te I, and |z| <7, while
L(z,p(t,x))

IA 1A

I

L(z,Qz+q)

max {L(ao, vo), e ’L(an’ ’Un)}

IA

if teINI, and |z|<r. Since (2.17) is assumed, it is clear from these
inequalities that property (a) is fulfilled.

Proor or THEOREM 3. First consider any 7>0 and a,c domE @,
There exists by definition an absolutely continuous function zy:[0,t] -
R” such that

S:, L(xo(t)Eo(t))dt < +o00  and  x4(0) = a,.

Corresponding to z,, we can construct a function ¢:D — R® with the
properties described in the lemma above. Then, according to the theory
of differential equations (cf. [1, p. 59]), there exists £¢> 0 such that the
equation

(2.33) Z(t) = ¢(t,2(t)) ae., =z(0)=a,

has a solution z (an absolutely continuous function) over the interval
[0, 7+ ] whenever |a —ay| <e. Property (a) of the lemma tells us that

s:L(x(t),:i;(t))dt < 400 for O<o=<1+¢,

and therefore a € domE @ if |a —a,|<e and o € (0,7+¢]. This verifies
that the set dom £ @ is open, nonincreasing in z, and nonempty for an
open interval (0,7') of = values.

To demonstrate the limit assertion (2.16), we borrow a fact established
in the first part of the proof of the lemma: given any r>0, one may
construct a linear transformation Q:R" — R® and a vector ¢ € R® such
that (2.26) holds. One may then find 7> 0 such that, for |a| <, the solu-
tion to the equation

z=0Qx+q, z2(0)=a,
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satisfies |z(t)| < 3r for ¢ € [0,7]. Then by (2.16) the expression L(x(t), %())
is bounded above as a function of ¢ € [0, 7], so that

§, L(x(t),2(t))dt < +o0,
and consequently a € dom £ ;®. Thus, for any >0 we have
domE;® > {aeR*| |a| <7}

for all 7 sufficiently small, and (2.16) is valid.

We turn now to the proof of (2.17). If L is lower semicontinuous and
nowhere has the value — oo, the relation amounts to an earlier result
[4, Corollary 2 on p. 8]; only a change of notation and terminology is
involved.

Suppose next that L is not lower semicontinuous, although L still
does not take on —oco. Let L denote the greatest lower semicontinuous
function on R” x R* majorized by L. Then L is convex, does not take
on —oo, and

(2.34) ridomL = ridomZL,
with
(2.35) L(x,v) = L(x,v) if (x,0) eridomL

[2, Theorem 7.4]. Moreover, L has the same conjugate as L, i.e. yields
the same dual Lagrangian M [2, Theorem 12.2]. Let F be the convex
bifunction from R® to R» whose graph function is L. Then domF =R®,
because L £ L. Since L is lower semicontinuous and does not take on — oo,
the case of formula (2.17) already established is applicable to F. Inas-
much as L and L yield the same dual Lagrangian M, the bifunction G
involved is the same for F as for F. Thus we have

(2.36) | Ez®"% = E,® for 0<7<T,

where (0,7) is the interval of v values for which dom E#® is nonempty.
We demonstrate next that for 0< <7 one has domE;®+ @ and

(2.37) E 0% = Bo%,

8o that, in view of (2.36), (2.17) is indeed true under the present assump-
tions on L. Clearly

(2.38) (BEF%a)(d) < (Ep%a)(d) for all a,b,
because L < L. It suffices therefore to demonstrate that if
(2.39) (E5®ag)(by) < p < +oo
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and 6 > 0, there exist a and b with
(2.40) (BxPa)(b) < p and  |(@,0)— (ag,bo)| < 0.

According to (2.39), there is an absolutely continuous function #,:[0, t] -
R” such that

(2.41) %o(0) = @y, @o(7) = by, S; E(xo(t)»d’o(t))dt < u.

We construct a corresponding function of the form ¢:D — R* having the
properties described in the preceding lemma with respect to L. Then
for all points @ in some neighborhood of a,, the equation (2.33) has a
solution over [0, 7]. Fix a particular such point a, #a, and corresponding
solution z,. The Lipschitz property (2.20) in the lemma guarantees that
no other solution to equation (2.33) coincides at any point with z,,
[1, p. 51], and therefore, since z, is a particular solution by (b) of the
lemma, we have
x4(t) * xo(t) forall te[0,7].

Hence

(2.42) (4(t),2,(¢)) e ridom L for almost every ¢ € [0, 7]
by (d) of the lemma. Also,

(2.43) §, L(21(t),2,(8))dt < + oo

by (a) of the lemma. Consider a function of the form

(2.44) z(t) = (1 —2)xy(t) + Az, (¢), where 0<i<]1.
We have

(2.45)  (x(),2(8)) = (1—A)(2o(t), Zo(t)) + A(24(8), %, () € ridom L
by (2.42), and consequently

(2.46)  L(x(¢),%(t)) = L(x(t),%(t)) for almost every ¢ e [0,1]
by (2.35). The convexity of L implies

(2.47) L(x(t),£(t)) £ (1= A)L(wq(t), Bo()) + AL(4(t), 24(2)) -
Let
a =2(0) = (1-Aay+ia; and b = z(z) = (1-2A)by+Ab,

(where a; =2,(0) and b, =x,(t)). Then
(Epa)(b) < §, L(=(), #(t))dt ,
so that by (2.46) and (2.47) we have
(2.48) (Ep®a)(b) £ (1-2) §, L(zo(t), Zo(t))dt + 4 §, L(2y(8), 24(8))dlt .
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Furthermore,
(2'49) I(a/3b) (QO!bO)I = Z’[(al, 1) (“o, )I N

It is clear from (2.39), (2.43), (2.48) and (2.49) that the desired inequalities
(2.40) will be satisfied if 4 is chosen sufficiently small in (2.44).

We are left with the case of (2.17) where L takes on the value —o
somewhere, and hence [2, Theorem 7.2]:

(2.50) L(z,v) = —o forall (z,v) eridomL .
Trivially from the definition (2.13), we have

(Gp)(w) = +o forall pw,
so that
(BgPc)(d) = +o00 forall ¢,d.

To establish (2.17) in this case, therefore, it will be enough to show that
for every v € (0,T), there exist & and b with (Ez7a)(b)= — co. Given any
7€ (0,T), there does exist an absolutely continuous function xz,:[0, r] >
R™ with
§o L(zo(t), %o(t))dt < + oo
Once more we construct a corresponding function ¢:D — R™ with the
properties in the lemma. For all points @ sufficiently near to a,, the
equation (2.33) has a solution & over [0, ]. Since z, solves the equation
for the initial point ¢, (by (b) of the lemma), the Lipschitz property in
(c) of the lemma ensures that if a+a, we have
z(t) + zo(t) forall te[0,7].
But then
(x(¢),%(t)) eridom L for almost every ¢ e [0, 7]

by (d) of the lemma, implying by way of (2.50) that
L(x(t),2(t)) = —oo for almost every ¢t e[0,7] .
Therefore, the points a=x(0), b—x(r) satisfy
(Bx9a)(b) < §; Li(t),3(0)dt = —oo.
This completes the proof of Theorem 3.

3. The case of regular convex bifunctions.

In order to crystalize a more complete duality in the context of Theo-
rem 3, we need conditions ensuring that the “‘escape time’’ T' associated
with the bifunction F is + oo, and that the relationship between E;®
and E;® is reciprocal.
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Let L:R?»x R* — (— o0, + 0] be a lower semicontinuous convex funec-
tion with dom L + @, and let L be the recession function of L, i.e.

(3.1) Liy,2) = limy , o [L(#o+ 2,00+ 72) — L(zo, 90)]/2 ,

where (x,,v,) € dom L (the formula gives the same values independent of
which (z,,v,) in dom L is selected [2, p. 66]). We shall associate with L
the following sets: first the nonempty closed convex cone

(3.2) K,(L) = cldomL = cl{(y,2) | L(y,2) < +},
and second the recession cone of cldomZ, i.e.

(3.3) Ky(L) = {(y,2) | (x,v)+A(y,2) € cldomL
for all (x,v) edomZ and 120}.

Some background facts about K,(L) [2, p. 63] are that it is a nonempty
closed convex cone, and

(3.4) (y,2) € Ky(L) if there exists (z,v) € cldom L
such that (x,v)+A(y,2) € cldom L for all 1=0.

Furthermore,

(3.5) (x,v)+My,2) eridomL forall 1 2 0
if (x,v) eridomL and (y,2) € Ky(L).

We shall say that F is a regular convex bifunction if its graph function
L is, ag above, a lower semicontinuous convex function on R® x R* which
nowhere has the value — oo yet is not identically + oo (implying F#¥ = F),
and if in addition the following two conditions are satisfied:

(3.8) (0,2) e Ky(L) tmplies z=0,
and
(3.7) for every y e R™, there exists z € R® with (y,2) € Ky(L).

For example, if F=vy,, where 4 is a linear transformation from R®
to R®, then F is regular convex, because K,=K,=graph of 4. For an-
other example, suppose F is of the form

(3.8) (Fx)(v) = f(2) +g(v—Azx) ,

where f and g are convex functions on R” and A4 is a linear transformation.
(This case corresponds to problems of optimal control as studied in [3]
and [5].) If f is finite, while g is cofinite (i.e. the conjugate of a finite
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convex function), then F' is regular convex. (Property (3.7) holds be-
cause (r,Ax) € K, for all z, while property (3.6) follows from the formula

Liy,2) = fg) +8(z—4y) ,
where f and § are the recession functions of f and g; since g is cofinite,
we have §(u)= + oo for u+0 [2, p. 116].)
Some initial results about regular convex bifunctions are collected in
the next theorem.

THEOREM 4. If F is a regular convex bifunction from R™ to R™, then
dom F =R", Furthermore, the associated bifunction G in (2.13) is likewise
regular convex and satisfies the reciprocal formula

(3.9) (Fz)(v) = supy,, {z-w+p-v—(Gp)(w)} .

The class of regular convex bifunctions is closed under inf-multiplication.

Proor. The fact that dom F =R" is clear from property (3.7) and the
definition of K,(L). The validity of (3.9) is a consequence merely of the
graph function L of F being a proper convex function which is lower semi-
continuous; then by Fenchel’s theorem (cf. [2, § 12]) the conjugate L*
(or equivalently the dual Lagrangian M in (2.15), the graph function of
@) is likewise a proper convex function which is lower semicontinuous,
and L**=L. We invoke next the fact that the polar of the cone K,(L)
is, according to [2, Theorem 13.3 and Corollary 14.2.1], the recession
cone of the closure of dom L*; thus

(3.10) Ky(L) = {(r.9) | (g:7) € Ky(M)},

(8.11) Ky(M)° = {(zy) | (y,2) € Ky(L)}.

It follows that property (3.6) is equivalent to:

(3.12) for every g € R™ there exists 7 € R® with (g,7) € Ko(M) .
By symmetry, property (3.7) is likewise equivalent to:

(3.13) (0,r) € Ko(M) only for r=0.

The regularity of F thus implies that of G.

Consider now two regular convex bifunctions F, and F, from R* to
R®, and let Fy=F,F,. We shall demonstrate that F is regular convex.
For ¢=0,1,2 let

(3.14) (Hp)z) = (F)(v) ,
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so that Hy=H,H,. The graph functions of F, and F, (or equivalently,
of H, and H,) are known to be closed convex functions which are not
identically infinite, and we want to verify, among other things, that the
same is true of the graph function of F; (or equivalently, of H,). Since
dom F;=R?»=dom F, by what has already been established, it is imme-
diate from the formula for inf-multiplication that dom Fy=R™. Thus the
graph functions of F, (and H,) are not identically + oo, and it will suf-
fice to show that H, is the polar of a convex bifunction whose graph
function is not identically +oo. In fact, we shall show that

(3.15) H, = (HZ#HI#)# ’
making use in this of Theorem 2 as well as the relations
(3.16) H* =H, and H,* =H,,

which are true by the cited properties of the graph functions of H, and
H,. Let G; be the bifunction corresponding to F; by formula (2.13). Then

(3.17)  (Hfw)(p) = sup,,, {vp—z-w—(Fz)(v)} = (G« —w))(p) .

We know from the preceding arguments that G, and G, are regular con-
vex, since F; and F, are. Therefore H,* and H,* are regular convex by
(3.17) and in particular dom H,* = R*=dom H,*. The latter implies that
dom H,*H* =R, and the graph function of H,*H,* is thus not iden-
tically + oco. Furthermore, Theorem 2 and (2.13) yield

(3.18) (HH,** = H¥H* = H,H, = H,.

The mentioned properties of the graph function of H, (and of F) are
thereby shown to be correct.

Next we prove that F, again possesses property (3.7). Let L; be the
graph function of F,, ¢=0,1,2. Given any y € R?, there exists by the
regularity of F, some s € R® with (y,s) € K,(L,). For this s, there also
exists some z € R* with (s,2) € K,(L,). We claim that then (y,z) € Ky(Lo).
To see this, let (z,,v,) be an arbitrary element of ridom Z,. We have by
definition

' Ly(x,v) = inf, {Ly(z,r)+ Ly(r,v)},
and hence

(8.19) domZL, = {(z,v) | 3r with (z,r) e domL,, (r,v) e domL,}.
Moreover, as will be proved in a moment,

(8.20) ridomLy = {(z,v) | 3r with (z,7) e ridomL,, (r,v) eridomL,}.
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Skipping temporarily the verification of (3.20), we observe that this
formula gives the existence of r, with (xy,7,) € ridom L, and (ry,v,) €
ridom L. Since (y,s) € K,(L,), we then have by (3.5) that

(3.21) (xg+Ay,rg+As) edom L, forall 120,
while, since (s,z) € K,(L,),
(3.22) (ro+4s,vy+Az) edomL, forall 120.
But (3.21) and (3.22) imply by way of (3.19) that

(%o+ Ay,v9+42) edom L, forall 120,

or in other words by (3.5), (y,2) € K,(L,); thus F, satisfies (3.7).
Returning now to the omitted proof of (3.20), we represent dom L,
through (3.19) as the set 4(CnD), where

C = {(z,r,7",v)| (#,7) edomL,, (',v)edomlL,},
D = {(z,r,r",v) | r'=r},
A: (x,r,7",v) > (z,v) ..

Here C is convex, D is affine, and A4 is a linear transformation. The
desired relation (3.20) is equivalent to the formula

1i(4(CnD)) = A((riC) n D),

which is valid by [2, Corollary 6.5.1 and Theorem 6.6] if (riC)nD+@,
i.e. if the right side of (3.20) is nonempty. But

domZL, = {(x,r) | xedomF, and r € dom Fyz},
and hence [2, Theorem 6.8]:

ridomL, = {(x,r) | z eridomF, and r e ridom Fyx} .
Similarly,
ridomZL; = {(r,v) | r eridomF,; and v € ridom Fyr}.

Since dom F; =R*»=dom F,, these formulas indicate that the right side
of (3.20) is nonempty, as needed.

The final goal is to establish that F, again possesses property (3.6).
By the symmetry displayed in the first part of the proof, this amounts
to showing that G, (or equivalently H¥, because of (3.17)) possess (3.7).
We know that H,* and H,* are regular convex bifunctions and thus
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possess (3.7). Moreover, (3.7) has been shown to be preserved under
inf-multiplication. Therefore H,*H,* possesses (3.7). We also know from
the argument for F',F, that the product of two regular convex bifunc-
tions is its own bipolar; in particular

(Hz#Hl#)M = H2#H1# .
It follows from (3.15) that
Ho# = Hzﬂ le ,

and hence H¥ does have property (3.7). The proof of Theorem 4 is now
finished.

Our main theorem for one-parameter semigroups may now be pre-
sented.

THEOREM 5. Let F be a regular convex bifunction from R® to R™. Then
E;® is a regular convex bifunction for all v> 0, and one has
(3.23) B9 = E,® forall >0,
where G is given by (2.13).

Proor. First we show that domE®=R» for all >0. Let S be a
simplex in R such that
(3.24) lyl £ 1 implies yedS,

and let ay,a,,. . .,a, be the vertices of S. Since F is regular convex, prop-
erty (3.7) holds, and hence there exist vectors v; such that

(3.25) (@;,v;) € Ko(L) for ¢=0,1,...,m.
The vectors a,; are affinely independent, so we have
(3.26) v; = Qa;+q for ¢=0,1,...,n

for a uniquely determined linear transformation @: R®* — R® and vector
q € R®. If y satisfies |y| =1, there is a barycentric representation

y =2t oMa; where 2,20, 37 (4;=1,
and correspondingly one has
(v, Qu+4q) = 370 4@,
by (3.26). The convexity of K,(L) in (3.25) then yields
(4, Qy+9) € Ky(L) .
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The latter relation therefore holds for all y with |y|=1. But K,(L) is
actually a cone containing the origin. Hence in fact (1y,A(Qy +¢)) € K,y(L)
whenever |y|=1 and 120, or to say the same thing another way,

(3.27) (¥,Qy+1ylg) € Ko(L) forall yeR™.

We now select any v, such that v, € ridom F0. This is possible because
dom F =R” by Theorem 4, and hence dom Fz 4 @ for all x € R*. We have
by [2, Theorem 6.8] that

ridomL = {(z,v) | zeridomF, v eridom Fx},
8o our choice of v, ensures
(3.28) (O,bo) eridomZ .
Recalling (3.5), we see from (3.27) and (3.28) that
(3.29) (x,Qz + |lg +v,) € ridomZL for all xeR",
For every a € R, the equation
(3.30) Z(t) = Qx(t) + |z(t)|lg+vy, 2(0) = a,

has a unique solution z over [0, + c0) such that z(¢) is actually continu-
ous. Then : :
(3.31) (=(t),2(t)) eridomL for all ¢

by (3.29), and since L is finite and continuous relative to ridomL
[2, Theorem 10.1], it follows that L(x(t),#(t)) is finite and continuous as
a function of ¢. Hence

(3.32) (Epa)(x(7)) < g; L(x(t),%(t))dt < oo for all z>0,

implying @ € dom E® for all 7> 0. Thus dom E;®=R" for all 7> 0.

Theorem 3 now gives us (3.23). But the same argument can be applied
to G in place of F, since, by Theorem 4, G is regular convex and (3.9)
holds. Therefore dom E;® =R~ for all >0, and

(3.33) E % = Ex® forall t>0.

The relations (3.23) and (3.33), along with domE®=R*=domE;®,
imply of course that the graph functions of £,® and E ® are lower
semicontinuous convex functions which nowhere take on the value —oo,
and which are not identically + .

Our next step is to demonstrate that property (3.7) holds for the graph
functions

(3.34) L.(a,b) = (Ez%a)®) .
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Fix any >0 and a € R Let b=2(7), where, as above, z is the unique
solution to (3.30). Then
(3.35) (@,b) e dom L,

by (3.32), and (3.31) holds. Let a’ € R*; we must demonstrate the exis-
tence of b’ € R™ such that (a’,b’) € K,(L,), and for this it suffices by char-
acterization (3.4) to display an element b’ such that

(3.36) (@,b)+A(a’',b') edomL, forall z>0.

Let y(t), 0=t < + o0, be the unique solution to the differential equation
(3.37) y(t) = Qy()+ly(t)lg, ¥(0) = a’,

so that by (3.27) we have

(3.38) (y(t),9(t)) € Ko(L) forall £>0.

Note that y(¢) is continuous in ¢. From (3.38) and (3.31) we obtain (in
view of property (3.4) of K,(L)) that

(3.39)  («(t)+Ay(t),2(t) + Ay(t)) eridom L for all £>0, 2120.
Using again the fact that L is finite and continuous on ridom L, we see
that (3.39) implies
§, L(x() + 2y(0), #(t) + A9(t))dt < +oo  forall 120,
and consequently
(3.40) L (2(0) + 2y(0),2(7) + Ay(t)) < +oc0 forall 120.

But this says that (3.36) is fulfilled for &’ =y(7).

The last step is to prove that L. possesses property (3.5). As shown
at the beginning of the proof of Theorem 4, this is equivalent to showing
that the function

(3.41) M (d,c) = sup, y{a-c+b-d—L(a,b)},
which is the graph function of the bifunction that corresponds to E® in

the same manner that @ corresponds to F in (2.13), has property (3.7).
However, since (3.23) holds, it is also true that

(3.42)  (E¥c)(d) = supq,p{b-d—a-c—L,(a,b)} = M,(d,~c).
Define the bifunction H by

(3.43) (Hp)(w) = (Gp)(—w),
so that
(3.44) (Eg®d)(c) = (EgWc)(d) .
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Since @ is regular convex by Theorem 4, so is H, and hence by our pre-
ceding argument the graph function of E ,@ satisfies property (3.7). In
view of (3.42) and (3.44), we may conclude as desired that M, has prop-
erty (3.7).
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