MATH. SCAND. 36 (1975), 131136

CONVEXIFICATION OF CONJUGATE FUNCTIONS

ARNE BRONDSTED

To Werner Fenchel on his 70th birthday.

1. Introduction.

The theory of conjugate convex functions, initiated by W. Fenchel [4],
may be described as a duality theory — within the framework of paired
linear spaces — for upper envelopes of continuous affine functions. (This
description is justified by the fact that these upper envelopes are the
lower semi-continuous convex functions with values in ]— oo, + co] plus
the constant function —oo.) However, as has been pointed out by J. J.
Moreau [5], [6] among others, the basic notions of the theory do not
require the presence of a linear structure, — a general theory of conjugate
functions may be developed for triples (X,Y,p), where X and Y are
arbitrary sets and p is a function on X x Y. It is the purpose of the
present note to demonstrate that in a sense to be made precise, the
duality theory for general triples (X,Y,p) may be embedded in the
standard theory for triples (U, V,q), where U and V are real linear spaces
and ¢ is a non-degenerate bilinear form on U x V, — provided that p
takes only finite values.

2. Convexification.

In the following, let X and Y be arbitrary sets, and let p € RXXY,
Following J. J. Moreau [6] we shall call p a pairing of X and Y. Also, a
function fe RX (where R := [—oo, +oo]) is called regular if f is the su-
premum of functions p(-,y)—f, where y € Y and g € R. The set of regular
functions on X is denoted I'(X,Y). Regularity of functions g € RY is
defined similarly. For any function f € RX, the conjugate f» € I'(Y,X) is
defined by

J?() : = sup,x(p(z,y) —f(2) .

The conjugate of a function g € RY is defined similarly. For any f e RX,
the bi-conjugate fP? := (f?)? is the largest regular minorant of f, and
hence f is regular if and only if f=f7?,
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We shall denote the mapping « — p(x, -) from X into R¥ by &, and the
mapping y - p(+,y) from Y into RX by #. Note that £ resp. 7 is injective
if and only if (p(-,y)),cy Tesp. (p(x,*)),cx separate the points of X
resp. Y. Furthermore, we shall denote by U resp. V the linear span of
&(X) resp. n(Y) in RY resp. RX. We then have:

ProrosrrioN 1. For u=37,4,6(x,) € U and v=37_,u;m(y;) € V, let
q(u,v) := z_?=1 iy A (s, y;) -

Then q is a well-defined non-degenerate bilinear form on UxV, i.e. U
and V are in duality under q. Furthermore, q(&(x),n(y))=p(x,y) for all
zeX, ye¥.

Proor. A straightforward verification shows that g is well-defined.
Clearly, q is bilinear. If u € U\ {0}, then u(y,) =0 for some y, € ¥. But
then g(u,v)+0 with v := 7n(y,). By the symmetry, this shows that ¢ is
non-degenerate. The last statement is obvious.

The preceding proposition describes an embedding of (X,Y,p) in
(U, V,q). Denoting by o(X,Y) resp. o(Y,X) the coarsest topology on X
resp. Y such that the functions (p(-,y)),.r resp. (p(2, *))ze x are continu-
ous, we have:

PROPOSITION 2. The mapping &£ is a continuous and open mapping from
(X,0(X,Y)) onto its image (£(X),a(U,V)) in (U,o(U,V)). In particular,
if (p(+,y))yery Separate the points of X, then & is a homeomorphism. Simi-
larly for 7.

Proo¥. From the definition of o(U, V) it follows that & is continuous
if (and only if) for each v € V the real valued function ¢(&(-),v) is continu-
ous on (X,o(X,Y)). But g(&(x),v) =37, u;p(%,y;) when v=37_, u:n(y;),
and therefore g(&(-),v) is continuous by the definition of (X, Y).

To see that & is open, let 2, X and let u, := &(z,). Note that each
neighbourhood of z, contains a neighbourhood of the form

Ylseoes yn;(x(xo) L= {x eX l ]P(xa?/j)"?(xo,%)l < &, j= L.. "n} ’

where y;,...,,€Y and xeR. Let v; := %(y;), j=1,...,n, and note
that g(&(x),v;)=p(x,y;) for each x € X and j=1,...,n. This shows that
the image of V,, . ., ..(%,) under ¢ is the set

{u € S(X) I lQ(u’vj)_Q(uO:vj)] <«, .7= 1»’ . -:'n}
which is a neighbourhood of u, in (&(X),o(U, V)).
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Clearly, when f is function on X with values in R, then fo&-1is a
well-defined function on &(X) if and only if f(x,) =f(x,) for any x,,z, € X
such that p(x,, ) =p(@,, ). For functions f on X with this property we
shall denote by &(f) the function on U which equals fo&-1 on £(X) and
takes the value + oo on U\ &(X). For g e RY, 7(g) is defined similarly.

ProposrTioN 3. Let fe RX be lower (or upper) semi-continuous om
(X,0(X,Y)). Then &(f) is well-defined, and its restriction to (§(X),o(U,V))

is lower (or upper) semi-continuous. Similarly for g € R¥.

Proor. It follows from the definition of o(X,Y) that if p(z,,-)=
p(Zs,*), then x; and x, belong to the same open sets in (X,q(X,Y)).
Therefore, if f is semi-continuous, it takes the same value at any such
two points, i.e. &(f) is well-defined. The semi-continuity properties of
&(f) follows from Proposition 2.

By Proposition 3, or by a direct argument, &(f) is well-defined for
each regular function f on X. In order to obtain a representation of f
by a regular function on U, we shall “regularize’” &(f). This regulariza-
tion may be performed in the usual sense, i.e. by taking the supremum of
all o(U, V)-continuous affine minorants ¢(-,v)—p of &(f). But it may
also be performed using only those ¢(-,v)—p for which » belongs to
some fixed subset 4 of V such that 4 27(Y). The case where A=x(Y)
is natural in the sense that regularizing &(f) amounts to taking the
supremum of those continuous affine functions on U which are exten-
sions of the minorants p(-,y) —p of f, — where extension is to be under-
stood in the sense that ¢(-,7(y)) — g is the extension of p(-,y)—p.

For n(Y)c A<V, the regularization mentioned above is the function
(&(f)2+v,4)?, where v, is the indicator function of 4, ie. yp, equals 0
on A and + o on V\ 4. To verify this, let € U. Then we have

sup{g(u,v)—p | ve d, peR,q(*,v)-B=E()}
sup {q(u,v) — &(f)%(v) | ve A}
sup {g(u,v) — (5(f)%(v) +y4(v)) | ve V}
= (§())%+y.4)%u) -

We shall denote this function by Z,(f), i.e.

E4(f)w) = (§(f)+y4)%u), ueU.
Similarly, for ge I'(Y,X) and £X)c AU, we let

H (9)(v) = (n(g)*+p.)1w), ve V.

I
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Note that in fact 5 ,(f) e ['(U, V). Also, note that Z,(f)=&(f)? as al-
ready mentioned, and that 4,<4, implies &, (f) <& 4,(f).

ProrositioN 4. Let n(Y)< A< V. Then for any fe I'X,Y),

EL)E@) = &(f)(é@)) = f(=@)
for all x € X. Stmilarly with X and Y interchanged.

The proof is a straightforward verification.

This proposition yields the desired representation of regular functions
on X by regular functions on U. In fact, for each fixed subset 4 of V
containing #n(Y), f is represented by = ,(f).

It turns out that g-conjugation of &(f) reflects p-conjugation of f as
nicely as one could hope for:

ProrosITION 5. For any fe I'(X,Y) we have

n(f?) = &)+ vy -
Similarly for g € I'(Y,X).

The proof is a straighforward verification.

Using this we obtain the following, which among other things shows
that in some sense E,y) and £y, as well as Hyx) and Hy, are equally
natural:

ProPOSITION 6. For any mutually conjugate functions fe I'(X,Y) and
ge I'(Y,X) we have
Em(f)? = Hylg),

Ey(f)? = Hyx)(9) -

3. Remarks.
In the following, let (X, Y,p) and (U, V,q) be as in section 2.

A. Note that the construction in section 2 leads to a notion of ‘“‘con-
vexity on non-convex sets’”’: A subset C' of X might be called (Y,p)-
convex if £(C)=&(X)NC' for some convex subset C' of U, and a function
f on X might be called (Y,p)-convex if &(f) is well-defined and &(f)=¢
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on &(X) for some convex function ¢ on U.— The notion of a (¥,p)-
convex set extends the notion of a @-convex set in the sense of K. Fan

[3].

B. When adopting the convention that (4 o)+ (F o0)= —o0, I'(U, V)
is closed under addition and multiplication by positive scalars, i.e.
I'(U,V) is an “‘abstract” convex cone. One might ask when I'(X,Y) is
also a convex cone, and, if so, to what extent it resembles a subcone of
I'(U,V). 1If n(Y) and 4 are convex cones, then the mapping &, from
I'X,Y) into I'(U,V) is positively homogeneous and superadditive.
Only under strong conditions will =, be additive, and hence an isomor-
phism from I'(X,Y) onto a subcone of I'(U, V). — The main result of
J. P. Aubin [2] is related to this question, although his point of view is
different from ours.

C. By a convex structure on X we shall mean a mapping y from the set
Ui {(A,. ., 4,)eR? | 4,50, 37, A,=1}x X"

into the set of non-empty subsets of X. It is easy to see that &(X) is a
convex subset of U if and only if there exists a convex structure y on X
such that each p(-,y), y €Y, is y-affine in the sense that

p(@,y) = D71 Ap(E,Yy)

for each x € p((4;,. . .,4,),(%y,. . .,®,)). — J. P. Aubin [1] studies y-convex
functions on a set equipped with a convex structure. His main result is
an easy consequence of the results of section 2.

D. As an illustration, consider the following example. Let X be a
compact topological space, let ¥ be a subspace of €(X) separating the
points and containing the constants, and let X and Y be paired by
p(x,p)=¢@(x) for xe X and ¢ € Y. By section 2 there exists for every
JeI'(X,Y) a lower semi-continuous convex function ¢ on U such that
g=fo&1 on &(X). And conversely, due to the particular circumstances,
if h: £(X) - R admits a lower semi-continuous convex extension to U,
then f:= ho& is regular. Therefore, I'(X, Y) is the set of all lower semi-
continuous functions on X if and only if every lower semi-continuous
function on &(X) may be extended to a lower semi-continuous convex
function on U. The compact subsets of R® having this extension property
are the compact sets A such that 4 =extconvd4. Therefore, if Y is
spanned by finitely many (linearly independent) functions 1,¢,,...,¢,,
then every lower semi-continuous function on X is the supremum of
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linear combinations A,+A,p;+ ... +4,9,, if and only if the mapping
x = (@y(2),. . .,p,(x)) maps X homeomorphically onto a compact set
A cR™ with 4 =extconv4. In particular, X must be homeomorphic to
a subset of some R™. Conversely, if this is the case, then there exist such
functions ¢;. In fact, if ¢ is a homeomorphism from X onto a subset of
R™, and X is not homeomorphic to a subset of R¥ with k <m, then one
may take g,=m;0p for i=1,...,m, where =, is the ¢th projection in R™,
and take @,,,; =yo@, where y is any continuous strictly convex function
on conve(X). The functions 1,¢,,...,¢,.; Will then have the properties
described above.
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