CONVEXIFICATION OF CONJUGATE FUNCTIONS

ARNE BRØNDSTED

To Werner Fenchel on his 70th birthday.

1. Introduction.

The theory of conjugate convex functions, initiated by W. Fenchel [4], may be described as a duality theory — within the framework of paired linear spaces — for upper envelopes of continuous affine functions. (This description is justified by the fact that these upper envelopes are the lower semi-continuous convex functions with values in $]-\infty, +\infty]$ plus the constant function $-\infty$.) However, as has been pointed out by J. J. Moreau [5], [6] among others, the basic notions of the theory do not require the presence of a linear structure, — a general theory of conjugate functions may be developed for triples (X,Y,p), where X and Y are arbitrary sets and p is a function on $X\times Y$. It is the purpose of the present note to demonstrate that in a sense to be made precise, the duality theory for general triples (X,Y,p) may be embedded in the standard theory for triples (U,V,q), where U and V are real linear spaces and q is a non-degenerate bilinear form on $U\times V$, — provided that p takes only finite values.

2. Convexification.

In the following, let X and Y be arbitrary sets, and let $p \in \mathbb{R}^{X \times Y}$. Following J. J. Moreau [6] we shall call p a pairing of X and Y. Also, a function $f \in \overline{\mathbb{R}}^X$ (where $\overline{\mathbb{R}} := [-\infty, +\infty]$) is called regular if f is the supremum of functions $p(\cdot,y)-\beta$, where $y \in Y$ and $\beta \in \mathbb{R}$. The set of regular functions on X is denoted $\Gamma(X,Y)$. Regularity of functions $g \in \overline{\mathbb{R}}^Y$ is defined similarly. For any function $f \in \overline{\mathbb{R}}^X$, the conjugate $f^p \in \Gamma(Y,X)$ is defined by

$$f^p(y) := \sup_{x \in X} (p(x,y) - f(x)).$$

The conjugate of a function $g \in \overline{\mathbb{R}}^Y$ is defined similarly. For any $f \in \overline{\mathbb{R}}^X$, the bi-conjugate $f^{pp} := (f^p)^p$ is the largest regular minorant of f, and hence f is regular if and only if $f = f^{pp}$.

Received October 15, 1974; in revised form December 9, 1974.

We shall denote the mapping $x \to p(x, \cdot)$ from X into R^Y by ξ , and the mapping $y \to p(\cdot, y)$ from Y into R^X by η . Note that ξ resp. η is injective if and only if $(p(\cdot, y))_{y \in Y}$ resp. $(p(x, \cdot))_{x \in X}$ separate the points of X resp. Y. Furthermore, we shall denote by U resp. Y the linear span of $\xi(X)$ resp. $\eta(Y)$ in R^Y resp. R^X . We then have:

Proposition 1. For
$$u = \sum_{i=1}^m \lambda_i \xi(x_i) \in U$$
 and $v = \sum_{j=1}^n \mu_j \eta(y_j) \in V$, let
$$q(u,v) := \sum_{j=1}^n \sum_{i=1}^m \lambda_i \mu_j p(x_i,y_j) .$$

Then q is a well-defined non-degenerate bilinear form on $U \times V$, i.e. U and V are in duality under q. Furthermore, $q(\xi(x), \eta(y)) = p(x, y)$ for all $x \in X$, $y \in Y$.

PROOF. A straightforward verification shows that q is well-defined. Clearly, q is bilinear. If $u \in U \setminus \{o\}$, then $u(y_0) \neq 0$ for some $y_0 \in Y$. But then $q(u,v) \neq 0$ with $v := \eta(y_0)$. By the symmetry, this shows that q is non-degenerate. The last statement is obvious.

The preceding proposition describes an embedding of (X,Y,p) in (U,V,q). Denoting by $\sigma(X,Y)$ resp. $\sigma(Y,X)$ the coarsest topology on X resp. Y such that the functions $(p(\cdot,y))_{y\in Y}$ resp. $(p(x,\cdot))_{x\in X}$ are continuous, we have:

PROPOSITION 2. The mapping ξ is a continuous and open mapping from $(X, \sigma(X, Y))$ onto its image $(\xi(X), \sigma(U, V))$ in $(U, \sigma(U, V))$. In particular, if $(p(\cdot, y))_{y \in Y}$ separate the points of X, then ξ is a homeomorphism. Similarly for η .

PROOF. From the definition of $\sigma(U,V)$ it follows that ξ is continuous if (and only if) for each $v \in V$ the real valued function $q(\xi(\cdot),v)$ is continuous on $(X,\sigma(X,Y))$. But $q(\xi(x),v) = \sum_{j=1}^{n} \mu_j p(x,y_j)$ when $v = \sum_{j=1}^{n} \mu_j \eta(y_j)$, and therefore $q(\xi(\cdot),v)$ is continuous by the definition of $\sigma(X,Y)$.

To see that ξ is open, let $x_0 \in X$ and let $u_0 := \xi(x_0)$. Note that each neighbourhood of x_0 contains a neighbourhood of the form

$$V_{y_1,\, \ldots \,,\, y_n; \boldsymbol{\alpha}}(x_0) := \, \big\{ x \in X \,\, \big| \,\, |p(x,y_j) - p(x_0,y_j)| \,\, < \,\, \alpha, \,\, j = 1, \ldots, n \big\} \,\, ,$$

where $y_1, \ldots, y_n \in Y$ and $\alpha \in \mathbb{R}$. Let $v_j := \eta(y_j), j = 1, \ldots, n$, and note that $q(\xi(x), v_j) = p(x, y_j)$ for each $x \in X$ and $j = 1, \ldots, n$. This shows that the image of $V_{y_1, \ldots, y_n; \alpha}(x_0)$ under ξ is the set

$$\{u \in \xi(X) \mid |q(u,v_j) - q(u_0,v_j)| < \alpha, \ j = 1,\ldots,n\}$$

which is a neighbourhood of u_0 in $(\xi(X), \sigma(U, V))$.

Clearly, when f is function on X with values in $\overline{\mathbb{R}}$, then $f \circ \xi^{-1}$ is a well-defined function on $\xi(X)$ if and only if $f(x_1) = f(x_2)$ for any $x_1, x_2 \in X$ such that $p(x_1, \cdot) = p(x_2, \cdot)$. For functions f on X with this property we shall denote by $\xi(f)$ the function on U which equals $f \circ \xi^{-1}$ on $\xi(X)$ and takes the value $+\infty$ on $U \setminus \xi(X)$. For $g \in \overline{\mathbb{R}}^Y$, $\eta(g)$ is defined similarly.

PROPOSITION 3. Let $f \in \overline{\mathbb{R}}^X$ be lower (or upper) semi-continuous on $(X, \sigma(X, Y))$. Then $\xi(f)$ is well-defined, and its restriction to $(\xi(X), \sigma(U, V))$ is lower (or upper) semi-continuous. Similarly for $g \in \overline{\mathbb{R}}^Y$.

PROOF. It follows from the definition of $\sigma(X,Y)$ that if $p(x_1,\cdot) = p(x_2,\cdot)$, then x_1 and x_2 belong to the same open sets in $(X,\sigma(X,Y))$. Therefore, if f is semi-continuous, it takes the same value at any such two points, i.e. $\xi(f)$ is well-defined. The semi-continuity properties of $\xi(f)$ follows from Proposition 2.

By Proposition 3, or by a direct argument, $\xi(f)$ is well-defined for each regular function f on X. In order to obtain a representation of f by a regular function on U, we shall "regularize" $\xi(f)$. This regularization may be performed in the usual sense, i.e. by taking the supremum of all $\sigma(U, V)$ -continuous affine minorants $q(\cdot, v) - \beta$ of $\xi(f)$. But it may also be performed using only those $q(\cdot, v) - \beta$ for which v belongs to some fixed subset A of V such that $A \supseteq \eta(Y)$. The case where $A = \eta(Y)$ is natural in the sense that regularizing $\xi(f)$ amounts to taking the supremum of those continuous affine functions on U which are extensions of the minorants $p(\cdot, y) - \beta$ of f, — where extension is to be understood in the sense that $q(\cdot, \eta(y)) - \beta$ is the extension of $p(\cdot, y) - \beta$.

For $\eta(Y) \subseteq A \subseteq V$, the regularization mentioned above is the function $(\xi(f)^q + \psi_A)^q$, where ψ_A is the indicator function of A, i.e. ψ_A equals 0 on A and $+\infty$ on $V \setminus A$. To verify this, let $u \in U$. Then we have

$$\begin{split} \sup \big\{ & q(u,v) - \beta \ \big| \ v \in A, \ \beta \in \mathbb{R}, \, q(\cdot,v) - \beta \leqq \xi(f) \big\} \\ &= \sup \big\{ & q(u,v) - \xi(f)^q(v) \ \big| \ v \in A \big\} \\ &= \sup \big\{ & q(u,v) - \big(\xi(f)^q(v) + \psi_A(v) \big) \ \big| \ v \in V \big\} \\ &= \big(\xi(f)^q + \psi_A \big)^q(u) \ . \end{split}$$

We shall denote this function by $\mathcal{Z}_{\mathcal{A}}(f)$, i.e.

$$\Xi_A(f)(u) = (\xi(f)^q + \psi_A)^q(u), \ u \in U.$$

Similarly, for $g \in \Gamma(Y,X)$ and $\xi(X) \subseteq A \subseteq U$, we let

$$H_A(g)(v) \,=\, \big(\eta(g)^q + \psi_A\big)^q(v), \ v \in V \ .$$

Note that in fact $\Xi_{\mathcal{A}}(f) \in \Gamma(U, V)$. Also, note that $\Xi_{V}(f) = \xi(f)^{qq}$ as already mentioned, and that $A_1 \subseteq A_2$ implies $\Xi_{\mathcal{A}_2}(f) \subseteq \Xi_{\mathcal{A}_2}(f)$.

Proposition 4. Let $\eta(Y) \subseteq A \subseteq V$. Then for any $f \in \Gamma(X, Y)$,

$$\mathcal{Z}_{\mathcal{A}}(f)(\xi(x)) = \xi(f)(\xi(x)) = f(x)$$

for all $x \in X$. Similarly with X and Y interchanged.

The proof is a straightforward verification.

This proposition yields the desired representation of regular functions on X by regular functions on U. In fact, for each fixed subset A of V containing $\eta(Y)$, f is represented by $\Xi_A(f)$.

It turns out that q-conjugation of $\xi(f)$ reflects p-conjugation of f as nicely as one could hope for:

Proposition 5. For any $f \in \Gamma(X, Y)$ we have

$$\eta(f^p) = \xi(f)^q + \psi_{\eta(Y)}.$$

Similarly for $g \in \Gamma(Y, X)$.

The proof is a straighforward verification.

Using this we obtain the following, which among other things shows that in some sense $\mathcal{Z}_{\eta(Y)}$ and \mathcal{Z}_{V} , as well as $H_{\xi(X)}$ and H_{U} , are equally natural:

PROPOSITION 6. For any mutually conjugate functions $f \in \Gamma(X, Y)$ and $g \in \Gamma(Y, X)$ we have

$$\begin{split} \Xi_{\eta(Y)}(f)^q &= H_U(g) \;, \\ \Xi_V(f)^q &= H_{\mathcal{E}(X)}(g) \;. \end{split}$$

3. Remarks.

In the following, let (X, Y, p) and (U, V, q) be as in section 2.

A. Note that the construction in section 2 leads to a notion of "convexity on non-convex sets": A subset C of X might be called (Y,p)-convex if $\xi(C) = \xi(X) \cap C'$ for some convex subset C' of U, and a function f on X might be called (Y,p)-convex if $\xi(f)$ is well-defined and $\xi(f) = \varphi$

on $\xi(X)$ for some convex function φ on U. — The notion of a (Y,p)convex set extends the notion of a Φ -convex set in the sense of K. Fan [3].

- B. When adopting the convention that $(\pm \infty) + (\mp \infty) = -\infty$, $\Gamma(U, V)$ is closed under addition and multiplication by positive scalars, i.e. $\Gamma(U, V)$ is an "abstract" convex cone. One might ask when $\Gamma(X, Y)$ is also a convex cone, and, if so, to what extent it resembles a subcone of $\Gamma(U, V)$. If $\eta(Y)$ and A are convex cones, then the mapping \mathcal{E}_A from $\Gamma(X, Y)$ into $\Gamma(U, V)$ is positively homogeneous and superadditive. Only under strong conditions will \mathcal{E}_A be additive, and hence an isomorphism from $\Gamma(X, Y)$ onto a subcone of $\Gamma(U, V)$. The main result of J. P. Aubin [2] is related to this question, although his point of view is different from ours.
 - C. By a convex structure on X we shall mean a mapping γ from the set

$$\bigcup_{n=1}^{\infty} \left\{ (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n \mid \lambda_i > 0, \sum_{i=1}^n \lambda_i = 1 \right\} \times X^n$$

into the set of non-empty subsets of X. It is easy to see that $\xi(X)$ is a convex subset of U if and only if there exists a convex structure γ on X such that each $p(\cdot, \gamma)$, $\gamma \in Y$, is γ -affine in the sense that

$$p(x,y) = \sum_{i=1}^{n} \lambda_i p(x_i,y)$$

for each $x \in \gamma((\lambda_1, \ldots, \lambda_n), (x_1, \ldots, x_n))$. — J. P. Aubin [1] studies γ -convex functions on a set equipped with a convex structure. His main result is an easy consequence of the results of section 2.

D. As an illustration, consider the following example. Let X be a compact topological space, let Y be a subspace of $\mathscr{C}_{\mathsf{R}}(X)$ separating the points and containing the constants, and let X and Y be paired by $p(x,\varphi)=\varphi(x)$ for $x\in X$ and $\varphi\in Y$. By section 2 there exists for every $f\in \Gamma(X,Y)$ a lower semi-continuous convex function g on U such that $g=f\circ\xi^{-1}$ on $\xi(X)$. And conversely, due to the particular circumstances, if $h\colon \xi(X)\to \overline{\mathsf{R}}$ admits a lower semi-continuous convex extension to U, then $f:=h\circ\xi$ is regular. Therefore, $\Gamma(X,Y)$ is the set of all lower semi-continuous functions on X if and only if every lower semi-continuous function on $\xi(X)$ may be extended to a lower semi-continuous convex function on U. The compact subsets of \mathbb{R}^n having this extension property are the compact sets A such that $A=\operatorname{extconv} A$. Therefore, if Y is spanned by finitely many (linearly independent) functions $1,\varphi_1,\ldots,\varphi_n$, then every lower semi-continuous function on X is the supremum of

linear combinations $\lambda_0 + \lambda_1 \varphi_1 + \ldots + \lambda_n \varphi_n$, if and only if the mapping $x \to (\varphi_1(x), \ldots, \varphi_n(x))$ maps X homeomorphically onto a compact set $A \subseteq \mathbb{R}^n$ with $A = \operatorname{ext\,conv} A$. In particular, X must be homeomorphic to a subset of some \mathbb{R}^m . Conversely, if this is the case, then there exist such functions φ_i . In fact, if φ is a homeomorphism from X onto a subset of \mathbb{R}^m , and X is not homeomorphic to a subset of \mathbb{R}^k with k < m, then one may take $\varphi_i = \pi_i \circ \varphi$ for $i = 1, \ldots, m$, where π_i is the ith projection in \mathbb{R}^m , and take $\varphi_{m+1} = \psi \circ \varphi$, where ψ is any continuous strictly convex function on $\operatorname{conv} \varphi(X)$. The functions $1, \varphi_1, \ldots, \varphi_{m+1}$ will then have the properties described above.

REFERENCES

- J. P. Aubin, Characterization of cones of functions isomorphic to cones of convex functions, 5th Conference on Optimization Techniques, R. Conti and A. Ruberti, editors, Lecture Notes in Computer Science 3, Springer-Verlag, Berlin, Heidelberg, New York 1973, 174-183.
- J. P. Aubin, Répresentation d'un cône convexe de fonctions par un cône de fonctions convexes, Boll. Un. Mat. Ital. (4) 7 (1973), 221–228.
- K. Fan, On the Krein-Milman theorem, Proc. Symp. Pure Math. 7, Convexity, Amer. Math. Soc. 1963, 211-219.
- 4. W. Fenchel, On conjugate convex functions, Canad. J. Math. 1 (1949), 73-77.
- 5. J. J. Moreau, Fonctionelles Convexes, Collège de France, Paris 1966-67.
- J. J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numeriques, J. Math. Pures Appl. 49 (1970), 109-154.

UNIVERSITY_OF COPENHAGEN DENMARK