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To Werner Fenchel on his 70th birthday.

Introduction.

Let M be a smooth manifold of dimension m and let T M be the tan-
gent bundle of M. If G is a non-degenerate symmetric bilinear form on
TM, the pair (M,R) is called a pseudo-Riemannian manifold. G is an
indefinite metric for M ; if G is positive definite, then (M, #) is a Riemann-
ian manifold. In this paper, we will study the local invariants of (M,G).
Let A$(T*M) be the bundle of s-forms over M and let I'(As(T*M))
denote the space of smooth sections. The invariants we will consider
will be s-form valued polynomials P in the derivatives of the metric G;
P(G)(x) € I'(A*(T*M)). In the first section we will define the order n of
an s-form valued polynomial invariant P. We will show that if n<s,
then P=0. If n=s, then P(G) is a Pontrjagin form. This will generalize
some earlier results for positive definite metrics to the case of indefinite
metrics. If P is s-form valued and if dP(G)(x)=0 for all G,z, then P(G)
is always a closed s-form. Consequently, P(G) represents a cohomology
class {P(G)}. If {P(G)} is independent of G, we will prove that {P(G)}
is a Pontrjagin class.

If =0, then P(@) is a function valued invariant. Let

P(G)(M) = ( P(@)|dvol|

where M is compact and |dvol| is the measure induced on M by G. The
Euler class #,, is such an invariant if m is even. We will give an axio-
matic characterization of the Euler class similar to that given in [3] for
positive definite metrics. Let x(M) be the Euler characteristic of M.
I. M. Singer conjectured that if P(G)(M) is independent of the metric @,
then there is a constant ¢ such that P(G)(M)=cy(M). We proved this
conjecture earlier for positive definite metrics; in this paper we extend
this result to indefinite metrics. This proves that the only diffeomor-
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phism invariants in the category of unoriented pseudo-Riemannian com-
pact manifolds which are obtained by integrating local formulas in the
derivatives of the metric are just multiples of the Euler characteristic.

Section 1.

Let M be a smooth manifold of dimension m and let G be a non-
degenerate symmetric bilinear form on 7'M . The pair (M,G) is a pseudo-
Riemannian manifold; G is a pseudo-Riemannian metric for M. Let
X=(xy,...,x,) be a system of local coordinates defined in a neighbor-
hood of some point z, € M. Let

9:#(X,G) = G(9[ox;,0[0x;) .

Since @ is non-degenerate, we can make a linear change of coordinates
to diagonalize @ at x,. X is said to be G-normalized at z, iff

0 for ¢ +j
9:;(X,G) =1 lfori=j5=<0p
—lfori=j5>0p

Let g=m—p. If ¢=0, G is positive definite and is a Riemannian metric.
We will say in general that ¢ is of type (p,q) for 0Sp=<m, 0<g9=<m, and
p+q=m. There are topological restrictions on the set of manifolds which
admit metrics of type (p,q). For example, a compact manifold M admits
a metric of type (m—1,1) if and only if the Euler characteristic of M
vanishes.

Let {e;,...,e,} be the usual basis for R™ and let @ be the bilinear form

0 for ¢ +j
Qe e5) = lfori=j5=0p
—lfori=5>09p

Let O(p,q) be the group of all real m x m matrices which preserve Q;
let SO(p,q) be the subgroup of orientation preserving matrices. Let
o=(x(1),...,&(m)) be a multi-index; let ord (x)=u(1)+ ... +a(m). If X
is a coordinate system, let

Ay, = (0f3my)0 . .. (3]0 )om .

We say that & corresponds to {,%...,4,*} for 1<¢;*<m iff s=ord(x)
and if «(i)=0; ;a4 ... +0; ;4. 0; is the Kronecker index. Introduce
formal variables: g=(—12det(g;;))* and g;j/.=sj4a...4,0- If ord(a)=0,
9iirn=9:;- Let P be the polynomial algebra in the {g,;,,9,97} variables
subject to the relation g2= — 12 det(g,;;). If X is a coordinate system, we
evaluate g,9,;, on (X,G) by:
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g(X, @) (o) = (— 19 det(G(0]ow;, 0]0x;)) (o) )t
gij/a(X’G)(xO) = dX,a(G(a/ 3751‘:3/3701))(950) .

We extend this evaluation to the polynomial algebra to define P(X,G)(x,)
for any P e £.
Let A=9%q; ; /s - - - 9i,jia, b€ @ monic monomial and let P e 2. De-
fine:
ord(A4) = ord () + ...+ ord(«,)
¢(4,P) = the coefficient of the monomial 4 in P .

We say that 4 is a monomial of P if ¢(4,P)+0. P is homogeneous of
order n if all the monomials 4 of P are of order n. Let I=(i;,...,%,)
with 1=<4;<...<i,Sm. Let |I|=s and let dax;=dw;A...adx; €
As(T*M). If P has the form:

P =3 - Pdz; for Pre?,

then P is an s-form valued polynomial in the derivatives of G. If all
the P; are homogeneous of order n, then P is of order n. For such a P,
we define:

P(X,0)(%o) = 3jj-s Po(X, @)(@o)dm; A ... Aday € AS(T*H) .

It P(X,G)(x,) =P(Y,G)(x,) for any two coordinate systems X and Y,
we will say that P is O(p,q)-invariant. If P(X,G)(x,)=P(Y,G)(x,) for
any two coordinate systems X and Y which induce the same local orien-
tation of M, then we will say that P is SO(p,q) invariant. Let »=0(p,q)
or 8O(p,q) and let &, , , be the vector space of all s-form valued »-in-
variant polynomials of order » in the derivatives of @. Clearly 2, o, o s<
P sow.0.s+ B PEPy 0w, s 166 P(G)(x)=P(X,G)(x,); this is indepen-
dent of the choice of X by hypothesis. If P € &, go(»,q,s and if orn is a
local orientation of M, let P(G,orn)(z,)=P(X,d)(x,) for any coordinate
system X inducing the orientation orn.

We will need the following characterization of the order of an »-in-
variant polynomial in later sections:

LemMA 1.1, Let Pe 2, , , and ¢>0. H=cG is another pseudo-melric
for M of type (p,q). Then P(c*G)=c*"P(G). Consequently, if P is v-invari-
ant, we can decompose P=Py+ ...+ P, where the P; are homogeneous of

order j and v-invariant separately.

Proor. Let X be a w-coordinate system and let Y =cX. Then
0/oy;=c10/ox; and dy;=cdx;. Since ¢ (Y ,H)=g,X,q), 9:;;;(¥Y,F)=
cordg.., (X,Q). Let
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4 = gkgiljllle cee gi,j,/a,dxz
be a monomial of P. Then A(Y,H)=cs-ord4d (X H)=c*"A(X, H).
Therefore, P(Y,H)=c*"P(X,(); since P is y-invariant this proves the
lemma.

The Pontrjagin and Euler classes are invariant polynomials in the
derivatives of the metric. They are constructed as follows: let V be the
Levi-Civita connection induced by the bilinear form G. Let V;=V,,,
for notational convenience. V is defined by the identities:

Vi(0ox;) = V;(0/ow;) (torsion free)
GQ(V,0]0x;,0[0xy) + G(9]0x;, V0] 0x,) = gz  (Riemannian) .
We use these two identities to conclude that:
G(V:0[0;,0[0my) = (F0s5— Tujrre+ Girer)2 -

Since G is non-degenerate, this defines the connection V uniquely. Let
2 be the curvature tensor of the connection: 2 is the 2-form valued
endomorphism of 7'M defined by:

Q8)owy) = ey (ViV;—V;V,)(0]02y) @ O, A O .
Let
p(2) = det(I—(1/27)2)

be the total Pontrjagin class of the connection. We can express
PR) = 1+ () +py(Q) + . ... .

p;(£2) is a 4i-form valued invariant which is homogeneous of order 47 in
the derivatives of G. Therefore p;(2) € Zy; o(p, ), 4
If @ is a combination of the P,(f2), @ is said to be a Pontrjagin form.

THEOREM 1.2. Let P € 2, o, o, s then

(a) If n<s, P=0
(b) If n=s, P is a Pontrjagin form. If P+0, n is divisible by 4.

The case ¢=0 has been considered previously by the author [3] and
by Atiyah, Bott, and Patodi [1]. In section 2, we use the methods of [3]
to prove 1.2 for all values of ¢. Theorem 1.2 has also been proved inde-
pendently by Stredder [7]. His proof uses H. Weyl’s theorem on the
invariants of O(p,q) together with some results of Epstein [2].

Since @ is non-degenerate, we define the non-zero measure |dvol|=
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gldx, . ..dx,| exactly as in the Riemannian case. Let orn be a local orien-
tation of M, and let * be the Hodge operator induced by the bilinear
form @ and the orientation orn. Let {e,,...,e,} be an oriented frame for
TM which diagonalizes (. Let Q(e;) =£,;¢;. We adopt the convention of
summing over repeated indices unless otherwise indicated. 2,; is a ma-
trix of 2-forms. Let m =2k be even; define the Euler class E,, by:

B, = *(2, sign(1)2,00@ - - + Lotm-vetm)((— 1)F-Y2makR!) .

The sum ranges over all permutations = of the integers 1 thru m. E,, is
independent of the local orientation orn and the frame field {e,,...,e,}.
Therefore K, € 2, 0w, g.0-

It is clear that 2, (. 4.0 is not 1 dimensional for m even, m = 4. We
will need some other property of the Euler class £, to characterize Z,,
axiomatically. We define linear maps:

* Py owa,s > P, ow-1,9,s Tor 8 <m, p >0
%= P, 0w,0,5 > Pn,0w,0-n,s TOr 8 <m, ¢ >0

as follows. First suppose p>0. Let N be an m— 1 dimensional manifold
with a non-degenerate bilinear form G, on N of type (p—1,q). Let
M =N x 8* with the product bilinear form G=G,®1 on TM =TNRQTS*.
The bilinear form @ is non-degenerate and of type (p,q). Let ¢ be a fixed
point of S8* and let i(x)=(x,t): N — M. Define

rE+H(P)(Go)(x) = i*(P(Gy x 1)(@,1)) € N*(T*N) .

We define r*- similarly. If G,®1=0, let e,,...,e,_, be a frame for TN
and e, for T'S*. Since the metric is flat in the S! direction, £2,,,=0.
Thus E,(G,x1)=0 implying r*+(#,)=0. Similarly, r*—(E,)=0. If
q=0, let r*=r*+; otherwise let r*=r*-

TuroreM 1.3. Let P € 2, op, 9,0 With r*P=0.

(a) If n<m, P=0
(b) If n=m, there is a constant ¢ such that P=ck,,.

This theorem provides a useful characterization of the Euler class. If
¢=0,G is positive definite and this result was proved in [3]. In section 2,
we will generalize the methods of [3] to prove 1.3 for arbitrary q.

Let X be coordinates which are G-normalized at z,. Then g,,(X, G)(z,) =
+0;; and g(X,G)(x,)=1; J;; is the Kronecker index. If we temporarily
restrict to such coordinates, we can assume that the polynomials involve
the g,;, variables with ord(x)>0. Let M ={xeR™: |jz| <&} for some

Math. Scand. 36 — 8
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£>0. Let X be the usual coordinates on R™. We can find a metric G on
M of type (p,9) so0 gij(X’G)(O)": i’éij’ g(X’G)(0)= 1, and so gij/a(X’G)(O)
is arbitrary for 0<ord(x) <k for some % large. Consequently, P=+0 as a
polynomial implies we can find (M,G,X) so X is G-normalized at x,
and so P(X,d)(x,)+ 0. This permits us to identify the polynomial P with
the formula defined by P.

Let Pe2, op,0,s 304 A= ;10 -+ - i3k, - - - 4%, be a mono-

tefsl ag

mial of P. We have assumed ord («;) > 0. Let
degy(4) = 0;,,+0;, k+oq(k)+ ... +8;, 5 +0; x+oak)
+0p, 1t F 0k -

A if deg,A4 =0
0 if deg,4 > 0

r*4 is defined for m—1 dimensional manifolds. r*4(G,)=A4(G,Q1).
Since r*P(G,) =0 for every G,, r*P vanishes as a polynomial. This im-
plies that deg, 4 >0 for every monomial 4 of P. Although this seems
to single out the last index, in the second section we will use invariance
under O(p,q) to prove deg,, 4 > 0 implies that deg, (4)>0fork=1,...,m.
We will use this fact in the second section to prove theorem 1.3.

We give another description of the map r* using Weyl’s theorem
2.11A [8] on the invariants of the group O(p,q). We follow the approach
of Atiyah, Bott, and Patodi [1]; let X be normal coordinates which are
centred at x, € M. In the coordinate system X, the ordinary derivatives
of G at z, can be expressed in terms of the covariant derivatives of
the curvature tensor. This enables us to express P as a polynomial P
in the covariant derivatives of the curvature tensor; because of the
Bianchi identities, P is not uniquely defined as a polynomial. We use the
metric to identify 7'(M) with T*(M). The components of the jth order
covariant derivatives of the curvature tensor lie in ®4*(TM). Let
V=T(R™), and let @ be a fixed bilinear form of type (p,q) on V. Let
W=@}_,(®*(V)) for some large k. Let W, be the subspace of W
which is generated by the components of the covariant derivatives of
the curvature tensors of all germs of bilinear forms G on R™ such that
G(0)=@Q. Tt is clear that W, is an O(p,q) invariant subspace of W; P is
a polynomial map from W, to A2(V) which is equivariant under the
action of O(p,q).

If m=p+q>2, then O(p,q) is semi-simple. Consequently, any repre-
sentation of O(p,q) is completely reducible [5, 9]. Let W, be an O(p,q)
invariant subspace of W such that W= W,@®W,. Let P=0 on W,; this
defines P as a polynomial map from W — A#(V) which is equivariant

r*(4) =
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under the action of O(p,q). By Weyl’s theorem, this implies that P can
be expressed in terms of alternations and contractions of indices. We
sum over all indices from 1 thru m to define P; r*P is defined by letting
the corresponding sums range over indices from 1 thru m—1. This
description relates r* to classical invariance theory if p+¢> 2.

If m=2, then every representation of the group O(1,1) is not com-
pletely reducible. However, it is well known that the standard represen-
tation of O(1,1) and O(2) on the tensor algebra is completely reducible
and we can therefore apply the argument given above to this case as well.
The fact that every invariant is expressible in terms of alternations and
contractions of indices also follows from Epstein and Stredder’s work
[2, 71.

Let (p,q)=(p,g—1) for ¢>0 and (p,7)=(p—1,0) if ¢=0.

LemMA 14. 7*: 2, op,0,5 > Pn, 06,0, 18 Surjective.

Proor. Let Pe P, op,a0,s- Express P in terms of contractions and
alternations of indices ranging from 1 thru m—1; let Q@ € 2, o4 o, s e
defined by letting the corresponding sums range over indices from 1
thru m. Then r*Q@=P and therefore r* is surjective. It should be
noted that in general the expansion of P in terms of contractions and
alternations of indices is not in general unique. Therefore, r* need not
be injective for general values of n.

Let d be exterior differentiation and let § be the adjoint of d with
respect to the bilinear form @. These two operators induce maps:

d: Wn,o(p.q).s > Jn+1,00,9), s+1
d: gn,o(p,q),s g n+1, O(p, g), s—1

which commute with r*. Let 7', =8'x ... x 8! be the m dimensional
torus. 7', always admits a metric of type (p,q) for any p+g=m. 1f
P e'gan,o(p,q),o’ let

P()(M) = {5 P(@)(@)|dvol(z)| .

Similarly, if P e 2, op,q9,m and if M is oriented, let
P(G)(M) = § P(@)(z) .

In the third section, we will use lemma 1.4 and theorems 1.2 and 1.3
to prove:
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THEOREM 1.5. Let P € 2, o, 9, s then:

(a) Let s<m and dP=0. Then 3Q € Z,_; oy, ¢, s—1 Such that P=dQ+ R
where R is a Pontrjagin form. R=0 if n+s, @=0 if n=s.

(b) Let s=m and suppose that P(G)(T,,)=0 for every G of type (p,q)
on T,,. Then 3Q € 2, _; 0w, g, m-1 Such that P=d@Q + R where R is a
Pontrjagin form. R=0 if n+m; @=0 if n=m.

(c) Let >0 and 0P=0. Then 3Q € Z,,_; o, g, s+1 Such that P=6Q).

(d) Let s=0 and suppose that P(G)(T,,) =0 for every G of type (p,q) on
Ty Then 3Q € 2,1 o, 9,1 SUch that P=0Q +cE,,. If n+m, then
c=0.

This result implies the following:

CoroLLARY 1.6. Let P be an O(p,q)-invariant s-form valued polynomial
in the derivatives of a bilinear form G of type (p,q).

(a) Suppose that P(Q) is always a closed s form. Then P induces a map
Sfrom bilinear forms of type (p,q) to the s-cohomology of M. If the
cohomology class of P is independent of G, then the cohomology class
defined by P(Q) is a Pontrjagin class.

(b) Let s=0 and suppose that P(G)(M) is independent of the metric.
Then there exists a constant ¢ such that P(G)(M)=cy(M) (the Euler
characteristic) for any compact manifold M.

To prove this corollary, we decompose P into homogeneous parts by
lemma 1.1 and prove corollary 1.6 for each part separately. We may
therefore assume that P e 2, oy p.s- If dP=0 and if s<m, we apply
theorem 1.5 to express P=R+d. This implies that the cohomology
class represented by P is a Pontrjagin class. If s=m, the assumption
that the cohomology class represented by P((¥) is independent of ¢ im-
plies that P(G)(T,,) is independent of G. If G is the flat metric on 7',
of type (p,q), then P(G)(T,,)=0. Therefore, P(G)(T,,)=0forany GonT,,.
We apply theorem 1.5 to express P=R+d@ which again implies the
cohomology class represented by P is a Pontrjagin class. Finally, let
§=0. Since P(G)(T,,) is independent of the metric ¢ on 7', P(G)(T,,)=0
for every G of type (p,q) on T,,. This implies that P=d@Q +ck,. The
Chern-Gauss—Bonnet theorem for indefinite metrics implies P(G)(M)=
¢E, (G)(M)=cy(M) for any compact manifold M.This completes the
proof of corollary 1.6.

We proved theorem 1.5 and corollary 1.6 for positive definite metrics
previously in [4]. Corollary 1.6 settles in the affirmative a conjecture
which was proposed by I. M. Singer [6].
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Section 2.

In this section, we apply the methods of [3] to prove theorems 1.2
and 1.3. Let {e,,...,e,} be the standard basis for R™ and let @ be the
bilinear form of type (p,q) defined in section 1. Let ¢+j, we define
F ;€ 8SO(p,q) as follows: if Q(e;,e;) =Q(e;,e;) let a®+b2=1. Let

Fopiile;) = ae;+bej, Fopii(e;) = —be;+ae;
F i5(ex) = e, otherwise

If Q(e;,e;) = —Q(eje5), let a>—b2=1. Let

Fopij(es) = ae;+bej, Foyp(e;) = be;+ae;
Fp5(er) = e, otherwise .

The F,;; generate SO(p,q).

For the remainder of this section, z, will be a fixed point of M. We
only consider coordinates which are G-normalized at x,. Our polynomials
involve the g,;, variables for ord(«)>0. ¢ € O(p,q). Let Y =9¢*X be
defined by :
Y Ty = QY4 ofoy; = ‘Pijalaxj .

We adopt the convention of summing over repeated indices. Let
p*: P — P be the algebra isomorphism defined by the identity:

*P(X,G)(x,) = P(¢*X,6)(x,) -

We extend ¢* to be a morphism of s-form valued polynomials as well
using this defining relation. If P is an s-form valued polynomial which
is O(p,q) invariant, p*P=P for every ¢ € O(p,q).

LemMa 2.1. Let P be an s-form valued polynomial and i +j fixed indices.
Suppose F*,,..P=P for all admissible a,b. Then:

abij
(a) Let A be a monomial of P and let A’ be the monomial which is ob-
tained from A by interchanging the © and j indices. Let

t = deg; A +deg;A.

Then t is even and c¢(A,P)= t¢(d’,P), so A’ is also a monomial
of P.
(b) Let g;;, divide some monomial of P. Then g, divides some mono-
mial of P for some multi-index B.
(c) Let g, divide some monomial of P with w and v distinct from © and j.
Let a=(ay,...,0;...,a4...,a,) where for notational convenience
we have assumed 1<j. Let B=(ay,...,0,...,0;+aj,...,a,). Then
Juwp divides some monomial of P.
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Proor. We must first discuss the action of F*,;; on Z. Suppose
Qe e;) = —Q(ej,¢5). Let A =Aydx; be a monomial. We compute F'* .4,
by formally replacing every ¢ index by at+bj and every j index by
bi+aj. The indices of dx; are contravariant rather than covariant so we
replace every ¢ index by a¢ —bj and every j index by —bi+aj in dx;. We
expand and apply the symmetries. If Q(e;,e;)=@(e;,¢;), we do not need
to distinguish between covariant and contravariant indices. We replace
every ¢ index by ai+bj and every j index by —bi+aj and expand si-
milarly. Let P=Py,+...+P;+... where every monomial 4, of P, sa-
tisfies ¢ =deg; 4,4+ deg; A,. Since F* .. only affects the ¢ and j indices, the
P, are invariant separately. We may therefore assume without loss of ge-
nerality that P =P, for some {. If 4 is a monomial of P, let F* 4=
a'b-r summed over r. The monomials of @, are obtained from A by
changing exactly ¢ —r indices 4 —j or j -4 and by leaving the remain-
ing r indices fixed.

We will use the following lemma in the proof of lemma 2.1:

Lemma 2.2, Let p(a,b)=c,a"b-" be homogeneous of order t in the vari-
ables a and b.

(a) ¢f p(a,b)=0 for all a®>+b*=1 then p=0 as a polynomial.

(b) ¢f p(a,b)=1 for all a?+b%=1 then p(a,b)=(a%+b%)"? as a polyno-
mial.

(c) if p(a,b)=0 for all a®—b%*=1 then p=0 as a polynomial.

(d) if p(a,b)=1 for all a?—b2=1 then p(a,b)=(a®—b%)"2 as a polyno-
mial.

We prove lemma 2.2 as follows: let t=a/b and f(t) =cy°. Then f(t)=0
for infinitely many choices of ¢ under the assumptions of (a) or (c).
Therefore all the ¢,=0. (b) and (d) follow directly from (a) and (c).

We prove lemma 2.1 (a) as follows: {=deg; 4+ deg; A is independent
of which monomial 4 of P we consider. Let a= —1, F*,,,4=(-1)4.
Since P is invariant, ¢ must be even. Let B be a monomial of P. De-
compose F*,,.B=ca'4 +db'A +other terms. If ¢ is non-zero, then B
transforms to 4 by not changing indices. This implies B=4 and c=1.
If d is non-zero, B transforms to 4 by changing all indices ¢ - j or j — 1.
This implies B=A’ and d= + 1. Therefore

F* ;P = a'c(4,P)A + blc(A’, P)A + other terms.

Since P is invariant, ¢(4,P)=a’c(A4,P)+b'c(4’,P)+ .... This implies
c(4,P)= tc¢(4’,P) by lemma 2.2.
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We prove lemma 2.1(b) as follows: suppose it false. Let 4 =(g,;,)*4,
for k>0 where g,;,, does not divide A,. Let A;=g;;.(9:,)14,.
F* ;A =ka'"A, + .... Let B be a monomial of P such that F*,,.B=
cat~1bA,+ ... for ¢+ 0. Then B transforms to 4, by changing one index
¢ —>j or j—¢. Since g,;, does not divide B for any g by assumption,
this implies that we must have changed ¢ —j and B=A. Therefore
F* i P=kc(4,P)at~bA,+ .... Since P is invariant, by lemma 2.2
kc(A,P)=0. This contradicts the assumption that A is a monomial of P
and k>0, and proves lemma 2.1(b).

We prove lemma 2.1(c) as follows: let

&y = (@y,...,q;—n,...,a;+n,...,a,) for n=0,...,a,.

Choose n maximal so that g,,, divides some monomial of P. If n=a,,
the lemma is true so we assume that n<a,. Let 4,=g,,/,,4,. Suppose
F* 3B =cba'1gyy/6, Ao+ . . .. Then B transforms to this monomial by
changing ¢ — j or j — 4. By hypothesis, g,,/,,,, does not divide B. Since
w and v are distinet from ¢ and j, the index which was changed cannot
be one of these. This implies that the index which was changed was
i —~j and therefore B=4,. If g,,,, divides 4; with multiplicity £,
then F*,,,;A4,=k(a;—n)a" 09,4, ,, Ao+ --.. This implies

F*abijP = C(A].’ P) 'k(ai“‘ n)at_lbgu”/an+lA0+ ce e

Since P is invariant and since g,,,,,, divides no monomial of P
by hypothesis, this implies k(a;—»)=0 by lemma 2.2. Since k>0 and
a;>n this is a contradiction. This completes the proof of lemma 2.1.

We can use lemma 2.1 to prove theorem 1.3. Suppose that P=+0,
Pe?, ow.,0 r*P=0, and n <m. Since P+0, we can choose G so that
P(G)(x,) £0. We further normalize our choice of coordinate systems X
for the remainder of this section by assuming not only that X is G-
normalized at z, but also that the first derivatives of G vanish at x; in
the coordinate system X. Since this is true for normal coordinates,
such coordinate systems surely exist. This class of coordinate systems is
invariant under the action of O(p,q). By restricting to such coordinate
systems, we can assume that our polynomials involve the g,;,, variables
for ord(«)= 2.

Since P(G)(x,) 0, there must be some monomial 4 of P of the form

4 = isivtay * + * Digiel op ord(a;) = 2.
Let T'; € O(p,q) be defined by:
Tye;) = —ey Ti(ej) = €;.
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Then T,*(4)=(—1)%%44. Since P is invariant under O(p,q), this im-
plies that deg;4 must be even for all ¢. Since r*P=0, deg, 4 >0 for
every monomial 4 of P. By lemma 2.1(a), this implies deg, 4 >0 for
every monomial 4 of P and k=1,...,m. Therefore deg;,4=2 for k=
1,...,m. We estimate:

A

2m £ deg 4+ ...+deg, A = 2r+ord(x)+ ... +ord(x,) = 2r+n.
2r £ ord (o) + ... +ord(x,) = n.
Consequently 2m <2n and n=m. We have assumed that n<m. Con-

sequently P =0 if » <m which proves theorem 1.3(a). If n=m, then all
these inequalities must be equalities. Therefore:

m=mn=2r; deg;4d =2 for ¢ =1,...,m;
ord(x;) =2 for s = 1,...,r.

We apply lemma 2.1(a) and (b) to choose a monomial 4 of P of the form:

4 = gll/algigfig/ag e

Since deg, 4 =2, this implies that the index 1 appears nowhere else in
the monomial 4. We can therefore apply lemma 2.1(a) and (c) together
with the fact that ord(«;)=2 to choose a monomial 4 of P of the form:

4 = 11722 i 05 + + + -

Again, deg, 4 =deg,4 =2 and therefore these indices appear nowhere
else in the monomial 4. Let P =g,,,5,P,+ P, where g,;/5, does not divide
P,. Then F*,,,.P =P, for i,j>2. Consequently we can apply lemma
2.1(a) and (b) to choose a monomial 4 of P of the form

4 = 11722933/ g * + +

We continue inductively to show Ay=¢11/92- - - Jm-1,m-1/mm 1S & mono-
mial of P.

Let V,,©2, 0w,9,0 be the kernel of r*. If V<0, m must be even.
If PeV,, P+0, ¢(4,,P)+0 since 4, is a monomial of P. Therefore,
dim(V,)=1. If m is even, #,,+0¢€ V,,. Therefore %, is a basis for V,,
which proves 1.3.

We will need the following lemma in the proof of theorem 1.2:

LeMMA 2.3. Let P+0 be an s-form valued polynomial invariant under
the action of O(p,q). Then there is @ monomial A of P with:

A = giljl/"‘l o gifjr/“'dxkl oo dxk‘
such that deg, A =0 for k> 2r.
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Proor. Let 4 be any monomial of P which is represented as above.
If 2r zm, the lemma is proved. Let A =B-C where B=g; ;. - Jijr/m
is such that deg,B=0 for ¢ > 2k. Choose 4 so that k=%(A) is maximal
among all possible choices of 4. First we assume that k<r. Let P=
BP,+ P; where the monomials of P, are not divisible by B. Py+0 by
hypothesis and P, involves derivatives of the metric. It is clear that P,
is invariant under F*,,; for ¢,j > 2k. Let g,;, divide some monomial of
P,. If 4,j> 2k, we can suppose ¢=j=2k+1 by applying lemma 2.1(a)
and (b). Otherwise, by applying lemma 2.1(a) if needed we can suppose
i,j £2k+1. Thus in any event, we can choose ¢, dividing some mono-
mial of P, such that ¢,j<2k+1. Express Py=P,+P; where every
monomial of P, is divisible by g;;, for some « and no monomial of P,
is divisible by g¢,;, for any «. Since ¢,j<2k+1, F*,, P,=P, for
u,v 2 2k+ 2. We apply lemma 2.1(c) repeatedly to the indices u = 2k+2
to construct g;,, which divides some monomial of P, where o=
(@1, + ., 0o 49,0,...,0). If B'=Byg,;,, then deg, B' =0 for u > 2k+ 2. Since
there is some monomial of P of the form A’= B’C’, this contradicts the
maximality of k in the choice of 4. Therefore, k=r.

We have constructed a monomial 4 of P of the form:

4 = Tivivior * + * Sigjpl ar

Let T, € O(p,q) be defined by:
Tie;) = —e;, Tyle;) =e; for ji.

Then T*A=(—1)"44, Since P is invariant, deg; 4 =deg,B+6;; +

... +0; %, is even. Since deg; B=0 for 1> 2r, deg; 4 < 2 implies deg; 4 =0
for 4> 2r. This proves lemma 2.3.

dxy, . . .dx, = Bdxy, ...dz, .

We use this lemma to generalize theorem 1.3(a). Let (p,§)=(p,q—1)
for ¢>0 and let (p,q)=(p—1,0) if ¢g=0.

THEOREM 2.4. r*: @n’ 0w, 9,58 Pn, 06,3, s 18 bijective if n<p+qg=m.

Proor. By lemma 1.4, r* is always surjective. Suppose that r* is not
injective. Let 0+ P € &, o, 9,s With 7*P=0. By lemma 2.3, choose a
monomial 4 of P of the form:

dxy, .. .dx;,,

4 = Girirtar » + + Tirirlof
such that deg; 4 =0 for ¢ > 2r. Since r*P =0, deg,, 4 > 0. Therefore 2r = m.
We have restricted to the polynomial algebra in the g,;,, variables with
ord(«x)>1. Therefore, n=ord(«,)+ ... +ord(«,)=2r=m. This contra-
dicts the assumption that » <m and proves theorem 2.4.
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We use theorem 2.4 to reduce the proof of theorem 1.2 to the case
that ¢ =0. This case was proved previously in [1, 3]. Let n<s<p+g=m,
then:

(,r*)m: gn, Olp,g+m), s gn, Oop,a, s

(r*)m: gn, Olg+m,p), 8 = < n,0m,0),s *

By theorem 2.4, these two maps are bijective. If G is a metric of type
(p,q), then — @G is a metric of type (¢,p). Let 7 be the isomorphism

T gjn,o(p,q),s « ‘@n.o(q,p),s
be defined by 7(P)(G)=P(—(G). This map induces a bijection of

T: ?n, O, g+m), s > < n,0(@+m,p), s *
Consequently :

dim(‘@n,O(p,q), s) = dim(gn,o(p,q+m), s) = dim(g}n,O(wm,p),s)
= dim (‘@n, O(m, 0), s) .

Since Z,, o, 0,s=0for n<s, 2, op. 9.s=0 for n <s. This proves theorem
1.2(a). If s is not divisible by 4, Z; o4 0),s=0 which implies that
P 0w,9,s=0. Finally, let s=4k and let n(k) be the number of partitions
of the integer k. Then dim (2, 0w, g, ax) =AM (Pyy, o, o), ar:) =70(k). Since
the Pontrjagin classes span a subspace of dimension 7(k), 2y 0w, ), 4 18
spanned by the Pontrjagin classes. This completes the proof of theorem
1.2

We could also generalize the methods of [3] to prove theorem 1.2
directly without using H. Weyl’s theorem or the group representation
theorems which were used in lemma 1.4 to prove that r* is surjective.
In the next section we use theorem 2.4 to complete the proof of theorem
1.5.

Section 3.
Let »=0(p,q) or SO(p,q).

TuroreM 3.1. Let Pe &, , , with n+s.

(a) If s<m and if dP=0, then Q€ P,_, , ;1 such that P=dQ).

(b) If s=m and if P(G)(T,,)=0 for every G of type (p,q) on T,,, then
31Qe P, 1, m-1 Such that P=dQ.

We will prove theorem 3.1 later in this section. We apply this result
as follows: Let P € 2, o, 0,5 satisfy the assumptions of theorem 1.5(a)
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or theorem 1.5(b). If n=s, P is a Pontrjagin form by theorem 1.2. If
n=s, we can apply theorem 3.1 to conclude that P=d@ for some
Q €2, 1,009, -1- This proves (a) and (b) of theorem 1.5.

We dualize theorem 3.1 to prove (c) and (d) of theorem 1.5 as follows:

Taeorem 3.2. Let Pe 2, , , with n+m—s.

(a) If >0 and if 6P =0, then IQ € P, _, , ;11 Such that P=06Q.
(b) If s=0 and ¢f P(G)(T,,)=0 for every G of type (p,q) on T,,, then
31Qe?,_,,,,1 such that P=4Q.

Proor. First we suppose that »=_80(p,q). Let orn be a local orienta-
tion of M. Then *P € 2, 504, 9, m—s- Since n+m—s and »P satisfies the
hypothesis of theorem 3.1, we can express *P=d@. Therefore, P=
txd+Q = +0Q for @ € Z,_; sow,g,s+1- This proves theorem 3.2 if y=
80(p,q). Next, let P e 2, op.9,s<Pn,s00,9,s Satisfy the hypothesis of
theorem 3.2. Then P=0Q for @ € Z,,_; 50,9, s+1 by What we just proved.
Let orn be a local orientation of M and set

Qo = (Q(G: Om) + Q(G’ —01‘1'1))/2 € gn—l,o(p.q),ﬁ—l .

Since P(#,orn)=P(G, —orn), we still have P =4, which completes the
proof of theorem 3.2.

We apply theorem 3.2 to prove theorem 1.5(c) and theorem 1.5(d) as
follows: let P € 2, o4, g, s satisfy the assumptions of theorem 1.5(c) or
theorem 1.5(d). If n+m —s, then P=46@Q by theorem 3.2. We may there-
fore assume that m—s=n. Let Py=r*Pe P, o5.0., for P+g=m—1.
Since integration and é commute with r*, P, satisfys the same hypo-
thesis as P does. Since n=m —s+(m—1)—s, we can apply theorem 3.2
to conclude Py=0dQ), for @y € #,_; 0@, ,s+1- By lemma 1.4, r* is surjec-
tive. Let @ € 2,_1 0@, ,s+1 b€ chosen so r*@Q=@,. Then r*(P—4Q)=0.
If s+ 0, then n <m and r* is injective by theorem 2.4. This proves P =@
and proves theorem 1.5(¢c). If s=0, then n=m. By theorem 1.3,
r*(P—-06Q)=0 implies P—§Q=cK,. This proves theorem 1.5(d) and
completes the proof of theorem 1.5.

The remainder of this paper is devoted to the proof of theorem 3.1.
We adopt the following notational conventions: indices ¢, j, k range
from 1 thru m; we sum over repeated indices unless otherwise indicated.
If o=(x(1),...,4(m)) is a multi-index, let {3,*,...,7,*} be the un-ordered
collection of indices which corresponds to « which we defined in section 1.
Let ¥V be an m dimensional vector space and let S (V)<= ®"V be the
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subspace of symmetric tensors. If {v;,...,v,} is an unordered collection
of elements of V, let v;0...00, € 8,(V) be the symmetric tensor product
of these vectors. Let V* be the dual space of V; S (V*)=8,(V)*. If
ReS(V)QNAs(V*) and if we S (V*), define R(w) e NS(V*).

Let (ey,...,e,) be a basis for V and let (e;*,. . .,e,*) be the dual basis
for V*. If ord(«)=r, define

e, = €% ...0¢,% and (7)) = r!/(x(1)!...x(m!)).

Lemma 3.3. Let Re S (V)QA3(V*) and suppose R(e*o...oe,*)=0
for any basis (e,,. . .,e,). Then R=0.

Proor. Let a=(a,,...,a,) € R™ with a,;+0. Let (g;,...,¢,) be the
basis:

& = efa,, & = e;—aefa, for i>1; €* = ae*+ ... taue,*.
Let a*=(a,)*® ... (a,,)"™, then:

0 = R(g;*0...08,*) = Zom(/x)=r a*(7)R(e,*) .

Since this identity holds for all @ € R™ with a,+0, it implies R(e,*)=0
for ord(x)=r. Since the e * are a dual basis for S,(V), this implies B=0
and proves the lemma.

Let (e;,...,¢,) be a basis for V and R e S(V)QA3(V*). Expand:
R = R(ig,. . .,%5J1- - Js)(€0. - .0€;) (e, *A. .. ae; *) .

This expression is summed over all possible indices ranging from 1 thru m.
We use R(iy,...;jy,...) instead of the more classical R, Jt... for
notational convenience. We may assume that R(...) is symmetric in
the first r indices and anti-symmetric in the last s indices. This assump-
tion permits us to replace symmetric and wedge product in this expansion
by ordinary tensor product. We can also restrict the sum to range over
J1<...<Jj, by multiplying everything by s!.
If ve V and we V*, let (v,w) be the natural pairing. Let

0 =v,8...00,WQ...Quw, e (RTV)Q(REV*).
Define:

TO) = (v, w)0,Q. .. QV,QW,Q ... W, € (RT1V) Q(R1V*) .
The element e;Qe;* € VQ V* is invariantly defined. Let
8(0) = 3, ;01,Q...097,Qe *Qu,Q ... Qw, € (RT1V) Q@ (R V*) .
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The two maps § and 7T are invariantly defined. Since S, (V)QAs(V*)<
(R"V)R(®V*), 8 and T induce maps:
T:8,(V)@A(VF) — 8, 4(V)® A~ (V¥)
8: 8 (V)QA* (V) — 8,.1(V)@AH (V).
In terms of a basis for V,
T(R) = R(iy..-3J1---)espe;;*) (€0 .. 06, )R(e;,*A . . . Ae; *)
S(B) = R(iy...;J1..-)(egoe;0. . .06, )R (e Ae;*A. . ae; *) .

We will need the following technical lemma in the proof of theorem
3.1:

Lemma 3.4. Let Re S (V)QAS(V*) for r>0. If S(R)=0, S(T(R))=
(m+1-s)R.

Proor. Let @Q=8ST(R)—(m+1—s)R. By lemma 3.4, it suffices to
prove that Q(e,*o. . .0e,*)=0 or equivalently that @(1,...,1;j;,...,5,)=
0. For the remainder of the proof of this lemma, let 5, < ... <j,. Suppose
first j;>1. Let v=(e0...0¢) €8, (V) and let w=e;*r...re;*€
As=1(V*). Since S(R)=0,

0=R(,....,155;1...0)es%re,* aw.
For 1<ji<...<js e*ae;*aw=+0. Therefore E(1,...,1;j;,...,5,)=0
for j, > 1. By definition, S(T(R))(1,...,1;jy,...,j)=0for 1 <j;< ... <j,.
This proves @(1,...,1;5;,...,55) =0 for j; > 1. We assume therefore that
Jhi=L

We must show @(1,...,1;1,4,,...,5,)=0. For notational convenience
we may assume without loss of generality that j,=2,...,5,=s. If k>s,
S(R) = sl(RA,...,1;1,...8)(—1)*+R(1,...,L,k; 2,...,s,k)) (voesoe;)

Qe Fawnae,™*)

+ other terms not involving (voe oe,)R(e;*AwAe,*) .
Since S(R)=0,

R(1,...,1;1,...,8) = (=1)*1R(1,...,1,k; 2,...,8,k) .
The only monomial of 7'(R) which makes a contribution to (voe,)®
(ey*w) under the action of § is v@w. Let

T(R) = s!(R(1,...,1;1,...,8)+ s B(1,...,L,k; 2,...,8,k)(—1)*?)
(v®@w)
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+ other terms not involving vQw
= gl(m+1-8)R(1,...,1;1,...,8)(vQw)
+ other terms not involving vQw .
Therefore:
S(T(R)) = s!(m—s+1)R(1,...,1;1,...,5)(voe;,)Q(e;* Aw)

+ other terms not involving (voe;)®(e;Aw) .
This implies that

S(T(R))(L,...,1;1,...,8) = (m—s+1)R(1,...,1;1,...,8)

and completes the proof of lemma 3.4.

Let G be a metric of type (p,q) on an m dimensional manifold M and
let (ey,...,e,,) be a local frame field for 7M. Let V be the Levi-Civita
connection of G. If 0 is a tensor field on M, let 6, denote covariant
differentiation in the direction e;. Let 6, ,, denote multiple covariant
differentiation. If A is a real-valued function on M, let 4,; ; denote
the covariant derivatives of k. In general, this will not be a symmetric
tensor field. Let

ha = h:ila‘. R 1/"" (Z‘r h;i"‘,(l). . .i"‘,(,))

where the sum ranges over the permutations of the integers 1 thru r.

Let h, be the invariantly defined tensor field:
by = by ilen*o. . 0e %) € S,(T*M) .

oy

Fix m, (p,q) and »=0(p,q) or SO(p,q) for the remainder of this section.
Let Z, . be the set of y-invariant polynomials in the {g,;,,9~} variables
which take values in S, (TM)QA*(T*M). For example,

‘%O,s = ®:°=O gﬂ.o(lha)s. .

If G is a metric of type (p,q) and if R, € £, ,, then R(G) e I'(S(TM)®
AS(T*M)). If h is a real-valued function, h,e I'(S,(T*M)). We define
R,(G,h) e I'(N¢T*M) in the obvious fashion. Let

‘%s = @:;0 gr.s .

If 0+ReZ,, let R=Ry+ ...+ R, where B;e %, ,. Choose r so R,+0;
let ord, (R)=r. We define ord,(R)= —1 if R=0. Let

R(G,h) = Ry(G.h)+ ... +R,(G.h,) e NT*M .
Let dR(G,h)=d(R(G,)).
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Lemma 3.5. Let Re Z,. Then:
(a') dR e ‘@34-1

(b) ord,(dR) = ord,(R)+1

(¢) ord,(dR—S8(R)) = ord,(R) .

Proor. We may assume without loss of generality that R=R, for
some r. Then:

d.R(G,h) = h:il...‘i’;k'R(il “ e ?:T;jl .o .js)ek* A ejl* A...A ej‘*
Fhoy . o By b gy G A * A L. Al

If we commute indices in covariant differentiation, we introduce ex-
pressions in the curvature tensor. Therefore:

b i = h:il...i,k+2j<r Qiviy,...,in 1(Pg) -
Therefore :

d.R(G,h) = h:il...‘irk'R(,’;l’ .o ’ir;jl’ e ,js)ek* A e"l* ces A Ej‘* +2]'§T Qj’(kj)

where Q;' € %; ;.1 -
The tensor S(R) was defined so that:

S(R)(ysy) = by 4 ROy .83y . js)ezrﬂ Aei*A ... Ae*.

Therefore:
dR(G,h) = S(B)(bpi1) + <, @' (By) -

Since S(R) € #,41,5+1, this completes the proof of lemma 3.5.
We will use the following lemma in the proof of theorem 3.1:

Lemma 3.6. Let Re R, then:

(a) If dR=0, 3Q € R,_, such that R—dQ € A, ,.

(b) If s<m, Re R, , and if dR=0, then R=0.

(c) If Re R,,,, and if R(G,h)(T,,) =0 for every (G,h) on T,,, then R=0.

Proor. We prove (a) as follows: suppose dR=0. Choose @ so that
ord, (R —d@)=r is minimal. If <0, the lemma is proved so we may
assume the contrary. Let B'=R—dQ=R,’+...+R,’. By lemma 3.5,
ord,(dR'—8(R,’))<r+1. Since dR'=0 and S(R,’) € Z,,1, 441, this im-
plies that S(R,’)=0. Let Q'=T(R,")[(m+1—38) € #,_; 4_,. By lemma 3.4,
8(@')=R,’. Therefore ord,(R'—8(Q’'))<r. Since ord,(dQ —8(Q’))<
ord,(dQ')=r by lemma 3.5, this implies that ord,(R—d(@+Q’))=
ord, (R’ —d@’) <r. This contradicts the choice of @ so that ord, (R —d@)
is minimal and proves (a).
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We prove (b) as follows. Let R e %, , with s<m and dR=0. Then
S(R)=0 by lemma 3.5. However, since K € %, ,,

S(R) = R(jl" . "js)ek®ek* A 6]-1* A... A ej.v* ‘

Since s <m, we can choose k so that ek®ek*Aejl*A ... Ae; ¥E0 and there-
fore R(j;,...,5,)=0. This implies BE=0 and proves (b). Finally, let
R e %,,,, and suppose that R(G,h)(T,)=0 for every (G,h) on T,. Since
r=0, R(G) e I(A™(T*M)) and R(G,k)=hR(G). Since

0= STmhR(G)(x)

for every function # on 7',,, this implies R(GQ)(x)=0 for all metrics of
type (p,q) on T',,. As noted in the first section, this implies that R=0
and completes the proof of lemma 3.6.

We deduce the following

CoroLLARY 3.7. Let R e X, then:

(a) If s<m and dR=0, then 3Q € #,_, such that R=d(Q.
(b) If s=m and if R(G,h)T,)=0 for every (G,kh) on T, then
3Q e #,_, such that R=dQ.

Proor. If s<m and dR=0, we apply lemma 3.6(a) to construct @
such that R—d@ € Z,, ;. Since d(R —d@) =0, by lemma 3.6(b), B —d@Q =0.
Similarly, if s=m and if R(G,k)(T,,)=0 for every (G,k) on 7,,, then
dR=0 automatically. By lemma 3.6(a), we can construct ¢ such that
R—dQ e A, ,,- Since (R—dQ)(G,k)(T,)=0 as well, we apply lemma
3.6(c) to conclude that R —d@=0.

In [4] we gave a proof of theorem 1.5 under the assumption that ¢=0.
Since our argument involved integration over O(m), that proof does not
generalize directly to this case. We use corollary 3.7 of this paper and
adapt the argument given in [4] to complete the proof of theorem 3.1
for general q. Let i(x) be a real valued function. Let k=1 if s>n and
k=—1if s<n. If t is large, H=(h(x)+t)**G will be a metric of type
(p,q) on M. We can express the ordinary derivatives of A in terms of
the covariant derivatives of % in any coordinate system. Therefore, we
may express:

P(G,h) = (P(h(z)+1)%G)
= (h+tYPy(G) + (b + 1)@k, P (G) + (b + )P kP, @)+ ... .
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If =0 and ¢=1, then H=G0 so P(G)=Py(G). By lemma 1.1, P(c*Q)=
cMs-mP(G). Therefore j=k(s—n)=|s—n|>0 by hypothesis. Similarly,
Ho)y=4—1, j(x,8)=4—2,.... Therefore:

P(G,h) = /P(G)+tI-YjhP(G)+h, P (G)) + O -2) .
We restrict to 0 <ord(x) <% in these expressions. Let
R(G,h) = jhP(G)+h,P(G) .

If dP(G)=0 for any G, then dR(G,h)=0 for any (G,h); if P(G)(T,)=0
for any @, then R(G,k)(T,,) =0 for any (@,h) on T,,. Therefore R satisfies
the same hypothesis as P does.
Let
R(G,h) = Ry(G,h)+ ... +R.(G,h)

RAGR) = by s R(iyipsfae e o)A . Aey®.

Js

If veS,(T*M),,, we can choose a function % so that h,(z,)=v. This
implies that the R,(iy,...,%,;j1,- - -,js) are uniquely determined by the
equation above. Define

R, = B(iy,. . .,%5 J1- - -5Js) (€50 - - 0€; )D(e;, *A . .. Ae; *)

e I(S(TM)® Ns(T*M)).

Since P is invariant under »=0(p,q) or SO(p,q), R, is »-invariant. There-
fore R,e %, , and R e Z,. Since R satisfies the hypothesis of corollary
3.7, R=d@ for some Qe X, ,. Let @Q=Qy+...+@,_, and let h=1.
Then dR =@ implies that d@,=R,=jP. Since j+ 0 we can divide by j
to express P=d(Q,/j) where @, ®; %}, 1. By decomposing @, into
homogeneous parts by lemma 1.1, we may assume that in fact
Qo € Z4_1,,,s-1- This completes the proof of theorem 3.1.

In [4] we considered the invariants of isometric imbeddings of a
Riemannian manifold of dimension m into a manifold of dimension m + .
The results of that paper do not generalize to the case of indefinite me-
trics since the restriction of a non-degenerate bilinear form to a subspace
need not stay non-degenerate.
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