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INVOLUTION-INVARIANT GEODESICS

KARSTEN GROVE

To Werner Fenchel on his 70th birthday.

Introduction.

Given an isometry A: M —~ M on a compact, connected Riemannian
manifold M, the two most natural questions concerning A-invariant
geodesics on M seems to be: (1) Are there any? and if so (2) How many ?
In [6] and [7], we have developed a theory which gives rather satis-
factory answers to question (1). If e.g. 4 is an involution and M is simply
connected, then 4 has a (non-trivial) invariant geodesic; obvious examp-
les (rotation or reflexion on 82) shows however that 4 does not in general
have more than one invariant geodesic. The strategy in deriving the
existence results in [6] and [7] was to assume, that 4 has no invariant
geodesics. In the same spirit we shall here assume, that 4 has only finitely
many invariant geodesics. We obtain thereby a topological condition
which ensures the existence of infinitely many closed A-invariant geo-
desics, when A2=1,,. Besides [6] and [7], the theory developed in Gro-
moll and Meyer [4] and [5] as well as in Bott [1] will be important for us.

1. Preliminaries.

Throughout the paper M shall denote a connected, compact Rieman-
nian manifold and 4: M — M an isometry on M. Recall that a geodesic
y: R = M is said to be 4-invariant i¢f and only if there is a 02 0 such that
A(y(t))=y(t+0) for all t € R. Note that if p, e M belongs to the fixed
point set, Fix(4) of A, then y(¢)=p, for all ¢ e R is an A-invariant geo-
desic; such a geodesic is called a trivial 4A-invariant geodesic. Whenever
we say A-invariant geodesic we think of a non-trivial 4-invariant geo-
desic.

Let L.2(I,M) denote the Hilbert manifold consisting of absolutely
continuous paths, ¢: I=[0,1] - M with square integrable derivative, 4.
The tangent space to L,%(I,M) at o consists of absolutely continuous
vectorfields, X along o with square integrable covariant derivative X’.
The Riemannian structure on M induces in a natural way a complete
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Riemannian structure on L,%(I,M). If X and Y are tangent vectors at
o we define 'y
K, Yy = (X, Yo +<X", Yy s

where (X, Y),={3(X(t), Y(£)),ydt is the L*inner product (see Flaschel
and Klingenberg [3]). In order to study A-invariant geodesics we intro-
duced in [6] the closed submanifold

A (M) = {oe LALLM | o(1) = A(o(0))} -
The reason for this is that the critical points for the energy integral
E:A4,M)~R; o~ 4dl,®

are exactly the geodesics, ¢: I -~ M with ¢(1)=A,¢(0). Here A, : TM —
TM denotes the induced map of A. Thus, the existence of A-invariant
geodesics on M is equivalent to the existence of positive critical E-values.
Since E:A,(M)—~ R satisfies condition (C) of Palais and Smale (see
[6]), there is a rich critical point theory available for us.

Note that A,(M) can be identified with the set of locally L,%-maps,
o: R > M satisfying G(t+1)=A4(G(t)) for all ¢t R. The action of R on
the parameter induces in this way a continuous action on A4 ,(M) by
isometries (see [7]). E is clearly invariant and the orbit of a critical
point is an immersed critical submanifold.

Assume from now on that A4 has finite order i.e. A¥*=1,, for some
k € N. The R-action reduces then to an S!-action and each critical §-
orbit is an imbedded critical submanifold of A ,(M). By the index, A(c)
and nullity, »(c) of a critical point, ¢ we mean the index and nullity
of the corresponding S-orbit as a critical submanifold. The Hessian
of E at a critical point ¢ is given by

(1.1) H(E)(X,Y) = (X', Y")—(R(X,¢)¢, T,

where R is the Riemannian curvature tensor of M. It follows from this
and the fact that the inclusion L,2 < L2 is compact, that the correspond-
ing selfadjoint operator, S determined by H(E)(X,Y)=(S8X, Y), admits
a decomposition §=1Id+ K, where K is a compact operator (for an ex-
plicit expression for K compare Eliasson [2]).

We shall now collect what we need from equivariant degenerate
Morse theory. In finite dimensions, Morse defined for any isolated cri-
tical point a local homological invariant. This was modified and genera-
lized to infinite dimensions by Gromoll and Meyer [4] under the above
assumption on S (and condition (C)).

Consider an isolated critical orbit S*-c. Choose a small tubular neigh-
bourhood of 8¢, and let E, denote the energy restricted to the fiber over
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c. From the splitting lemma of Gromoll and Meyer [4] (compare also [5])
it follows that E, satisfies condition (C) and has only ¢ as critical point.
Thus we have a well-defined local homological invariant of E, at c,

W(E,c) = H*(Wc’ Wc_) s

where (W, W,-) is a pair of so called admissible regions (see [4,§2]).
Although it is not necessary here, we take homology with coefficient
in a field of characteristic zero. From this we obtain a well defined local
homological invariant associated to the orbit S-¢ as follows

H(E,8 c) = H (W, W-),

where W =81- W, and W-=_8*- W,~. The crucial property of this invariant
is contained in the following lemma, which is proved exactly as Lemma
4 in Gromoll and Meyer [5].

Lemma 1.2. If b is the only critical value of E in [b—e,b+¢] for some
e>0and St-cq,...,8 ¢, the only critical orbits in E-1(b), then

Hy (A (M)P+e, A (MP~*) = BF_,# (B8 ¢c;),

where A 4(M)* as usual denotes E-Y((— o0, a]).

In order to use this lemma we must control s#(E, S'-¢). The isotropy
group at c,
Sl ={ze8| z:¢c =c}

operates by covering transformations on S'x (W, W, ) with quotient
(W, W~-). Hence

(1.3) KB, 8 ¢) © Hy_y(B,c) ® H#E,c) .

In Gromoll and Meyer [4, §3] there was also introduced a characteristic
invariant, £°, which is determined by the degenerate part of the func-
tion. This characteristic invariant together with the index, 1 of ¢ deter-
mines 5# completely by the shifting theorem:

(1'4) ';fk+z(E>c) = ‘#ko(E’c) .

We shall sometimes omit £ in 5#(H,c) as well as in s#%H,c).

All in all we can now see from (1.2-1.4) how information about the
index and characteristic invariant of the critical points in A4 (M) can
give us information about the homology of A ,(M). The problem here is
of course that for each A-invariant geodesic, we have a whole tower of
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different critical orbits in A (). In the next sections we shall see how
this problem can be treated when A4 is an involution.

2. Translated geodesics.

Although some of the constructions in this section can be carried out
in general, we assume from now on that 4%=1,,.
The S'-action from Section 1 takes the form:

w: St x A (M)~ A M),

By _ [o(t+0), te[0,1-0]
uler, o)t) = {A(o(t+6-—l)), te[1-0,1]

The critical points ¢ € 4 (M) are classified according to their isotropy
groups 8%, in the following sense. §%,=S8* if and only if ¢ is a trivial 4-
invariant geodesic. Otherwise S',=Z, for some pe N. Furthermore
p =2l means that ¢ is an I-fold covering of a prime closed geodesic fixed
by A. Similarly p=2[+1 means that ¢ contains an [-fold covering of a
prime closed geodesic, on which 4 operates as ‘“the antipodal map” (and
l is maximal with this property). There arises in this way to each prime
closed A-invariant geodesic a tower of critical orbits in A ,(M) corres-
ponding to the coverings of the prime closed geodesic. If an A-invariant
geodesic is not fized by A we say that it is translated. A translated geodesic
is now clearly characterized by the fact that all isotropy groups in the
corresponding tower of critical orbits have odd order. Fixed geodesics
are characterized analogously.

We shall now in some sense reduce the study of translated geodesics
to that of closed geodesics.

Let Z, act on M by 4 and on 8! by the antipodal map. The product
action is a free isometric Z,-action on M x 8. Note that the quotient
manifold,

Mx, 8= MxS|Z,

is the usual mapping torus of 4, M x I/(p,0)~(A4(p),1).
Complete information about M x 4 8! is contained in the diagram

M M

Mx8 —— M x, 8t

)

St Ny i
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where the horizontal maps are Z,-coverings. In particular we see that
the fiber bundle s: M x , 8 - S is locally isometric to a product. A
geodesic in M x , S! is therefore locally a product of a geodesic in M with
a geodesic in S

The space of closed curves on M x , 8%, denoted A(M x , 8'), contains
A ,4(M) as a submanifold. More precisely

F:A (M)~ A(M x8S1)

defined by F(oc)=§, where G(t)=(o(t),t) for £ I/0~1, is an isometric
imbedding onto the space of L,2-sections of z: M x 8 — S In order
to describe the towers of critical orbits in A (M) and A(M x4 S') we
define for any positive integer m the iteration maps

m: A (M) > A m(M) ; o—>g™
and
m:AM x4 8Y) > AMx48Y); o -—>d™

where o™(t)=g(m-t) for all i € I. Note that E(oc™)=m2E(c) and that m
is an imbedding. For each translated geodesic, y there exists a critical
point ¢ € A ,(M) with 81, =Z, ={0}, such that the collection {c™ | m odd}
represents the tower of critical orbits associated with y.

Lemma 2.1. For any odd m € N we have with the above notation A(c™) =
A(e™) and v(c™) + 1 =»(c™).

Proor. Since m is odd, c¢™ (respectively ¢™) is clearly a critical point in
A4(M) (respectively A(M x,8')). The tangent space at an arbitrary
point s e A(M x ,S') admits a splitting

T AMx,8)=T DT>

in vertical and horizontal vectors. In this splitting X =Xv+ Xh, XV
is tangent to the fiber M along s and X" is pointwise orthogonal to Xv.
If s is a critical point in A(M x , S') we get (compare(1.1))

HE)(X,Y) = (X", Y'")—(R(X,8)8, YD,
= (Xv', Yv’>0_ <Rv(Xv’év)év, Yv>0
+ (X, YY), ,

where R denotes the curvature tensor on M x, 8 and RV is the curva-
ture tensor on M (we have used that M x , S'islocally isometric to M x S?)
Vertical and horizontal vectors are therefore orthogonal with respect to
the Hessian i.e. A(s)=A7(s)+ Ab(s)=Av(s) and »(s) =»v(s) +v2(s)=»"(s) + 1.
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To finish the proof, we only have to note that the tangent space at c™
is canonically identified with the vertical vectors at ¢™.

Lemma, 2.1 reduces the study of the index and nullity of the translated
geodesics to the corresponding study of closed geodesics. Thus Lemma 1
and Lemma 2 in [5] give us immediately

LeEMMA 2.2, Either A(c™)=0 for all (odd) m or there exist numbers ¢ >0
and a> 0 such that
Mcmt8)—A(cm) 2z s e—a

for all (odd) m and (even) s.

Lremma 2.3. There are positive (odd) integers ky, ...k, and (odd) se-
quences m;i € N,i>0,j=1,...,8 with m;=1 such that

w(c™ii) = v(ct)
and such that any (odd) m with v(c™) + 0 can be written uniquely as m =m;'k;.

This lemma enables us to get the desired information about the cha-
racteristic invariants. Since m;* is odd we have the iteration map
m: A (M)~ A (M). We can therefore proceed in complete analogy
with Lemma 5 and Theorem 3 in Gromoll and Meyer [5], whereby we
obtain

Lemma 2.4. With k; and m;® as in Lemma 2.3 we have
(ki) = (ki) .

We see in particular, that there are at most finitely many different
characteristic invariants associated to the tower of critical orbits cor-
responding to a translated geodesic.

3. Fixed geodesics.

In this section ¢ will denote a prime closed geodesic which is fixed by
A, that is, ¢ is a critical point in A (M) with isotropy group S',=Z,.
The corresponding tower of critical orbits is represented by all the itera-
tes of c. We must therefore consider ¢™ for all positive integers m. Thus
proceeding as in Section 2 we would have to allow also for even values
of m;* and k,;. This would then give information about the index and
nullity of ¢™'¥% in A(M)=A4,(M) and not as desired in A (M).
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To overcome these difficulties recall that Fix(4) is a disjoint union
of closed totally geodesic submanifolds of M (see e.g. [6]). Hence
A(Fix(4)) is a disjoint union of closed totally geodesic submanifolds of
A4(M). Denote by AT(cm) (respectively »T(c™)) the index (respectively
nullity) of ¢™ in A(Fix(4)). Note that the normal space T, A(Fix (4))*
of A(Fix(A4)) at o € A(Fix (4)), consists of vectors X € T', A (M) with X
pointwise orthogonal to Fix(4). Using that Fix(4) is totally geodesic
together with the symmetry properties of the curvature tensor we get
from (1.1).

Lemma 3.1. The above splitting T mA (M)=TTn @ Thn is orthogonal
with respect to the Hessian at c™. In particular

Ae™) = AT(c™) + At(c™)
and
v(cm) = »T(c™) +vi(c™) ,

where At(c™) (respectively v(c™)) denotes the index (respectively nullity) of
the Hesstan restricted to the normal space, T4 at c™.

A study of AT(¢™) (respectively »T(c™)) has as we know from Section 2
already been carried out by Bott [1], and Gromoll and Meyer [5]. It
remains to study A'(c™) (respectively »*(c™)). We observe that the results
in Bott [1] can be used here as well. Consider the complexification L
of the index operator

L(X) = X" +R(X,6)6

and let L*(respectively LT) denote the restriction of L to the normal
(respectively tangent) space. It now follows that A*(c™) and »*(c™) are
completely determined by functions A*: 8! Z+y {0} and N*: 8!
Z+y {0} by the formulas

Mem) = Zmo 1 AM)

1’L(cm) = zzm=—1Nl(z) .
(Note that X € 7', satisfies X(1)=4,X(0)= —X(0) and compare with
Corollary p. 178 in [1]). In the corresponding formulas for A7 and »™ we

sum functions AT and NT over m-roots of 1. The following quite elemen-
tary facts are contained in Proposition 1.3 of Bott [1].

AYz) = AY(Z) and NY(z) = Ni@z).

(3.2)

Ni(z) = 0 except for at most 2-codim Fix (4) points, the Poin-
caré points of Lt .
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(3.3) A* is locally constant except at Poincaré points, where the
jump is at most the absolute value of IV .

lim, .+ 44(2) 2 A4(z,) .
As in Lemma 1 of [5] we use these facts together with the corresponding

ones for AT (derived from the properties of LT) to obtain.

LemMA 3.4. Either A(c™)=0 for all m or there are numbers ¢>0 and
a > 0 such that
Alcm+8) —A(c™) = sre—a
Sfor all m and s.

As far as the index is concerned we have just seen how we could
study AT and A* separately. However, in order to study the characteristic
invariant, we must study »7 and »' simultaneously. Denote by P*
(vespectively PT) the Poincaré points for L' (respectively LT). These
points can be described by means of the geodesic flow in the unit tangent
bundle, 7', M of M. The closed orbit in 7', M corresponding to c is simply
the velocity vector field of ¢ parametrized by arch length. Let P, be the
differential of the Poincaré map associated to this orbit. In the splitting
of TTM in horizontal and vertical subbundles (induced by the Rieman-
nian connection on M), P, takes the following form:

P(u,v) = (Y(1),Y'(1)),

where Y is the unique Jacobi field orthogonal to ¢ with (¥ (0), Y'(0))=
(u,v). Note also that A, =(d4,,4,) in the splitting

TTM = TETM © TVTM .

It is now clear that P, commutes with 4,,. Hence P, preserves the
(1)l-eigenspace of A,,. The set of eigenvalues with absolute value 1
of P, (complexified) restricted to the ,l-eigenspace of (Ay,d4) is
now exactly P! (respectively PT). The crucial information about the

nullity of ¢™ is contained in

LemMMA 3.5. There are positive integers ky, . . .,k, and sequences m; € N,
t>0,5=1,...,8 with m;! =1 such that
w(c™'h) = v(cki), mji odd

w(c™ k) = yT(c™H) = pT(cM), mjt even

and such that any m with v(c™)+0 can be written uniquely as m=mj'k,.
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Proor. It follows from (3.2) and (3.3) that »'(¢™)+0 if and only if
there is a z=e?"¢ € P! with zm= — 1. This implies that g is rational with
even denominator. Similarly »T(¢™)+0 if and only if there is a 2'=
227’ ¢ PT with 2'm=1 (which implies that o’ is rational). Let now @=
Q" U @', where

= {ge N | 32’ =exp(2nip/q) € PT, (p,q) =1}
and
L = {ge N | Jz=exp(2nip/2q) € P*, (p,2q)=1}.

For every D < Q let k(D) denote the least common multiple of elements
in D. Choose distinct numbers &, . . .,k, such that for each D < ¢ there
is a j with k;=k(D). For each fixed k; select from the sequence mk;,
m>0 the greatest subsequence mj k;, ¢+>0, with the property that
whenever g € @ and q|m;’k; then q|k;. If
v(c™) = »T(c™) +vi(c™) £ 0
there is a ¢ € @ which divides m; Let D={ge @ | ¢/m} and k(D)=k;,
then m=m;’k; is unique by construction. It is now easy to see that
(re PT| 2"ti=1} = {ze PT| 2Hi=1}

and therefore by (3.2) and (3.3) (or rather the corresponding formulas
for NT)

yT(c™iH) = »T(c)
for all m,;* and k;. The same statement for »* is false! However, if vL(cmi'ki) +
0, we see from (3.2) and (3.3) that m, must be odd and furthermore
wH(emh) = (chr) .

In consequence of this lemma we obtain the needed information about
the characteristic invariants.

Lemma 3.6. With k; and m;* as in Lemma 3.5 we have

for miiodd: s#o(cmihi) = ()
and .
for myi even:  HAO(c™iH) = HO(cH)T,

where H°(ck)T denotes the characteristic invariant of c* in the space
A(Fix (4)).

Proor. for m;? odd we use Lemma 3.5 and proceed exactly as in
Section 2 (m, /1 A(M) - A (M)). If mj is even »*(c™ *kj) =0 by Lemma
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3.5. In other words the null-space of the Hessian at ¢™i'* is contained in
the tangent space to A(Fix(A4)). Furthermore gradE is tangent to
A(Fix (4)). To see this let o € A(Fix(4)) < A,4(M) and assume without
loss of generality that ¢ is C*. For X € T';* we have (see [6] or [3])

dE(X) = (X',0) = —<{X,6")

which is equal to zero since Fix(A) is totally geodesic. Thus Lemma 7
in Gromoll and Meyer [4] tells us that

';fO(E’Cmiik;) —_ %O(E]A(Fix(zl)): cml'iki)
and therefore by construction (see Section 1)
(M) = AT
To finish the proof, we note that »"(¢™'*)=37(c*)) by Lemma 3.5 and
hence AT = PO(ci)T
by Theorem 3 in [5] applied to c*/ € A(Fix(4)).

The conclusion of this section is the same as that of Section 2: There
are at most finitely many different characteristic invariants associated
to the tower of critical orbits corresponding to a fixed geodesic.

4. Existence of infinitely many invariant geodesics.

The finiteness of the characteristic invariants together with the growth
estimate of the indices is sufficient information to prove our main theo-
rem:

THEOREM 4.1. Let M be a compact, 1-conneted Riemannian manifold
and A: M -~ M an involutive isometry on M. Then A has infinitely many
closed invariant geodesics if the sequence of Betti numbers

Bi(A(M)) = dimH (A (M),
k=0 18 unbounded.

Proor. Suppose 4 has at most finitely many different (prime closed)
invariant geodesics. Each critical orbit in A (M) is then isolated and
we can therefore apply our results in the previous sections

Fix a prime closed A-invariant geodesic represented by ce A (M)
(8',=Z, or Z,) and consider the coresponding tower of critical orbits
in A (M). Set

By(c™) = dims#(c™) and B,%(c™) = dims#,0(c™) .
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From Lemma 2.4 or Lemma 3.6 we can find a B> 0 such that B,%(c™)
<B for all £ and m. Furthermore by definition B,%c™)=0 for k>
2(dim M — 1) and all m. Thus from this, (1.3) and (1.4) we see that B,(c™)
is uniformly bounded by 2B. Moreover, (1.3) and (1.4) in connection
with Lemma 2.2 or Lemma 3.4 shows, that the number of orbits, S1-c¢c»
with B,(c™)+0 is bounded by some constant C'>0 independent of k=
2dim M.

Since there are only finitely many towers {S'-c/m}, ¢=1,..., r of criti-
cal orbits, we may assume without loss of generality that B,(c/")<2B
for all 7 and m and that the number of orbits, S*-¢,m with B,(c;®) 0 is
bounded by r-C for all k=2 dim M. Hence with K =2B-7r-C we get from
Lemma 1.2 together with an exact sequence argument,

Bi(A (MP, A (M) £ K, kz2dimM,

where a,b € R+ are arbitrary regular E-values. According to Corollary
3.3 in [6] we can choose a=e such that Fix(4) is a strong deformation
retract of A (M)e. With this choice,

Bi(AL( M), A4 (M)) = Bi(A (M), Fix(4))
and therefore
Bi{A4(M)P) = Bi(A4( M), Fix(4)) = K
for all k=2 dim M and all regular values b € Rt. Fix now k=2 dim M
and choose b so large that
Hp(st.em) = 0 foralleme A (M)A (M)°
This is possible by (1.3), (1.4) and Lemma 2.2 or Lemma 3.4. For such
a b obviously (A 4(M))=p(A4(M)?) and hence
(A (M) £ K, whenk =z 2dimM .

We conclude that B,(A,4(M)), k=0 is bounded if 4 has only finitely
many closed invariant geodesics.

REMARK. As far as the topology of A (M) is concerned we may as well
consider

C, M) = {f: I-M | f continuous and f(1) = A(f(0))},

since A (M)<C °(M) is a homotopy equivalence by theorem 1.3 of [6].
It is very likely, that the recent De Rham homotopy theory of Sullivan
can be used to decide when A (M) has unbounded Betti numbers. How-
ever so far the question has not been settled completely even in the
case A=1,,.
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