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STABLE SURFACES IN EUCLIDEAN THREE SPACE

NICOLAAS H. KUIPER

To Werner Fenchel on his 70th birthday.

Summary.

This paper consists of two related parts. In A we present smooth
maps of the real projective plane P with the non euclidean metric o,
into euclidean spaces such that we can read various interesting proper-
ties from the image. We mention and indicate some proofs of known
facts. This part is expository. In B we consider C*-stable (in the sense
of R. Thom) maps of surfaces in Z3. We call these “stable surfaces” for
short. The Gauss curvature as a measure ({Kdo) then exists although
the scalar Gauss curvature K may explode at the O®-stable singularities.
The infimum of the total absolute curvature (27)-1{|Kdo| of a compact
surface M equals 4 — y(M). This infimum can be reached for any surface
in the class of stable maps, but not for all surfaces in the class of immer-
sions, as we know. Stable surfaces of minimal total absolute curvature
(tight) are given for the exceptions: the projective plane with 0 or 1
handles and the Klein-bottle. Recall that tight (closed) surfaces in EV
are also characterized as those that are divided into at most two (con-
nected) parts by any (hyper-)plane.V

A. Images of the real projective plane P.

1. A very nice map of (P,0) into E°.

The real projective plane P can be obtained from the unit 2-sphere,
with equation

(1) S a*+yt4z2t =1
in euclidean three space with metric

ds? = da?+dy?+dz?,

1) A tight immersion of a torus in E® need not be an embedding, as I recently found.
Received January 7, 1975.
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by identification of diametral points
(2) diam: (x:yaz)'-) (—x,'—?/,—z)
P = §/diam

The local metric in S is invariant under ‘“diam’, and it induces the
non euclidean metric ¢ on P. Almost every quadratic function ¢ in z, y
and z has six non-degenerate critical points on its restriction on S, and
it determines, ¢ being invariant under diam, a function on P, also
denoted ¢, with three non-degenerate critical points. We call a differenti-
able function on a manifold which is non-degenerate and has the minimal
possible number of critical points, a fight function. Hence our non-
degenerate function ¢: P — R with three critical points is tight.
A very nice map f: P > V5§t E5<RS8 is given by

(U, . . ) = (22,9222, )/ 202, |/ 22, |/ 22y) .
Its image the Veronese surface V lies in the 4-sphere
8438 ul = (22+y2+22)2 =1,
in the euclidean hyperplane

E5:uytupg+ug = a?+y2+22 =1

in R® with metric ds%*= ?=1duj2. f is an embedding onto a real algebraic

smooth variety V. Because f is obtained from a basis of the quadratic
functions in z, y, 2, the orthogonal group SO(3) acting on S and on P as
the group of motions (SO(3)) induces a representation as a group (call it
f(SO(3))=80(5) of linear transformations in R®, leaving invariant K°
and S84 Then it is a group of rotations in E°. All motions of (P, o) carried
over to V are so obtained. In other words: f is SO(3)-equivariant. Con-
sequently f: P — V is isometric but for some constant factor of multi-
plication of distances. Because f(SO(3)) acts transitively on V, V is
contained in the boundary (9) of the naturally invariant convex hull
(), of V
Vco#¥v.

It is easy to see that the image of the real projective line 2=0 in P, is
a (euclidean) circle and so in view of the transitive f(SO(3))-action every
straight line in P has as image a circle in V< E5. Any two such circles
meet in a point and there is one circle connecting any two points in V.
0V is clearly topologically a four-sphere. It is contained in the third
degree four-dimensional algebraic variety which is the union of all lines
that meet V in two points or are tangent to V. In [7], see also [8], 054V
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is seen to be homeomorphic to the quotient space of CP(2) by complex
conjugation.

A differentiable mapping f': M — RY of a compact manifold M into
some number space is called tight in case almost every linear function
&: RN — R composes with f' to a tight function &f': M - R. Our f: P — R®
composes with any linear function £: R — R to a quadratic function in
z,y,2z, with for almost all &, three critical points on P. Therefore our f
is tight.

We finally mention that f: P — E® (like any embedding) is C*-stable
in the sense of R. Thom. This means that for any g: P — E5 sufficiently
near to zero in the C*-topology (involving values and derivatives) there
exist diffeomorphisms ¢ and y in a commutative diagram

P BN S
Pl
P—— E5

2. Embedding of P in E3 is not possible.

We next try to find rich (as far as information on (P,0) is concerned)
images in euclidean three space E°. We are immediately obstructed by
the statement in the title of this paragraph. More generally one has the
known

Lemma 3.1. There is no embedding of a compact non-orientable closed
surface in E3.

We indicate a proof we owe to D. Sullivan for the smooth case: Let
g: M s E® be a smooth embedding. Take a point p € M and an ordered
pair of tangent vectors in p to define an orientation at p in M. Take a
third independent vector v at p which is then transversal to M. Move
p along a closed embedded curve ¢’ in M so that it comes back with the
other orientation in M at p. Assume v very small and drag it also along
¢’. The end point of v describes a segment ¢’’ which can be completed
with two segments on both sides at p of M from the endpoints to p,
to obtain an embedded circle ¢’’’ in E3 which meets g(M) in exactly
one point. Deform to get a smooth curve ¢ with the same property.
Next move this curve ¢=¢(0) away in K3 in a ‘“‘generic’’ manner. Then
the number of intersection points c¢(t)ng(M) is constant or changes by
two at any time ¢ (0=¢<1). (To make this argument precise requires
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some work). At the end ¢(1) is disjoint from M and the number of inter-
section points is zero. As we started with one intersection point this
yields a contradiction.

3. Every smooth immersion g: P - E3 has at least one triple point?,
We recall the construction in [4] of an immersion. First we observe

that the tight function p=az: (S? —)P — E3 (see (1), (2)) has level sets:
@~1(c) equal to:

a point for ¢ = V§

a circle for 0 < ¢ < VE

a figure 8 for¢c = 0

a circle for —V§ <ec<0

a point for ¢ = —)/2

Arranging these level sets suitably as levels of a height function (one
coordinate) in K3 one can obtain an immersion of P in K3 as in fig. 1.
The self-intersection is an immersed circle with one triple point as we
see. This can not be avoided. We prove:

Lemma 4.1. If g: M —~ E3 is a smooth tmmersion in E3 of a closed sur-
face M with odd Euler characteristic y(M), then g has at least one triple
point q € g(M): g7Y(q) =M contains at least three points.

Proor. Let x(M) be odd, M a closed surface, g: M — E3 a smooth
immersion without triple points. The self-intersection points then form
a compact 1-dimensional manifold X, that is a union of circles in g(M)<
E3. Take a point g € 3 outside g(M). We can for any point p outside
g(M) consider curve segments connecting ¢ and p, not meeting the self-
intersection 2'cg(M) and meeting g(M) transversally only. Any such
segment can be deformed into any other, such that the only “cata-
strophies’ that occur happen because the curve segment meets 2. At
such a catastrophy the number of intersection points changes by an
even number (0, 2 or —2). Therefore E3\ g(M) can be divided into two
parts, namely U¢ the set of points p for which this number is even, and
Ue the set of points p for which this number is odd. g(M) is near any
component X; of X' a cross-bundle over a circle. Going around the circle
once yields a holonomy map of the cross onto itself, which in a suitable
representation is a rotation over a multiple of /2. However, iz and 3=
mod 2z are excluded because the pair of quadrants filling two parts of

1) This theorem is known to many people. I do not know a reference.
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the cross, defined by U¢, is invariant. For each circle we can now replace
the cross-bundle by something like a hyperbola-bundle (see fig. 2)
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smoothly fitted to the remaining embedded part of g(M). Then we ob-
tain an embedded (!) surface M’. The Euler-characteristic changes by
this surgery by an even number. Therefore y(M') is odd. Consequently
M’ is a non-orientable and embedded surface. This is impossible by
lemma 3.1.

“hyperbola” 4

Fig. 2.

4. There is no tight immersion of P in E3.

For a differentiable immersion of a compact surface M in B3 tightness
is equivalent to {,/|Kdo|/2n (K is the Gauss curvature, do is the area
element) being equal to its infimum 4 — y(M). This is proved to be im-
possible for M =P, y(P)=1 in [3]. Also for topological immersions and
a natural tightness definition tightness is impossible.

5. Isometric immersions of (P,o) into E? are possible by the methods
of [2] if we only require C*-immersions (with continuous first derivatives).
For C?-immersions the intrinsic positive Gauss curvature is reflected in a
positive extrinsic Gauss curvature and such closed immersed surfaces
are necessarily boundaries of strictly convex bodies. Therefore C2-iso-
metric immersions of P in E® do not exist. Gromov proved that C*®-
isometric immersion of (P,o) into K% is impossible [1].

6. A concrete image of P in E3 with several good properties.
An example of a nice map g: P - E? is defined by

4) (@, 9,2) : 22+y2+22=1) > (u,v,w) = (22—y? 22y, yz)

Observe that w+tv=(x+14y)?, so that the projection of g(P) into the
u,v-plane is a double covering branched at (0,0) of the unit dise, with
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a fold along the boundary. The third coordinate w serves to pull the two
covers apart.
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Fig. 3.

The mapping g is locally an embedding except at the two points (%,y,2) =
(0,0,1) and (1,0,0) in P. It carries a small disc around each of these
points onto a cone over a figure 8. Thom [10] proved that these singulari-
ties represent the only existing C*-stable (see section 2) kind of singular-
ity of maps of R? to R3. We conclude that our mapping g is locally C*-
stable (it is even globally C*-stable). We also easily see that g has no
triple points. At (0,0,1) and (1,0,0) respectively we have

gx,y) = (x2—y2 2y, yV1—a2—y?)
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and

9(9,2) = (1 -2 =229V 1 —y2—2%y2)
whose 2-jets have the affine normal forms
(#*—y%2y,y) and (y°+2,y29) .

Each of these two triples contains one linear coordinate. The remaining
two quadratic forms determine a pencil of only indefinite forms in the
first case and a pencil containing definite forms in the second case. This
distinguishes the two main affine types of 2-jets of this stable singularity.

From the image g(P) we can see that P is non-orientable: an embedded
Moebius band is indicated in fig. 3a.

That one can not get rid of a singularity &: (z,y) — (22— y2 2xy,y) by
a small deformation is seen from the rank (=1 at (z,y)=(0,0)) of the

matrix

Ohlox\ 2z 2y 0

(aney) = (-2 1)
with determinants 4(z2+y?),2z,2y. A small deformation will give two
curves in place of 2x=0 and 2y =0 which will meet in one point where
the rank is again ome. Because ¢ is given by quadratic functions in

(x,y,2) (see (1) (2)), almost every linear function on E?3 induces on P a
tight function, and so g itself is a tight map of P into 3.

Next we show that g(P) is not a complete real algebraic variety in E3.
An easy way to obtain the conclusion for this special example is as
follows. Intersection of ¢g(P) with the line L with equation v=w=0
yields the closed interval 0 <% =<1 of L. This is not the set of zero’s of
a polynomial equation, hence it is not an algebraic set, and neither is
g(P). It follows that any algebraic variety containing g(P) must also
contain the line L. If we eliminate x,y,z from the equations for g we get
the algebraic variety (Steiner surface) with equation

(8) V3(u? + 02+ 2w — 1) + 20%(2u + 2u? + v2 4+ 2w?) = 0

whose zeros form just the set
g(P)UL.

It is not more as we see by looking at the intersection-curves with the
planes u=constant. A different way to see that g(P) is not an algebraic
variety is by the theorem conjectured by D. Sullivan and first proved
by P. Deligne and J. Mather (see [9]), that some neighbourhood of any
point of a real algebraic variety is homeomorphic with a cone CX on
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a simplicial complex X, for which the Euler-characteristic x(X) is even.
At the point (1,0,0) and (0,0,1) we obtain a cone on X, a figure 8 with
2(X)= —1. For g(P)uL we have to add to X one point corresponding to
the extra tail on L, to obtain X’ with the required even Euler-character-
istic y(X')=0.0

From (5) we can read some plane sections of g(P), which has v=0 and
w=0 as planes of symmetry.

v = 0: w?(u+%)%2+w2—1] = 0, line and circle;

u = 0:(v+3)?2-2uw?+} = 0, two ellipses, tangent at (0,0,0);
% =¢, 0 <c <1, yields a fourth degree curve like a figure 8
with main curvature vector directed to the interior.

Because ¢ is tight it follows from the theory of tight maps [3,5] that
there must be at least two tangent planes of the convex body #(g(P))
that is the convex hull of g(P), that meet P in an essential one-cycle.
In our circumstances these planes are

u—1=]/§w and u—l:—ﬂw.

Each of these planes meets g(P) in a fourth degree curve consisting of
double points. Hence this is a conic sectton with multiplicity two, as can
be confirmed by calculation. The union of these two ellipses divides g(P)
into one part in the boundary of the convex hull with non-negative
Gauss curvature, and the other part with non-positive Gauss curvature.

B. Stable surfaces and Gauss-curvature.

7. The Gauss-curvature of locally stable surfaces in E3.

A surface M together with a locally C*-stable map into E® will be
called a locally stable surface in E®. It is an immersion except for a finite
number of singularities, all diffeomorphic to each of the singularities in
the example (the map g) of section 6. OQutside the two singularities the
Gauss curvature K of g(P) is well defined. Near to the point (1,0,0)
we easily see from figure 3 that K (as a product of two main curvatures)
tends to + oo along the curve in v=0. However, the integrals { K|do]|
and {|Kdo| are still convergent. Indeed the integrals mentioned are
volumes of the images by the Gauss-normal map into the unitsphere of

1) An easy observation is the following theorem: If h: M — E? is a stable smooth map
of a compact surface onto an algebraic variety then % is an immersion.
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unit vectors. More specifically (see [5]), for any open set U <P we can
compute

(6) 127§ Kldo| = 1/47 §ga T30 (— Vimlpog, U)dz,
1/27‘ SU |Kdo| = 1/47‘ SSz Zi=o wi(pog, U)dz,

where @ varies over the unit-sphere S? with volume element dv of norma-
lized linear functions (or their gradient vectors) ¢: (£3,z,) - (R,0), and
Uy is the number of non degenerate critical points of index k. But in our
special example, as g is tight, we find

ti(pog,U) £ py(poeg,P) =1 for £k = 0,1,2, for almost every ¢ .
Hence the integrals converge for g, and in particular
1/2n \pK|do| = 1, 1/2n {p|Kdo| = 3.

Next we consider a general locally stable surface in £® near a singula-
rity at )’ € U’
g’: (U”xo’) g (Ea,zol) *

We can compare it with g near x,=(0,0,1) and we know there exist
C*-diffeomorphisms ¢ and y in a commutative diagram

g, U—— B35z,

s
v
%y € U9 B3> 2y

for U and U’ sufficiently small (that is inside compact parts where ¢
and y are also well defined). ¢ and y as well as their inverses, have values
and first and second derivatives that are bounded. Therefore on com-
paring the volume elements and Gauss curvatures in corresponding
points (both expressed in coordinates on U for example) we have

ldo’| < aldo| and |K'| < «(1+]|K])

for some constant «>0. Then {y,K'|do’| and {;,|K'do’| converge be-
cause { |Kdo| converges. So we have

THEOREM. Although the Gauss curvature as a scalar function K can
explode near singularities of C*-stable surfaces in E3, the Gauss curvature
as a measure \Kdo 18 well defined and well behaved. For any compact
C*-stable surface M in E?® we have in particular

(7a) 1/2n (p K|do| = (M)
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and
(7b) 127 §5 | K do| 2 4—x(M) ,

with x(M) the Euler-characteristic of M.

Proor. As for immersed surfaces this can be deduced with (6) from
the Morse-inequalities for a non-degenerate function { on a compact sur-
face M, which imply

(82) =0 (= 1¥ui(C) = 3k (= 1)Bu(M) = (M)
(8b) im0 ti(8) Z Tioo Bu(M) = 4—y(M)

where g, =dim H,(M,Z,) is the kth Bettinumber with respect to coeffi-
cients Z, (chosen in order to cover also the non-orientable surfaces).

8. Tight locally stable surfaces in E3.

A locally stable compact surface M in E3 is tight if and only if it has
minimal total absolute curvature

9) S Kdo| = 4—y(M).

Claim equality in (7b); use (6), (8b). Tight embeddings in E? exist for
the orientable surfaces. Tight immersions exist for the non-orientable
surfaces except for the projective plane P and the Klein-bottle. The
existence or non existence is not known for the surface Py with y(Pg)=
—1 obtained from P by attaching a handle. (See [4]). We prove:

THEOREM. Every smooth compact surface admits a C®-stable map in E®
which is tight (has minimal total absolute curvature).

Proor. In section 6 we gave already a tight stable map g of the pro-
jective plane into E3. See fig. 3. We obtain from this map a tight stable
map for Py as follows. First we flatten the surface g(P) near two points
of g(P) on the boundary of its convex hull 65#g(P) without hurting the
convexity of this part. (for example near the points where v=0 and
u=—1+0,2 (see fig. 4)). Then we connect by a suitable handle: We
connect the two points by a straight segment, bore a tube in the three-
dimensional body bounded by g(P) along this segment, smoothen, and
keep K <0 in the new part of the boundary of the new body. As
{x>0K|do| =4 remains unchanged under this surgery, tightness of the
resulting surface follows from the equations (6, 8b, 9) with y(M)= —1.
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Fig. 4.

There only remains the problem of the construction of a tight stable map
of the Klein-bottle into E3.

We again start from the tight map g: P - E® of the projective plane.
We first make a projective transformation so that the plane u=1 ‘“‘goes
to infinity”’. Then the two supporting-ellipses in the planes »—1 =]/§w
andu—1= —]/Ew are transformed into two parabolas in parallel support
planes of the new surface W’ (which extends to infinity). The part
u=c? (¢c>0) of the new surface W' is like the part u<c¢’ (0<c¢'<1) of
g(P), a stable image of a Moebius band. We reflect with respect to the
plane u=c? and then the union is a Klein bottle unfortunately not smooth
along the curve in the plane u=c. This difficulty is avoided by a little
trick in the calculations that follow now. Equivalent to equation (5)
g(P)) we have
(5b) 2w+ u+u?+0v2)2— (1 +u)2(u2+02) = 0

or in homogeneous coordinates (u,v,w,s):
(5¢) (2w +us+u2+v2)2— (s +u)2(ut+12?) = 0.

We want the points of the hyperplane w=s mapped into the infinite
hyperplane s=0. So we introduce the map defined by

(u,v,w,s) = (u,v,w,8—u) .
The image of g(P) has the equation
(2w2+su + 2u2 4+ v2) — (s + 2u)2(u2+v%) = 0.

We use again the former symbols % in place of u ete., put s=1, and
obtain the equation of the new surface

W’ (2u+w+v2 + 2w?)? — (2u+ 1)%(u2 +02) = 0
or
(10) (V% + 2w?)2 — (2u+ 1) (v2—duw?) = 0.
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The supporting planes w= + 1/2]/5 meet W' indeed along parabolas
(w—22+3)2%=0.

The only (stable) singularity is at (0,0,0).

Next we substitute for » not just ¢2+u« in order to translate W’ so
that for the new surface W'’ the part « <0 is a Moebius band, but we
substitute for w instead c¢2—w? (the trick announced). We obtain our
stable and as we will see tight Klein bottle W with equation:

(11) (v2+ 2w?) + (2u? — 2¢2 — 1)[v2 + 4(u? —c?w?] = 0.

For c=1% we have an illustration in fig. 5. W is symmetric with respect
to each of the coordinate planes =0, v=0 and w =0, smoothly immersed
except at the two stable singularities in the points (u,v,w)=(%¢c,0,0)
connecting the arc of (all) double points: v=w=0, —c<u<c. W has
no triple points. There are two exceptionnal support-planes w= + 1/2V2
which meet W in circles with multiplicities 2:

[+ 02— (c+1)] = 0
and the pair of these circles divides W into one part on 95#W where
K >0 and the remaining part where K is seen to be =<0 because almost
all points there are saddle points. So W is tight. As in the case of g(P)
we must remark that the equation (11) defines a set of points WuL
including the whole line L: v=w=0, from which suitable parts must be
deleted to obtain the stable Klein-bottle surface we denoted by W.
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