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ON THE PROJECTIVE STRUCTURE OF
A REAL HYPERSURFACE IN C,,,

SHIING-SHEN CHERN

To Werner Fenchel on his 70th birthday.

Let C,,; be the complex number space of dimension n+ 1 with the
coordinates z!,...,27*1. A real hypersurface M is defined analytically by
the equation

(1) r(z7,7) = 0, 12jsn+1,

where r is a real-valued function. We suppose r to be smooth with
gradr=+0. For n=1, B. Segre observed that the corresponding equation

(2) r(z%,a%) = 0,

where Z/ is replaced by arbitrary parameters a’, defines a two-parameter
family of curves in the complex plane whose invariants were first studied
by A. Tresse in 1896 [5]. These invariants clearly provide local invariants
of the hypersurface M itself. But they do not give a complete system of
invariants of M under biholomorphic transformations in C,.,, as re-
marked by Elie Cartan [1]. The latter problem has been the object of a
recent study by J. Moser and the author [3].

The purpose of this note is to carry out Segre’s idea for general » and
relate it to the invariants given in [3]. Equation (2) defines an (n+ 1)-
parameter family of hypersurfaces when M is non-degenerate. General-
izing the work of Tresse, M. Hachtroudi showed that a projective con-
nection can be defined intrinsically in the space of hyperplane elements
of C,,, [4]. The definition is a generalization, by no means obvious, of
the construction of classical projective geometry from the data of its
hyperplanes; cf. also Chern [2], Yen [6] for a further generalization. We
will show that the definition of Hachtroudi’s connection is closely related
to that of the connection in [3]. This study has the advantage that it
works only with the variables 2/ and their holomorphic functions; the
conjugate variables z/ are not involved. Could this fact be of significance
for the results to play a réle in abstract algebraic geometry ?

* This work was partially supported by NSF grant GP-34785-X.
Received January 6, 1975.
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1. The Equivalence Problem.

We put w=2"+1. The hypersurfaces (2) can be considered as the inte-
gral hypersurfaces of the completely integrable differential system

(3) dw—pdz* = 0, dp,—r,dz’ =0,

where r,;=7,, are holomorphic functions of 2%, w, p;. (Throughout this
paper small Greek indices will run from 1 to n and the summation con-
vention will be adopted.) The latter variables, ie., 2%, w, ps, can be
interpreted as the coordinates in the space of hyperplane elements in

Cn+1'
We allow biholomorphic changes of coordinates defined by
(4) ¥ = 2%%(2Pw),

w* = w* (),

and the transformation on p, is given by expressing that dw* — p *dz**
is a multiple of dw— p,dz*. 1t follows that the form dw — p,dz* is defined
up to a multiple and the sets of forms

(5a) dw —p,dz*, d2*
and
(5b) dw —p,dz*, dp,—r,,d2"

are each defined up to a linear transformation. Following the general
procedure in studying equivalence problems, we set

o = u(dw-—pdz*),

(6) o = ud? + uX(dw — pyd2f) ,

w, = v,(dw—pd) + v, (dp,—1r,d2)
where
(M w,uw,b v u,

are new variables satisfying
u =+ 0, det(w,f) # 0, det(v,f) + 0.

Then the forms in (6) are invariant in the space of all the variables:
the ones in (7), together with 2%, w, p;. Computing modw, we find

do = udz*adp,,

0% Ao, = tu,"v,d2’ A (dp,—1,,d7") .
The condition
do = tw* A w,
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is therefore equivalent to
(8) ud,f = iu,vf .
We suppose (8) fulfilled, and set
9) do = o* Ao, +oAp,
where ¢ is defined up to the change
(10) ¢ —>@t+iw.
We will take ¢ as another new variable. Our variables are now
(11) w(+0), wf, u v, t, 25w p,,

which are (n+2)2—1 in number, the v,? being determined by (8), and
we have the invariant forms o, ® w,, ¢. Our purpose is to show that
it is possible to introduce

(n+22-1-(2n+2) = n?+2n+1

other invariant forms, characterized by intrinsic conditions, so that the
totality forms an independent set.
Clearly we can write

(12) do® = o’ Ap"+ o A g™,
LemMmaA 1. The forms ¢,f in (12) can be so chosen that
(13) do, = ¢, A o;+w, A9, modw.

They are then determined up to additive terms in w.

In fact, exterior differentiation of (9) gives the equation
(14) 0" A (—do,+9, A+ 0, AQ)+oA(—dp+ip*Aw,) = 0.
It follows that
(14a) —dw,+ @, A0+ 0, A9 =0, modw,of .

Since the system
0o=0 w,=0

is completely integrable, the left-hand side of (14a) is also =0, mod w, w,-
Hence we have

—dw,+ 9 Awp+o,Ap = a,/0f Ao, modw.
Substituting into (14), we get

Y — kd
Qg = ag,” .
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Writing ¢,? for ¢, —a,,’w” fulfills the equation (13) and leaves (12) un-
changed. The second statement in the lemma is immediate.

We shall therefore put

(15) do, = L Aws+w, Ap+oAg,.
Using (14) we let
(16) dp = t0* A @, +ip° A+ Ay,

where y is a new one-form. The forms ¢ ?, ¢* ¢, v are determined up
to the transformation

9. = 9 +bfw,
(17) @ = <p*“+bp“w‘e+c"‘w ,
Pa = (pa* —.baﬂwﬂ_*_daw H
v = p*+i(d,0*—cw,) tew .
We shall determine the coefficients b,?, c*, d_, e by intrinsic conditions
imposed on the exterior derivatives of the forms.

For this purpose we take the exterior derivatives of the equations (12)
and (15). The resulting equations can be written

(18) AP+ oAD" =0,

DPAwz—wAD, =0,
where we set

0f =dpf—prpl—iw, A +ip, A +i8 (g, A 0”)+ 3Py r e,
(19) @* =dp*—prg"—¢’ A" +iprw®,

D, =dp,—pSApstivro,.
From (18) it follows that

(20) Df =8, Ao, +0Ayf,
where
(21) 8,07 =8, =87

and p,? is a one-form. Equation (18) then gives
(22) D" = f Ayt ad®,
q}zx = "/)aﬁAwﬁ-’_wA‘u""

where 1%, u, are one-forms.
Applying the transformation (17) and denoting the new coefficients
by asterisks, we get

(23) 8 = 8,7 —i(8, D +6,bF +6,b,°+8,7b;7) .
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Putting
(24) 8F = 8% 83 =83,
the contraction of (23) gives

(25) Syt =8L—i(n+2)b,—1i6,b2 .

Lemma 2. The forms ¢, f are determined uniquely by the condition

(26) Sf=0.

In fact, setting S¥# =0 in (25), we find
(27) in+2)bf = 8, -3(n+1)"1,782.

From now on we suppose (26) to be fulfilled.
Exterior differentiation of (16) gives

(28) —10* A D, + 1P Aw,—w AP =0,
where we set
(29) VYV =dpy—pap—2ip°Arg, .

Exterior differentiation of the first equation of (19) gives
(80) dDL+DAPSf—p, ADSF—iw, A DP—iD, A P

—i0,PO A 0"~ 30 P A0 = 0.
Contracting, we get

(31) dD.*—i(n+1)D, A 0°—iD* A w,—nWPAw = 0.

On the other hand, by (20) we have, as a result of (26),
DF=wAayp’.

Substitution of this and (22) into (31) gives

(n+2)p,f+6,Pp2 = 0, modw,w’,w,,
whence
(32) v =R} o' +T,P0, modw .

We can therefore write (20) as

B _ o
(33) ?f =8, rw,+ R wA+T o rw,.

Lrmma 3. The forms ¢* and ¢, are determined uniquely by the conditions

(34) RA%=0T"=0.
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When they are fulfilled, we have

(35) Rfy = 'R'yﬁa’ Tf" — Ta"ﬁ ,
and (22) can be written
(36) D% = Tﬂ""'a)‘3 Aw,+o A%,

O,=Rlo"Awz+wAp,.

In fact applying the transformation (17) to the first equation of (19),
noticing that 5#=0 and ¢,/ are completely determined, we find
Ry, = RS, —id,"d;— }id,"d,, ,
Tp? = Ty —idc* — }id,"c”
so that
R}*, = R, —i(}n+1)d,,

L4

T = T —i(4n+1)c” .

-3

Hence ¢” and d, can be determined to achieve (34).
With conditions (34) we have, from (33),

(37) D =0.
Equations (28) and (31) then give
(38) W AD, 0  AD* AW =1 —1: —2.
This shows that ¥ is of the form
(39) ¥ = Q0" A wp, modow,
and hence
(40) 0*AD, = }iwAQLw*A wp
W, AD* = —%iw/\Q“ﬂw“Awﬁ .

From (22), (32), and (40) it follows that, modw,
0=w'Ad, = 0" ApSfrw, = 0®A(REw+T P 0,)Aw,.

This relation implies (35), and hence also (36). This establishes Lemma 3.

From (36) and (40) we also get
w A 0® A (p,+ 3Q, 05) = 0,
A wg A (#+3Q 0% = 0.
We can therefore set
(41) a

It

—3iQy 0 + L%, ,
P g0 — 1Q faoy

I

2
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with

(42) L¥ = IP* P,, = P,, .

Substituting into (36), we have the expressions

(43) D = T;70f A 0,— 3iQ5 0w A 0P+ L¥w A 0,
D, = RS0 Awp+ P oA of —31Q,°0 A g .

By using the second and third equations of (19) we immediately get
the lemma:

Lemma 4. The form v is completely determined by the condition

(44) Q. =0.

To find the expression for ¥, we write down the equation obtained by
exterior differentiation of (29), which is

(45) AV —p A P+ 2iP* A, —2ip* A D, = 0.
By (39) we set
(46) ¥ =Qfo*Awgtoav.

Substituting this into (45) and making use of (43), we get
{dQ." - Q9.0 + Q.00 — 2Q.0p +10,/y + 2T P, — 2R S 9" 0" A
=0, modw.
It follows that the expression between the braces is =0 modw,w® w,.
Contracting «, and using (34), (35), (44), we conclude that » is =0
mod w, w*,ws. We can therefore put
(47) Y =Qlo*rop+Horo*+ Ko rw,.

We summarize our results in the following theorem:

THEOREM. Given in C, ., an (n+ 1)-parameter family of hypersurfaces
defined by the completely integrable differential system (3), there exist in
the space of the variables (11), the same number of invariant differential
forms

(48) @, C()“, wtx’ (P> (paﬂ’ (pzx’ (pa’ QP ’
linearly independent, whose exterior derivatives are given by the “‘structure

equations” (9), (12), (15), (16), (19), (29). The “curvature forms” @F, @,
D,, ¥ have expressions given by (33), (43), (47), whose coefficients satisfy
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the symmetry relations (21), (34), (35), (42), (44). The forms (48) are com-
pletely determined by these conditions.

When n=1, 8,7, Rf, T/, QF all vanish and the lowest-order
invariants are L, P,,.

2. Geometrical Construction.

The tangent space T, at a point z € C, ,; is a complex vector space of
dimension n+1. We consider it as a part of a projective space PT', by
adding to it a hyperplane at infinity. In turn P7T, is considered as the
quotient space of V *=(V,,,—{0}), by the action on V,,,—{0} by the
multiplication of a non-zero complex number, where ¥V, ,, is the com-
plex vector space of dimension n+ 2. To a point & € PT, the components
of the corresponding points of V,,,—{0}, defined up to a non-zero
factor, are called the homogeneous coordinates of £. In particular, we
let a point (y,...,y**')e T, to have the homogeneous coordinates
(%,...,y"*t,1) and a vector (vl,...,v"*!), which can be considered as
the difference of two points, to have the homogeneous coordinates
(v1,...,v"*10).

A projective frame in P7T, consists of an ordered set Z,,Z,,...,
Z, ., € V,*, linearly independent and defined up to a common factor.
On the other hand, a frame in 7', consists of the origin z and an ordered
set of n+1 vectors. Using the above convention, to a frame in 7', corre-
sponds a uniquely determined projective frame in P7,.

In the discussion of the last section the forms w,w* constitute a
coframe at z € C,,,. They determine uniquely a dual frame, and hence

a projective frame Z,,...Z,,; in PT,. As in [3], p. 260, we put

(49) ="+ = 20, 7)* = w*, 7" —70 = @, 7,0 = —ig,, 7 = 2w,
T = 39% 70 =001 = 9.0, i = —1y.

Then it can be verified that the equations

(50) DZ,y=wn,BZp 0= A,B=Zn+l,

define a projective connection. Except in notation this is essentially
the one defined by M. Hachtroudi [4].

Finally we wish to make a remark on the relation of this connection
with the one defined in [3]. We have chosen the notations so that the
structure equations are identically the same. This implies that the pro-
jective connection underlies the connection in [3].

Math. Scand. 36 — 6
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