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THE STABLE HOMOLOGY OF A FLAT TORUS
H. BLAINE LAWSON, Jr.*

To Werner Fenchel on his 70th birthday

1. Introduction.

It has been known for some time that on compact Kéhler manifolds
there is a fundamental relationship between the study of the generalized
Plateau problem and the question of which homology classes carry com-
plex analytic subvarieties. In fact, some of the recent work of R. Harvey,
J. King and others has shown that the crux of this relationship rests on
the concept of a stable homology class, which can be described roughly
as follows. Let M be a compact riemannian manifold and consider a class
« € H,(M; Z) where homology is defined by singular Lipschitz chains.
Each chain ¢ € & has a naturally defined mass M(c), from which one ob-
tains a length

lll| = inf{M(c): ce«}.

This notion of mass can be extended to all (de Rham) currents on M in
several natural ways, and each such extension gives a length

o]l = inf {M(c) : ¢ € ar}

where op is the homology class of p-currents determined by «. Since
a<ag we have ||«||=||xr], which leads immediately to the question of
which classes « satisfy |lx||=]|xr|. In order for this question to have some
natural content, it is reasonable to require that the extension of M be
chosen so that any p-current of finite mass can be M-approximated by
singular Lipschitz chains with real coefficients. Federer [3] has shown
that this requirement uniquely determines the extension (to be the one
introduced in [4] and defined below), and that with this extension,

lim,,,_, o, (1/m)lme]| = loal

for any integral homology class «. A given homology class « is then
called stable if and only if there exists a positive integer m such that
(1/m)|lmox| =]l
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Examples of Almgren and Federer show that on general compact
manifolds unstable classes can exist, even for p=1 and n=3. However,
on Hodge manifolds, as outlined in section 2 below, the presence of
stable homology is directly related to the non-triviality of the Chow ring.
This, if nothing else, motivates the study of stable classes at least in
basic algebraic manifolds. One of the most important collections of such
manifolds (algebraically speaking) is the tori. They have also the advan-
tage of having a reasonably simple topology and local geometry while
their global geometry can be quite subtle. It is the main purpose of this
paper to begin a study of the stable homology on flat tori.

We begin by deriving a general structure theorem for homologically
mass-minimizing currents on a torus (section 3). Sections 4 and 5 are
devoted to proving the following result for a flat n-torus 7.

THEOREM. Let & € H,(T"; Z) and suppose either that c« is the Poincaré
dual of an element of the form b*uc where b € H(T™; Z) and ¢ € H¥(T™; Z),
or that « is a sufficiently large multiple of an element of the form pt-y9
where f € H,(T"; Z) and y € Hy(T™; Z) and where the product is induced
by the addition map T*x T* —~ T™. Then

llodl = Tl -

Furthermore, for any rectifiable current & € o of least mass, supp (%) is
a p-dimensional real analytic subvariety with codimension-2 singularities.

Consequently, all the homology of dimension 1, 2, n—1, and n—2 is
stable (although by results of Matsusaka [10] it is not always true that
|locl| = llxr]] in dimension 2). In particular, all the homology of a flat n-torus
for n <5 is stable. This, however, is as far as it goes. In section 6 we show
the following.

TarsorEM. For each pair (p,n) with 3<p=n—3, there is a flat n-torus
T™ and a class o € Hy(T™; Z) such that (1/m)|me|| > |lor|| for all m € Z+,

CoroLLARY. For each integer n=2p =4, there exists an abelian variety
T of complex dimension n and a class « € H,,(T; Z) such that « is the
Poincaré dual of an invariant, positive (p,p)-form; but no multiple of «
contains an effective algebraic cycle.

This last result sharpens a conjecture of Harvey and Knapp [5].

The author would like to express his gratitude to George Bergman,
Andy Ogg and Phillip Griffiths for valuable conversations related to this
work. For further discussion of the global geometry of tori, see [0].
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2. Definitions and preliminary remarks.

Let M be a C*° riemannian manifold and denote by &7(M) the space
of C™ p-forms on M with the usual topology. The dual space to &7(M)
is called the space of p-dimensional currents (with compact support) on
M and is denoted &,(M). For a current & € & (M), we define its bound-
ary d& € &, (M) by setting (d5)(p) = F(dp) where dp is the exterior
derivative of ¢ for p € £7-1(M).

We recall from Federer [2] the notions of mass and comass norms.
Let V be a finite dimensional vector space over R with inner product
{+,+>. Extend (-, ) canonically to the whole tensor algebra of ¥, and
set |v|={v,v)* for each v. Now for an element £ e A?V we define the
mass-norm of & to be

(2.1) €l = inf {3 |&;| : &; are simple vectors and §=3; £;}
For dual elements ¢ e A? V*~ (AP V)* we define the comass norm to be

(2.2) lglP* = sup{p(é): é€ APV and [§|=1}.

For each £ € AP V, there exist a finite number of simple vectors &,,...,&y
such that £=3¢,; and ||&|=3&,| (cf. [2, 5]). Hence, the unit ball for ||-||
is the convex hull the unit simple vectors in APV, and ||§||=|¢] if and
only if & is simple. It follows also that for ¢ € AP V*,

(2.3) lpll* = sup{p(&): &€ APV, & simple and |&|=1}.

Of course, the mass and comass norms are dual, and so we have

(2.4) €]l = sup{p(&) : p € AP V* and ||jp|[*=1}.

These notions carry over to forms and currents. For ¢ € £7(M) we
define its comass to be

M*(g) = sup{|lg,|[* : e M}.
Then for & € &,(M) we define its mass to be
M(&) = sup{F(g) : M*(p)=1}.

Note that M(&) < o if and only if & extends to a bounded linear func-
tional on the space of continuous p-forms with the compact-open topol-
ogy. Thus if M() < oo, we can define a total variation measure ||&| by
setting

IZI(F) = sup{F(@): lip,l* <Flz) for all z e )

for positive continuous functions F. By the Radon—Nikodym Theorem
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there will exist an ||&||-measurable section .5—; of APT(M) with |]§“= 1
||<||-almost everywhere, such that

L) = Su 9(&) dIZL||(z)
for all p € &P(M).
We recall now from Federer and Fleming [4] that certain compact
families of currents can be used to define homology on M. Let Z%,(M)
denote the rectifiable p-currents on M (cf. [2]), and let

Ry M) = (L eR,(M): dF € R, (M)} .
Similarly, let

Hy(M) = {F € E,(M): M(F)+MAF)< oo} .

The graded groups .%A’*(M ) and A, (M) are mapped into themselves by d,
and so we have homology groups defined. By fundamental theorems of
Federer and Fleming [4] the following is true. There exist natural iso-
morphisms:

H(%(M)) = Hy(M;Z), Hy(Np(M)) =~ Hy(M;R).

Furthermore, if M is compact, then for each «e Hp(é*(M )) (or
H,(AN4(M)), there exists a current & € « of least mass in «, i.e.,

»
M(¥) = M(&') forall ¥ €.

We let |«||=M(%) denote this infimum. Note that each class «e

H,(%#.(M)) determines (in fact, is contained in) a unique class ag €
Hp(./V,'k(M)), and clearly, |«||=|l«r]. In fact, ||m«| 2 |mor|=m|xg| for
each positive integer m, and Federer [3] has proven that

lim,, o, (1/m)|ma|| = ||xr]| -

This motivates the following.

DErintTION 2.1. A class « € H (M ; Z) on a compact riemannian mani-
fold M is said to be stable if there exists a positive integer m such that
(L/m)]lma| = [lo]].

The geometry of stable classes is an interesting subject, particularly
because of its relationship to the study of Hodge manifolds. The re-
mainder of this section is concerned with the statement of that rela-
tionship.

We begin the discussion by recalling some facts from linear algebra.
Let V and (-,-) be as above, and suppose J: V - V is an orthogonal
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transformation with J2= — 1. There is associated to J a non-degenerate
2-form w € A2V*, called the Kahler form, defined by setting w(v,,v,)=
{Jv,,v,» for vy,v,€ V. Observe that the mapping J (and its adjoint
J: V* -~ V*) can be extended uniquely to a derivation of A*V (and
A* V* respectively). The space of (p,p)-vectors is then defined as

APPY = (e APV : JE=0},
APPV* = (e AP V*: Jp=0}.

More generally, a vector & € (AP+ V)Q®C is of type (p,q) iff J&=1(p—q)&.
Note that a simple vector is of type (p,p) if and only if it corresponds to
a J-invariant subspace of dimension 2p. Every such subspace has a
canonical orientation induced by J; and so we call a simple vector
Ee NV positive if

§=vAJU AV AJVpA .. AV, AJY,

for vectors v,,...,v, € V. More generally, a vector £ e AP-?V is called
positive if it can be expressed as a finite sum of positive simple vectors.
The set #P:?(V) of positive vectors is a closed cone in AP:? ¥V having w?
in its interior, where w is the Kéhler form defined above. The following
result is due in this generality to R. Harvey and A. Knapp [5].

THEOREM 2.2. (The Wirtinger inequality) For any £ AV,
(1/pNw?(€) = ]l
with equality if and only if £ € PPP(V).

Proor. If £ is simple, the result goes back to Wirtinger and an elegant,
elementary proof has been given by Federer [1]. If & is not simple, then
there exist simple vectors &,,...,&y such that £=3¢&; and ||§||=3 (&,
Hence,

(1/pN)e?(@) = (1/p!) X oP(&) = X 1&:l = [éll,

with equality if and only if (1/p!)w?(&;)=1&;| for each i, that is, if and
only if &, € #»? for each . This completes the proof.

Suppose now that M is a compact, C*° riemannian 2n-manifold with
an orthogonal almost complex structure J (i.e., for each ze M,
Jp: T (M)~ T, (M) is an orthogonal transformation with J,2= —1).
There is then an associated Kdihler form w € £*(M) defined by setting
w(X,Y)=(JX,Y) for tangent vectors X and Y, and we say that M is
an almost Kihler manifold if dw=0. Some of the important examples of
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such manifolds are given by the compact complex manifolds of constant
holomorphic curvature (e.g. projective space and tori) and their com-
plex submanifolds.

A differential form ¢ € £%(M) is said to be a positive (p,p) form iff
@, € PPP(T *(M)) for all x € M. Similarly, a current & e &,,(M) of

finite mass is called a positive (p,p)-current iff &%e.@m’(Tm(M )) for
|&]]-almost all z.

REMARK 2.3. Suppose M is a complex manifold (i.e., suppose J is
integrable) and let W be a complex analytic subvariety of dimension p
in M. Then the Hausdorff 2p-measure of W is finite and the current
[W] defined by

[W](¢) = Sregulaér I/1I>’oint,ss @

is a positive (p,p)-current with d[W]=0. Moreover, by a result of
J. King [7], every d-closed, positive (p,p)-current in %,,(M) is a finite
sum of currents of this form. Such currents are called positive holomor-
phic cycles.

REMARK 2.4. If w is a d-closed positive (p, p)-form on M, then the cur-
rent & € &,,_5,(M) given by
L) = {upro

is a d-closed, positive (n—p,n—p)-current on M. The current & is said
to be the (Poincaré) dual of w.

REMARK 2.5. From Theorem 2.2 we have that for any current
&L € gy(M) of finite mass,

P(0?) = §u?(Fy) d| @)
< (p) S i) = (PHM(P)

with equality if and only if & is a positive (p,p)-current.

These examples above make the following corollary of the Wirtinger
inequality particularly interesting.

THEOREM 2.5. Let M be a compact almost-Kihler manifold, and let
& € E4,(M) be a positive (p,p)-current with dF =0. Then & is a current
of least mass in its homology class. Moreover, any d-closed current &' €
&, (M) which is homologous to & and has the same mass is also a positive
(p, p)-current.
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ProoF. Since dw?=0, we have F(wP)="(wP) for all &’ in the
homology class of &. Hence, by Remark 2.4, we have

M(&) = (1/p)F(w?) = (1/p)F" (0?) < M(F”)
with equality if and only if &’ is positive and type (p,p).

COROLLARY 2.6. Let M be a compact Kihler manifold and suppose
o € Hy (M Z) has the property that «r contains the dual of a closed, posi-
tive (p,p)-form. Then |x||= x| if and only if x contains a positive holo-
morphic cycle.

This result leads immediately to the following conjecture of Harvey
and Knapp [5].

CoNJECTURE 2.7. Let M be a compact Kdihler manifold and suppose
a € Hy\(M; Z) has the property that o 1s the dual of a closed positive
(p,p)-form. Then the class «x is stable.

One of the main points of this paper is to prove that this conjecture
is false, even for (2,2)-classes on a 4-dimensional abelian variety.

Observe now that since w™? lies pointwise in the interior of the cone
of positive (n—p,n— p)-forms, any closed (n— p,n — p)-form can be made
positive by adding a sufficiently large multiple of w»-?. If, moreover, w
has integral periods, then the dual of P is homologous to a rectifiable
2p-cycle. In fact, if we replace w by a sufficiently large integral multiple
of w, then from the work of Kodaira we know the following. There exists
a projective embedding M < PY¥(C) such that for each p, the dual of
@™ P is homologous to the positive holomorphic cycle [HP] where H? =
M nPN-n+2(C) for any linear subspace PN-"+?(C) of dimension N —n + p.
If we now let h? € H,,(M; Z) denote the homology class of [H?] and
suppose that « € Hy,(M; R) has the property that xg is dual to a closed
(n—p,n—p)-form, then Conjecture 2.7 implies that for all sufficiently
large integers k, the class « + kAP is stable. Hence, there exists m =m, € Z+
such that mo+mkh? contains a positive holomorphic cycle. In partic-
ular, some integral multiple of « contains an algebraic (i.e. holomorphic)
cycle.

Conversely, let M <P¥(C) be a projective manifold and suppose
« € Hy,(M; Z) contains a current of the form r[V]—s[W] where V and
W are p-dimensional, algebraic subvarieties of M and r,s € Z+. It was
pointed out to me by P. Griffiths that every p-dimensional subvariety
W of M is a union of some components of a p-dimensional complete
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intersection. That is, there exists some p-dimensional subvariety W' < M
such that [W]+[W']~ ki HP] for somek, € Z+, where ,,~’’ means they

are homologous in the complex %, (M). Hence,
r[VI=s[W] ~ r[V]+s[W’']—sko[H?] ,

and so the class «+khP contains a positive holomorphic cycle and, in
particular, is stable for all k> k,. This proves the following.

THEOREM 2.8. Let M be a compact Kdihler manifold such that the Kdihler
form w has integral periods. Let h? € H,,(M; Z) be the Poincaré dual of
the cohomology class of w"P, and suppose x € H,,(M; Z) is the dual of
any closed integral (n—p,n— p)-form. Then « contains a rattonal chain of
holomorphic cycles if and only if « is stable.

3. Stable classes on flat tori.

We now want to study currents of least mass on flat riemannian tori.
We begin by fixing our terminology. Every flat n-torus can be presented

as a quotient T™=R"/% where R*»={(x,,...,x,):x; € R} carries the
metric ds?=3dr;odx; and where £ is a subgroup of rank n generated
by vectors v,,...,v, € R% Let {-,+) denote the standard inner product

in R* and identify R® with its dual space via (-, ). Then there exists a
dual lattice #* < R generated by vectors v;*,. . .,v,* where (v;*,v;)=4,;.
It will be convenient to normalize the torus to have volume one. That is,
we will assume

= * * —
V1A ... AV, =1 and v*a ... Av* = xl.

The space R™ can be identified in a natural way with the tangent space
to T at the identity. In this way every invariant tensor field on 7™ is
canonically identified with an element of ®} R The metric ds? corre-
sponds to {-,-), and the space of invariant p-forms corresponds to
AP R*. Now on any compact Lie group it is easy to see that the coho-
mology of the invariant forms is isomorphic under inclusion with the
deRham cohomology. On 7T'® invariant forms are closed, in fact, har-
monic. Hence, we have a natural isomorphism

(3.1) H*(Tm; R) ~ A\*Re.

Since it is torsion free, we have H*(T"; Z) < H*(T™; R). Under the above
isomorphism we get the correspondence:

(3.2) H*T™; Z) = \* 2+
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where AP, £* is the subgroup generated by v/*=vjA...av} for all
multi-indices I = {iy,...,%,} of length |I|=p.
Now on T we have

H,(T"; G) ~ Homg(H?(T"; G),Q)
for G=R and Z. Hence, there are natural isomorphisms:
(3.3) H,(T";R) ~ A*R"
(3.4) H (T Z) = \*2 &

The isomorphism (3.4) is the restriction of (3.3), which can be described
as follows. Given & € AP R", extend & to be an invariant field of tangent
p-vectors. Then we can define a current &, € &,(T™) by setting

(3.5) Fi@) = §ond@, &) ¥1 = (@ A %E .

The current ¥, is closed and invariant. If ¢ is an invariant p-form, then
since volume (7*)=1, we have

‘%(‘P) = <(P,§> .

Thus & represents the expected element in homology.
Suppose now that é=v; for some multiindex I of length p. Then we
define 7'; to be the geodesic subtorus

T; = spame {vy,. .., v}/ L

where %} is the sublattice generated by v;,. . .,v;,. Note that vol. (T})=
|v;| and v;[|v;| is the field of unit tangent p-vectors on T,. Hence,
for an invariant p-form ¢, we have

F,(@) = (o) = <|—:Ii| > o]
(7]

RGOS

= S ¢ .
Ty
It follows that 5’;,1 is homologous to integration over torus 7';.

ReMARK 3.1. Note that the exterior product in A*,.#Z carries over via
(3.4) to a multiplication in H,(T™"; Z). This is the natural multiplication
(suitably renormalized) induced by the addition map 7" x T - T,
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REMARK 3.2. The star operator in the space A* R® corresponds natur-
ally to Poincare duality. That is, if we consider & € A? R* as a real hom-
ology class via (3.3), then *£ corresponds to the dual cohomology class
via (3.1) (and conversely). This is a direct consequence of equation (3.5).
In particular, * maps integral homology classes to integral cohomology
classes and conversely. For each multi-index I, we have

(3.6) wp = ok,
where I' ={1,...,n}—I is the complementary multi-index and where the
sign is determined by the permutation (I,I'). To see this directly, we
write *v;=3, 5 _,a,v; and note that modulo signs

#0g 7 = x(QUg*,v;) = vg* A0y = D, A v* AV = ag .

Our first important observation is the following.

THEOREM 3.3. For each vector & € AP R™, let &, € &,(T™) be the associated
current defined by equation (3.5). Then <, is a current of least mass among
all de Rham currents in its homology class.

Proor. We begin by observing that
(3.7) M(&) = |i&l

where
&l = sup{{p,&): g€ AP R* and |jp|[*<1}

is the mass norm of £ in A? R*, Indeed, from (3.5) we have that

FuP) = §£&,&) »1 < |l § +1 = |4

for any @ € £2(T™) with M(¢) < 1. However, by compactness there exists
an element g, € A? R® such that [jp,||* =1 and {g,,&)=]/¢||. We extend ¢,
to be an invariant p-form on 7. Then M(p,)=1 and F(p,)=[l&]|. It
follows that M(%;) =||£|| as claimed. Moreover, we have proven that there
exists an invariant p-form ¢, of comass 1 such that

Fip) = M(F) .

Suppose now that & € &,(T") is any closed current homologous to ;.
Since dp,=0, we have (@, =S(p,); and since M(p,)=1, we have
FL(po) £ M(Z). Therefore, M(;) < M(%), and the theorem is proved.

Observe that from equation (3.7) and Theorem 3.3, if xg € H,(T™; R)
is the homology class of %, then |lxg|/=[|&]|. This can be stated as follows.
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COROLLARY 3.4. The maps (3.1) and (3.3) are isometries if AP R* carries
the comass and mass norm respectively.

We now want to study the structure of those currents & in the hom-
ology class of & for which M(&)=M(<,). From the paragraph above
we know that for any such & we have

F (@) = §an P01 L (@)
= M(&) = {gn d|F] (@)

Hence, {gy, %>y =1=|%| for ||¥]|-almost all x. Furthermore, this condi-
tion must hold for all invariant forms ¢ such that |jg|*=1 and (p,&)=
||€]l- This leads us to make the following definitions. For & € A? R® we set

F*E) = {pe APR*: |lg|*=1 and {p,&)=]&]}

and
F&)={'c€ /\1’ R : ||€]|=1 and (p,&')=1 for all p € F*(&)}

The set (&) is called the facet of &, and F*(&) is called the dual facet
of &, F(£) and F*(£) are convex linear cells contained in the boundary
of the unit ball of the mass-norm and comass-norm respectively. In fact
F (&) is characterized as the largest such cell containing &/||| in its
(relative) interior.

Our discussion above has now proved the following fact.

THEOREM 3.5. Let & and & be as in Theorem 3.3, and suppose & €
Ep(T™) is any closed current homologous to ;. Then & is a current of
least mass (i.e., M(L)=M()) if and only if
(3.8) S F(&)

Jor ||&|-almost all x in T™.

If & is rectifiable, then ; is a simple vector |%|-a.e. There-
fore, if we let G, denote the set of unit simple vectors in APR™®
(Note that G, is the Grassmannian of oriented p-planes in R”), then we
can conclude the following.

COROLLARY 3.6. Suppose «€ H,(T";Z) satisfies |x|=|lxrl and let
& € o be a rectifiable current of least mass in «. Then

(3.9) FeF(a)nG,
for || Z|-almost all x € T™.
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Note that G,nF («) is contained in the boundary of the linear cell
F(x).

It seems reasonable to conjecture that any current &% € Z,(1T") with
d¥ =0, which satisfies (3.9) for some «, is actually a real analytic cycle,
ie., supp ¥ is a p-dimensional, real analytic subvariety of 7. We shall
see that in many cases this is true. The remainder of the paper will be
devoted to studying such currents &.

4. The cases p=1and p=n-1.

The simplest classes o € H,(T"; Z) ¢ AP R* to study from the point of
view of Corollary 3.6 are those for which F(«)={x/||x|l}, i.e., the ,ex-
treme classes” with respect to the mass-norm. It is not difficult to see
that the extreme classes are precisely the ones corresponding to simple
vectors in A? R™. (In fact, these are the only classes for which F(x)nG,
consists of just one element.) This leads to the question of whether a
simple vector « € H,(T"; Z) corresponds to integration over a p-dimen-
sional subtorus, or equivalently, whether a vector & e A?; ¥ which is
decomposable (i.e., simple) in R” also decomposable in £ ? To see that
this is so, we recall the notion of the span of a p-vector. Given & € AP R%,
the span of £ is defined as the smallest R-linear subspace V =R” such
that £e APV <APR™.

ProrosiTION 4.1. For any p-vector & € AP, ¥, the space span (&) has a
basis (as a vector space over R) of vectors from L. In particular, if & is
simple, then E=mv;A . ..Av, for some integer m >0 and some appropriate
choice of basis {v,,...,v,} for the lattice Z.

Norte. For a simple vector &, the integer m above is defined indepen-
dently of the basis of .#. We shall call m the Pfaffian of &.

Proor. It is an elementary fact that
span(£) = image{i, : A?-' R® > R"}

where i, is the operation of contraction with &. (Recall that contraction
is defined for simple vectors é=x;A...Ax, and n=y,A...AY, 4 by

te(m) = 3 (= 1)y A AYpg, TiA. AN L AT YT

and then extended linearly.) The vectors {v,*} ;_,-, form a basis of
AP-1R™ over R and & can be expressed as &=3;_,n;v; where n;eZ
for each I. Therefore, the vectors i (v,*) e % for |J|=p—1 contain a
basis for span (&) over R.
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Suppose now that £ is a simple vector. Then by the above &=rz;a
... AZ, where x;,...,2, € % and r is a rational number which we may
assume to be of the form r=1/d for d € Z. Each z; has an expression of
the form z;=3n;v; for n;; € Z. Our main observation is that after a
change of basis in the lattice Z, we can express z; as x; =n,,v; for some
7y, € Z. This is seen as follows. We may assume after a permutation of
basis that ny; 0. Let I > 1 be the first integer such that n,;+ 0, and write
Ny =MMyy, Ny=mmy Where m,my;,my € Z and (mqy,my)=1. We define
a new basis for .Z by setting

’ 1
vy = My Myt U = My Hmyy
and

v,/ =v;, for i%l,l

where m;,; and m; are integers such that m,;my—mym;=1. In this new
basis,
’ / ’
Ty = MUy + RVt T Y,

Continuing in this way, we eliminate each of the terms n;v; for j> 1 un-
til z, is an integral multiple of a basis element, as claimed.
After such a change of basis we can alter the remaining z,’s so that

they only involve the basis elements »,,...,v,. That is, we have
dé = NV AYaA o  AY,
where y;=x;—n;v,. Each y; is in the lattice £, generated by v,,...,v,.

Therefore, by the above argument we can make a change of basis in the
lattice %, so that y,=mn,v,. Then we have

dE = NyMgoV AV A25A .00 A2

»
where z; =y; —n;,v, is a combination of the vectors v;,...,v,. After the
pth step in this process we see that there is a basis v,,...,v, of % such

that &=rv;A...Av, for some rational number r. Since & e A%, we
must have r € Z and the proof is complete.

TuroREM 4.2. Suppose that «e H, (T™; Z) corresponds to a simple
vector & under the isomorphism (3.4) (i.e., ag ts an extreme class with respect
to the mass norm). Then || = |lor|. Furthermore, every rectifiable current
& of least mass in « is of the form

&L = 221 [T:7]

where T?,. .., TP are mutually parallel, totally geodesic subtori of T™ and
where m ts the Pfaffian of &.



62 H. BLAINE LAWSON, JR.

NotE. If p=1 or n—1, every o € H,(M; Z) corresponds to a simple
vector.

Proor. By Proposition 4.1 there is a basis v,,. . .,v, for & such that
E=mvA...Av,. Let

To = spang{vy,...,v,}[spang {vy,...,v,}

be the corresponding subtorus. Then
M(m[T]) = mlosA. .. Avy| = [|§] = [lowl]

where the last equality follows from Corollary 3.4. Since m[T',?] is rectifi-
able, M(m[T*]) 2 |lx|| 2 ||rll, and so ||x]| = ||ovg]|-

Suppose now that & € « is a rectifiable current of least mass. Then
by Corollary 3.6 we know that

(4.1) F= & ||Fl-ne.

At this point it is convenient to consider & as an (n—p)-form with
distribution coefficients. This is done as follows. Fix an orthonormal basis
{e1,. . .,€,} of R™ and extend it to T by parallel translation. Then we can
express & =35 .,%(xe;) where u;e &y(T™) is given by u;(f)=L(fe;)
for fe &%T™)=C>(T"). It follows that for any ¢=3f,¢; € &2(T"), we
have

Llp) = zm=p ur(fp) -

A straightforward calculation then shows that

(4.2) dF = (1) 321 Sinep (Vetur)er A (xey) .

If we now assume that e,,...,e, were chosen so that £=re;a...ae, for
r € R+, then equation (4.1) immediately implies that the above expression
reduces to & =u(xe;A...Ae,). Since d¥ =0, we have from (4.2) that

V,‘u=0

for i=1,...,p. It follows that & and, therefore, supp(%) are invariant
by translations from span(e;a...Ae,). Hence, if xesupp(&), then
supp(¥) contains the p-torus through x parallel to 7'j?. Since % is an
area minimizing closed rectifiable current, the Hausdorff p-measure of
supp (<) is finite. It follows that supp (<) is a finite union of translates
of T,». By [4] any closed rectifiable p-current supported in a p-dimen-
sional submanifold is given, up to integer multiples, by integration over
that submanifold. This completes the proof.
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Note. The fact that |j«| =|lxg]| for classes of dimension 1 is not gen-
erally true, even on manifolds diffeomorphic to the torus (cf. [3]).

5. The cases p=2 and p=n—2.

The main purpose of this section is to prove the following result. We
refer the reader to the subsequent discussion for the definition of the
rank and Pfaffian of elements in A%, Z.

THEOREM 5.1. Suppose either that « € H,_o(T™; Z) or that « is an tnte-
gral multiple of N*-28 for some B e ((n—1)!)-Hy(T"; Z) where k is the
rank and N the Pfaffian of f. Then || =|xr|. Furthermore, for every
rectifiable current & € o of least mass, supp (%) ts a real analytic sub-
variety (of dimension n—2 or 2 respectively) with singularities of codimen-
sion 2.

CoROLLARY 5.2. Every homology class of dimension 2 or n—2 on a flat
n-torus is stable.

REMARK 5.3. The factor (n —1)! in dimension 2 is strictly necessary by
results of Matsusaka [10] which, together with Corollary 2.6, show for a
certain class o« € Hy(T'; Z) on a principally polarized abelian variety 7',
llxl|=|lor]] if and only if 7 is a Jacobian. However, ||(n—1)!«|=
(n—1)!loxw]l-

Proor. We first consider the case of dimension 2. Let & € A%, & corre-
spond to the class g via (3.4). Then from elementary linear algebra there
exists an orthonormal basis {e,,...,e,} of R* such that

(5.1) &= Zi-‘=1 Aigi1 A €y

where 4;> 0 for each ¢. The integer k <n/2 is called the rank of £. Now by
Proposition 4.1 span (&) =span(e;A. .. A¢ey) contains a sublattice ¥’ < ¥
of rank 2k. For the moment we shall restrict our attention to the sub-
torus 7% =span (£)/.Z’. To begin we introduce on 7% an invariant com-
plex structure J by setting J(ey;_;)=ey; and J(ey)= —ey_;. With re-
spect to this structure the current & is a positive (1,1) current, and the
torus 7'?* ig an abelian variety. (This second fact follows from the inte-
grality of the class f%—1 € H,, o(T%*; Z)xAZF-2.%".)

By assumption there exists an element 7 eA%,% such that &=
((n—1))y. It follows directly from Proposition 4.1 that there exists a
basis v,,...,v, of Z such that v,,...,v,, is a basis of .#’. Then since
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7 € A% span(§), we have 7 € A%, %’'. Now by the Frobenius Decomposi-
tion Theorem (cf. [8]), there exists a basis {w,,...,wy} of £’ in which 7
has the form:

n= 21-21 NWai—1 A Wy

where n,|ny|ng.... The integer N=mn,...n, (the Pfaffian of #*) is
called the Pfaffian of n. We then consider the form

-l = (k=1)! 3% (N/n)wy A ... ADgyq Ay A ... Ay,

and set Q=(1/(k—1)!)pk-1 e AZ—2.2",

Now it follows from the elementary theory of theta functions (cf. [8],
[11]) that the homology class corresponding to £ contains a positive
holomorphic cycle, namely the divisor [D] of a theta function having
Riemann matrix *Q2 e A2, ¥'*~ H?(T%; Z). Consequently, for each
I=1,...,k—1, the homology class dual to (xQ) also contains a positive
holomorphic cycle, namely the intersection [D], n...n[D], of I generic
translations of [D] on 7T'%. (Recall that cup product in H*(T?%¢; Z),
which corresponds to wedge product in A*, #'*, is the Poincaré dual of
intersection in H,(T%*; Z), and that Poincaré duality corresponds to the
x-operation in A*R” (cf. Remark 3.2).) Thus, for each [, the class « €
Hyp(T?; Z) corresponding to [(x2)]e AZ¥~D#’ contains a positive
holomorphic cycle and, therefore by Corollary 2.6, satisfies |joq||=||(0¢)R]l-

Letting w,*,...,wy;, denote the dual basis to w,,...,w,, in span(&),
we have the expression

+Q = 3% (N/n)wh_; awd; .
Consequently,

(*Q)e1 = (k—1)! 2121 (V-1 [NYw * A oo ADY_ A D A oo Ay,

and so
*[(xQ)k-1] = (k—1)! Nk-2 Z§=1 NWas_y A Wy
= (k—1)! Nk-2y ,

Thus, « is an integral multiple of «;_,. It follows that « contains a posi-
tive holomorphic cycle, and ||«|| = ||or||-

Suppose now that & e« is any rectifiable 2-current with mass
M(S)=|«||=]lxr|, and suppose « corresponds to & € A2R” where & has
the canonical form (5.1). We may assume that » is even, since if it is not,
we simply include 7* g Tn+1=T"x S1. We then define a parallel com-
plex structure J on 7™ by setting Je,; ; =e,; and Jey,; = —ey,_; for each ¢,
and we let w=3"%e,,_,Ae, be the corresponding Kihler form. With
respect to this structure £ is clearly a positive (1,1)-form. Hence, by
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Theorem 2.2, {w, &) =||&|| and & (&) = ZL1(Rn). It then follows from Theo-

rem 3.5 that &, € L1(R?) for ||&|-almost all z; that is, & is a positive
(rectifiable) (1,1)-cycle on T™. Consequently by King’s Theorem [7],
supp(<’) is a compact holomorphic curve in 7™, This completes the
proof for dimension 2.

Note that the same argument applies to any rectifiable current & € «
of least mass where |j«||=]|xg|| and «=pg? for some § € Hy(T™; Z).

Before going on we need to establish the following fact. Let & be as
above. Then

(6.2)  F(§) = {FeP R : |£]=1 and span(£') =span(£)} .

To see this, we use the following.

LeEvMMA 5.4. Let ¢ € AP R* have |p||*=1 and suppose & € A? R* satisfies
{p,&)=|I&||. Then span (£) =span ().

Proor. To begin we suppose & to be simple, and for convenience we
assume ||&]|= 1. Let #: R® — span (¢) be orthogonal projection and consider
the quadratic form ¢(v) =||n(v)|]? for v € span(£). Let ¢,,...,¢, be an or-
thonormal basis of eigenvectors for ¢ in span(&). Then

& = cosl;e;+sinb,f,

where: ¢,,...,e, are orthonormal vectors in span(9), fy,...,f, are unit
vectors in span(p)t, and 0= 0, =< 4= for each ¢. Then

{@,&) = cosl...cosf, =

Hence ¢;=e¢; for all ¢ and span (&) <span(p) as claimed.
For a general p-vector &, we write £ =3 &, where each £; is simple and

€l=211&;]l. Then {p,&)=3{p,&;) = Z||&] =]l Consequently, {p, ;> =&l
and span (&;) =span(p) for each ¢. This completes the proof.

We can now prove the equation (5.2). Let @=e Ae,+ ... +eg_1ALy,.
Then ||@||*=1 (cf. Proposition 6.1), and (®,&)=|/&||. Now if & e F(¢§),
then {(&,&')=||&||=1 by definition. Hence, by Lemma 5.4, span(&')<
span (@) =span(£). Thus, F(§)<=PL1(span(§)). However, by Theorem
2.2, each of the vectors ¢ € #L1(span(£)) with ||£'||=1 lies in the affine
subspace {&': (®,&")=1}. Equation (5.2) then follows from the fact that
F (£) is the largest linear cell in {¢' € AP R™: ||&'||=1}, having &/||£|| in its
relative interior.

Math. Seand. 36 — 5
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It follows from (5.2) that each irreducible component of supp(<¥),
where & is the current above, is contained in a translate of 72k,
We now consider « € H,_,(T™; Z) and we let £ € AZ~2.% correspond to

o via (3.4). Then there exists an orthonormal basis {e,...,e,} of R
and a basis {v,*,...,v,*} of £* such that
(5.3) *E = 2121 Aieai_1 A ey

= * Ak
= Dicicisak Wi AV
where 1;>0 and n;; € Z for each 4,j. It follows that
k A A
E =gy A ... A€ ADr 1 Aes A A8y 1 A8y A ... Aey
A A
= Vgpya A oo AV A Dycicicon MyiV1 A o ADg g ATy A Lo A0y

where {vy,...,v,} is the dual basis of 2.
Recall now that the x-operator is an isometry on A*R" in the L2-

norm |-|. Hence, it also preserves the mass and the comass norms. It
follows that for any & € AP R, we have
(5.4) F (&) = (m )P F («f') .

Therefore, from equation (5.2) and the fact that »Pui=Fn-in-i we
have

F(E) = {egpA ... Ae AE 0 & e PE-LE-1(span(eA. .. Aey))}

where the complex structure on span(e;A. .. Aey,) is given by Jey;_;=e,;
and Jey = —ey,_; fori=1,...,k.

Let us assume for the moment that » is even, and introduce an in-
variant complex structure J on 7™ by setting Jey;_; =e€,; and Jegy; = —ey; 4
fort=1,...,n. By (5.3), T with this structure is an abelian variety, and
from the elementary theory of theta functions there exists a theta divi-
sor [D] < T™ which is dual to *£. Thus [D] is a positive holomorphic cycle
in the class «, and so by Theorem 2.5, M([D]) = ||x|| = ||xr||. Moreover, if
& €« is any rectifiable cycle of least mass, then by Theorem 3.5,

.5_’; € Z (&) for || &||-almost all z. In particular, & is a positive, (n —1,n — 1)-
cycle, and by King’s Theorem [7], supp (%) is a compact, complex sub-
variety of codimension-one in 7™. Furthermore, if k£ <n, then supp (%)
is foliated by translates of the torus

Tn-2% = gpang {Vgy41,- - > Vp }/SPANZ {Vgp 41, + -, Vp}

Suppose now that n is odd. Then we embed 7'* — T'»+1=T"x §1 where
S! has unit length and we consider the class «' € H, _,(T*+':Z) corre-
sponding to &' = é&ae, ., where e, is the unit vector in the ,new” direc-
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tion. Then |jor]|=|¢ll=1I&]l=llor"||=]l¢'||. Moreover, from the last para-
graph, any current of least mass &’ € &’ can be written as &' =% x [§!]
where & € #,,_,(T™) and supp (#) is a real analytic variety of dimension
n—2 with codimension-2 singularities. Since M(%')=M(¥), we have
lloxll = lloxw -

Suppose now that & € « is a rectifiable cycle of least mass in «. Then
&' =F x[8] € &' is a rectifiable cycle of least mass in «'. Hence, by the
paragraph above, supp (%) is a real analytic variety with codimension-2
singularities. This completes the proof.

The above argument easily generalizes to prove the following.

TurorEM 5.5. Let « € H,(T";Z) be such that its Poincaré dual
o € H*P(T"; Z) can be written as a product sx=pf7Ay® where fe
HY(T™; Z) and v € H3(T™; Z). Then ||x||=|lorll, and for any rectifiable cur-
rent & € « of least mass in «, supp & is a real analytic variety of dimen-
sion p with codimension-2 singularities.

ReMARK 5.6. The arguments above also prove that any class of the
form a=pray® for fe H,(T"; Z) and y € Hy(T™; Z) has some integer
multiple of the form hypothesized in Theorem 5.5. Thus, every such
homology class is stable.

6. The cases 3<p=n-3.

Despite the mounting evidence it is not true that every homology
class on a flat n-torus is stable. Of course, by the previous results we
must have n= 6 to find a counter-example. However, we shall show that
for every pair of integers (p,n) with 3 <p=<n—3, there is a flat n-torus
T™ and a class o € H,(T"; Z) such that

(1/m)lma]| > [l

for all positive integers m.
To begin we need the following elementary result.

PropPoSITION 6.1. Let &',&" € APR™ be such that span(&’)Lspan(&').
Then
6"+ &"|1* = max {||&']*, [|6"”]1*}
and

€'+ &I = 11+ N1E""Il -
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Proor. Suppose 5 € A? R* is a unit simple vector. Let n: R® — span (£’)
be orthogonal projection and consider the quadratic forms ¢'(v)=
lz(v)|? and ¢ (v)=|[v|— |j=(v)||> on span(n). Then there exists an ortho-
normal basis {e;,...,e,} of span(n) such that ¢; is simultaneously an
eigenvector of both ¢’ and ¢'’ for each 7. Hence, there exists an ortho-
normal basis {e,...,e,} of R®, with span(&’)=span(eA...Ae,), such
that

g = cosl;e,+sinl e, ;

where 0<0,< }n for ¢=1,...,p. Consequently if we set
= max {|[&]*, [|E"]*},
we have from (2.3) that

<E, + 5”:7}>

cosfy...cos0,( e;A. .. Ae,>+
+8in0, ...sin0,(E" e A. . Alx )
(cosfy...cosl,+sinb;...sinf,)u .

IIA

However, from the Schwarz Inequality,

(6.1) cosf;...cosb,+sinf,...sin6,

< [cos20, +8in20,]}[(cos B, . . . cosh,)?+ (sinb, . .. sinh,)2]
< cosf,...cos0,+sinb,...sin6,
Sete. £1

This shows that (&'+&",n)<u for all unit simple vectors n, and so
1€+ &"||*<u by (2.3). The reverse inequality is immediate, and this
proves the first part of the proposition.

For the second part we choose {® e AP R* with

span ({¥) < span (§9),[[L@|* = 1
and
0,80 = ||E9] for 1=1,2.
By the above ||’ +{"|*=1, and so
K+, E+E) = |EN+1E7] = 1E+E7).

The reverse inequality is immediate. This completes the proof.

Observe that if p> 2, then equality holds in (6.1) if and only if

cos0,...co80, =1 or sinf,...sinf, =1.
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Repeating the argument with the indices permuted then proves that
equality holds if and only if cosf,...cos6,=1 or sinf,...sinf,=1.
This gives the following fact. (See also [4, 9.15].)

COROLLARY 6.2. Let p=3, and let £',&" € AP R™ be such that span(&’)L
span (&) and ||&'||* =||&"||*=1. Then for any n € AP R?,

E+E"m) = Il
with equality if and only if n=n"+n"" with span(y®) <span(£9). In par-
ticular, if n is simple, then equality holds if and only if

span(n) < span(£’) or span(n) < span(&”’).

Proor. For 5 simple, the statement follows from the paragraph above.
Otherwise =3, where each #, is simple and |j5||=X|n;l- Then

E+E M =2 E+Em) = 3 gl = Il

and the result follows immediately.
Suppose now that 3<p=n/2 and consider the vector

(6.2) E=¢eA...Ae,tep A Aey,
where {e;,...,e,} is an orthonormal basis of R*. Then by the above
(6.3) F(&) = {1€4A. .. Al g8, AL . Aegyt ;20 and a4+ ay=1}.

To see this, note that ||£[|*=1 and {§,&)=2=||§|. Hence, & € #*(£), and
therefore (£,&')=||&'||=1 for all & € & (&). It then follows from Corollary
6.2 that any &’ € # (&) must be of the form o,e;A ... Ae, +xpe,,11A. . . Aeyy,.
Since (£,£')=1 and ||£'||=1, we get o;+a,=1 and |og|+ |oy|=1. This
proves that F(£) is contained in the set on the right of (6.3). Since this
set is a linear cell containing & in its relative interior, we have equality.

REMARK 6.3. For the case of integers between n/2 and »—3 we shall
consider vectors of the form *£ where £ is of the form (6.2). The formula
for F(x£) is given directly by (6.3) and (5.4).

Our first main observation is the following.

THEOREM 6.4. Let « € H (T";Z), 3<p<n/2, satisfy |a|=|lxsl, and
suppose o corresponds via (3.4) to a p-vector E=E +&, € NPz L where &,
and &, are simple vectors (not necessarily in A?;.L) with span (&) Lspan(&,).
The any rectifiable current & € o of least mass is given locally as a finite
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sum Y n;[L;] where n; e Z+ and L, is an oriented p-plane parallel to either
span (&,) or span(&,) for each .

Proor. Choose an orthonormal basis {e,,. . .,e,} of R® so that
Sr=re A ... Ae, and & =1L, A ... Ay,

for r,,r, € R+, (Note that we may assume r,-7,=+ 0 since otherwise we are
reduced to Theorem 4.2.) Then

F(E) = Flerh. .. Aeptey A . Aey),

and so Z(£) is given by equation (6.3). Therefore, it follows from Corol-
lary 3.6 that
(6.4) &L, =eA...Ae

p OF €, A ...Ae, [S]—ae.

As in the proof of Theorem 4.2 we express & as an (n—p)-form on 1™
with distribution coefficients, and observe that from (6.4) this expression
reduces to

(6.5) &L = Uy #(egA. . Aey) + Uy ¥(ey 1A . Alyy)
for u,,u, € &y(T™). Then since d.¥ =0, we conclude that

Voty =0 and V, u, =0 fori=1,...,p.

It follows that u, is invariant by translations from span(esA...ae,),
and u, is invariant by translations from span(e,.;A. .. Ae,,). Therefore,
if z € supp (&), then supp (<) contains a p-plane through = parallel to
either span(e;A..Ae,) or span(e, 1A ... Aey). Now since & is a mass-
minimizing, rectifiable current, the Hausdorff p-measure of supp (<)
is locally finite (cf. [2], [9]). It follows that supp(<’) is locally a finite
union of such planes. The remainder of the argument goes as in Theorem
4.2. This completes the proof.

CoROLLARY 6.5. Let « € H,(T™; Z), 3 < p = 4n, correspond via (3.4) to a
p-vector E=E +&, €N, L where & and &, are simple vectors with
span (&) Lspan (&,). Then ||x||=|lxr]| if and only if &,&, € N2, 2.

Proor. If £,,&, € AP, Z, then |x||=||xg|| by Theorem 4.2 and Proposi-
tion 6.1. Suppose then that ||x||=|xr|, and let & € « be a rectifiable
current of least mass. As in equation (6.5) we write

S = S+, where S = uy(xe;A...Ae,).
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By Theorem 6.4, & is given locally by integration over a finite number
of oriented p-planes parallel to span(¢;) for i=1,2. Thus, each & is a
closed, rectifiable p-current. It is obvious from evaluation on parallel
p-forms that & is homologous to &, for each ¢. Hence, the homology
class of %, is integral, and by Proposition 4.1, §; € A?;Z. This completes
the proof.

Nore. More geometrically, it is clear that span(é,) must contain p
independent elements from %, for otherwise the closure of span(&;)/
span(&,)n¥Z, a translate of which is contained in supp (%), would be a
subtorus of dimension > p.

We are now in a position to construct some ,,unstable’’ homology.
Let n = 2p 2 6 and consider the lattice .# in R” generated by the vectors:

Vg1 = (0,-..,0,1,0,...,0)
gy = (0,...,0,1//2,0,...,0)

for 4=1,...,[(n+1)/2], where the non-zero entry of v; is in the jth
position. We then define

€ = Vg +ng2i
e = ”2t—1"“V2”2i
for ¢=1,...,p, and set

(6.6) E=eA...Ae+E A...AE,.

The vectors {e,,...,e,,€;,...,6,} are mutually orthogonal, and so ¢
satisfies the decomposition hypothésis of Corollary 6.5. Furthermore,
we have £ e AP,.#. The quickest way to see this is to note that £ is
fixed by the Galois automorphism in the ,lattice” APz -#2. However,
no integer multiple of e;A...Ae, (or of A...Ag,) lies in AP, since
e1A. .. Ae, has irrational coefficients with respect to the basis {v;}j5_p-

Therefore, from Corollary 6.5 we conclude the following for the torus
T=R"Z.

THEOREM 6.6. Let « e H,(T";Z) be the class corresponding to the
p-vector & given in (6.6). Then
(1/m)llmal] > [loll

for all m e Z+,

We now consider the special case where n = 2p = 4k for an integer k2 2,
and introduce on 7' an invariant, orthogonal complex structure J by
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getting Jv;=v;,, and Jv;,,= —v; for i=1,...,p. Hence, Je,=e,;,; and
Je;=¢;,; for i=1,...,k, and therefore we have that
(6.7) £ = (—1)ke-Di2g

=e AJegA .. ne AT +E AJe AL .. Ag ATE,

is a positive (k,k)-vector. Consequently, £ determines a homology class
o € Hy(T; Z) which is dual to a cohomology class containing a positive
(k,k)-form, namely the form »£=£. However, by the above argument
there is no integer m such that |m«|=m|xr|. It then follows from
Theorem 2.5 that there is no integer m such that ma« contains a positive
holomorphic cycle. Note that the torus 7' with this structure is an
abelian variety, in fact, it is a product of elliptic curves. Putting this
together we have the following.

THEOREM 6.7. For each k=2 the above torus T is an abelian variety of
complex dimension 2k, and the class x € Hyp (T ; Z) determined by £ in (6.7)
is the Poincaré dual of an invariant, positive (k,k)-form. However, mo
multiple of o carries an effective (i.e., positive) algebraic cycle.

We remark that the classes « in Theorem 6.7 do carry algebraic cycles
of mixed sign. This can be verified by direct computation.

It is probably worth noting the forms *£=£ are special in that they
lie on the boundary of the positive cone %k,

As mentioned in §2, this result sharpens a conjecture of Harvey and
Knapp concerning stability and the Hodge Conjecture.

As a final comment we point out that, beginning with Remark 6.3,
the above arguments carry through isomorphically for jn<p=<n-3.
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