SOME REMARKS ON THE BELTRAMI EQUATION

CLIFFORD J. EARLE*

To Werner Fenchel on his 70th birthday.

1. Introduction.

It is very well known (see [2] or [6]) that if $\mu(z)$ is an L^{∞} function on the closed unit disk D with $\|\mu\|_{\infty} < 1$, there is a unique quasiconformal mapping w(z) of D onto itself that fixes the points z = 0 and 1 and solves the Beltrami equation

$$w_{\bar{\epsilon}} = \mu w_{\epsilon}$$
.

In addition (see [1], [3], or [4]), if $\mu(z)$ is a Hölder continuous function in D, the solution w(z) will be a diffeomorphism with Hölder continuous partial derivatives, and if the function μ varies continuously in some appropriate Hölder space, then so does the solution w(z) (see [5]).

In this paper we offer a new proof of the existence of a smooth solution w depending continuously on the parameter μ . As usual we assume that μ is Hölder continuous and close to zero. Our proof relies on the same technical facts as the arguments in [3] or [4]. However we do not directly solve any Beltrami equation. Instead we construct a family of diffeomorphisms of D onto itself. We then use the inverse function theorem in Banach spaces to conclude that our family contains a solution to every Beltrami equation with μ sufficiently close to zero. The advantage of this method is that it yields in one step a smooth solution that maps D diffeomorphically onto itself and depends nicely on μ .

2. A preliminary theorem.

2.1. We illustrate our method in this section by using it to prove a weak form of our main theorem. We need two lemmas.

LEMMA 1. Let f(z) be a C^1 function in the closed unit disk D. Suppose

(1)
$$\max\{|f_z(z)|+|f_{\bar{z}}(z)|\;;\;z\in D\}<1$$
.

Received November 4, 1974.

^{*} This research was completed while the author was a John Simon Guggenheim Memorial Fellow visiting Stanford University.

Then w(z) = z + f(z) is a C^1 diffeomorphism of D onto its image.

PROOF. Clearly w(z) is a C^1 function. Moreover,

$$|w_z| = |1+f_z| \ge 1-|f_z| > |f_{\bar{z}}| = |w_{\bar{z}}| \ge 0$$
,

so the Jacobian of w(z) is positive. Finally, (1) implies that $|f(z)-f(\zeta)| < |z-\zeta|$ if $z \neq \zeta$, so w maps D one-to-one onto its image.

2.2. For each integer $n \ge 0$ and real number α in the open interval (0,1), let $C^{n,\alpha}(D)$ be the space of C^n functions in D whose partial derivatives of order n satisfy a Hölder condition with exponent α . We norm $C^{n,\alpha}(D)$ in the usual way (see [7, p. 8]), making it a Banach space, in fact a Banach algebra.

Fix n and α , and let V be the closed subspace of $C^{n+1,\alpha}(D)$ consisting of the functions f(z) in $C^{n+1,\alpha}(D)$ satisfying

$$\int_{|z|=1} f(z)(z-\zeta)^{-1} dz = 0 \quad \text{if } |\zeta| < 1.$$

Our next lemma is well-known.

LEMMA 2. $f \rightarrow f_{\bar{z}}$ is an invertible bounded linear map of V onto $C^{n,\alpha}(D)$.

Proof. The above map is obviously bounded, linear, and one-to-one. The inverse map is given explicitly by

$$f(\zeta) = Pg(\zeta) = -\pi^{-1} \iint_D g(z)(z-\zeta)^{-1} dxdy$$

for all ζ in D and g in $C^{n,\alpha}(D)$. For details see [7, p. 56] or [3, Lecture 5].

2.3. Now we are ready to prove our first theorem.

THEOREM 1. There are neighborhoods of zero U_0 in $C^{n,\alpha}(D)$ and V_0 in V such that for each μ in U_0 there is a unique f in V_0 such that $w_{\bar{z}} = \mu w_z$, where w is the diffeomorphism w(z) = z + f(z). Further, f and w depend continuously on μ .

PROOF. Let V_1 be the open set in V consisting of the f in V that satisfy (1). Define a map φ from V_1 into $C^{n,\alpha}(D)$ by

$$\varphi(f)(z) = f_{\bar{z}}(z) \big(1 + f_s(z)\big)^{-1} \quad \text{ for all } z \in D.$$

(Thus, $\varphi(f) = w_{\bar{z}}/w_z$ if w(z) = z + f(z).)

It is clear that φ is a C^1 map in a neighborhood of zero in V_1 . Indeed, $\varphi(f)$ is given, for f near zero, by the convergent power series

$$\varphi(f) = \sum_{k=0}^{\infty} f_{\bar{z}} f_z^{k}.$$

The derivative $\varphi'(0)$ is given by

$$\varphi'(0)f(z) = \lim_{t\to 0} \varphi(tf)(z)/t = f_{\bar{z}}(z).$$

Lemma 2 says that $\varphi'(0)$ is an invertible map. The inverse function theorem in Banach spaces tells us there are neighborhoods of zero U_0 in $C^{n,\alpha}(D)$ and V_0 in V_1 such that φ maps V_0 homeomorphically onto U_0 . That proves the theorem.

We remark that w actually will depend differentiably on μ because $\varphi^{-1}: U_0 \to V_0$ is a C^1 map.

The main theorem.

- 3.1. The diffeomorphism w(z) in Theorem 1 solves the Beltrami equation $w_{\overline{z}} = \mu w_z$ but does not map D onto itself unless f(z) = 0 on ∂D . The Riemann mapping theorem gives us a solution mapping D to itself, but to guarantee the continuous dependence of that solution on μ we would need detailed knowledge about the behavior of the Riemann mapping function in variable regions. Although such knowledge is available we prefer a direct approach along the lines of section 2.
- 3.2. We need to replace w(z) = z + f(z) by a function that maps D to itself. For that purpose we use stereographic projection to identify D with the upper hemisphere. For w(z) we choose an appropriate point on the great circle through z in the direction f(z). To be explicit we prove

LEMMA 3. Let f(z) be a C^1 function in D. Suppose

(2)
$$\max\{|f(z)|+|f_{\bar{z}}(z)|+|f_{z}(z)|\;;\;z\in D\}<\frac{1}{2}$$

and

(3)
$$\operatorname{Re}(\bar{z}f(z)) = 0 \text{ whenever } |z| = 1.$$

Then

(4)
$$w(z) = [(1+\bar{z}z)z+f(z)][(1+\bar{z}z)-\bar{z}f(z)]^{-1}, \quad z \text{ in } D,$$

is a C^1 diffeomorphism of D onto itself.

PROOF. Easy calculations show that w(z) is a C^1 function in D with positive Jacobian and that |w(z)| = 1 when |z| = 1. It follows for topological reasons that w is a diffeomorphism onto D.

3.3. Let W be the closed subspace of $C^{n+1,\alpha}(D)$ consisting of the functions f(z) in $C^{n+1,\alpha}(D)$ satisfying (3) and

(5)
$$f(0) = f(1) = 0.$$

Our main theorem is the following.

Theorem 2. There are neighborhoods of zero U_0 in $C^{n,\alpha}(D)$ and W_0 in W such that for each μ in U_0 there is a unique f in W_0 with $w_{\overline{z}} = \mu w_z$, where w(z) is the diffeomorphism given by (4). Further, f and w depend continuously on μ .

PROOF. Let W_1 be the set of f in W satisfying (2). Define $\psi \colon W_1 \to C^{n,\alpha}(D)$ by

$$\psi(f)(z) = \frac{(1 + \bar{z}z)^2 f_{\bar{z}}(z) + f(z)^2}{(1 + \bar{z}z)^2 (1 + f_z(z)) - 2\bar{z}(1 + \bar{z}z)f(z)}.$$

(Thus, $\psi(f) = w_{\bar{z}}/w_z$ if w is defined by (4).)

We claim that ψ is a C^1 map near f=0. To see this we put $g(z)=w(z)-z=\theta(f)(z)$, where w(z) is defined by (4), and we note that

$$\theta(f) = \sum_{k=0}^{\infty} h^k f^{k+1} ,$$

with $h(z) = \overline{z}(1 + \overline{z}z)^{-1}$. Therefore θ is a C^1 map near f = 0. But $\psi(f) = \varphi(\theta(f))$ where

$$\varphi(g) = g_{\overline{z}}(1+g_z)^{-1}$$

is C^1 near g=0, so ψ is C^1 as we claimed.

The derivative $\psi'(0)$ is again given by

$$\psi'(0)f(z) = \lim_{t\to 0} \psi(tf)(z)/t = f_{\bar{z}}(z) ,$$

so Theorem 2 once again follows from the inverse function theorem, provided that we prove the following lemma.

LEMMA 4. The bounded linear map $f \to f_{\bar{z}}$ from W to $C^{n,\alpha}(D)$ is invertible.

PROOF. Lemma 4 follows rather easily from the better known Lemma 2. It is again clear that $f \to f_{\bar{z}}$ is a bounded one-to-one map of W into $C^{n,\alpha}(D)$. To see that it maps onto $C^{n,\alpha}(D)$, choose ν in $C^{n,\alpha}(D)$ and choose g in V with $g_{\bar{z}} = \nu$. Put

$$g_0(\zeta) = g(\zeta) - g(0) - \zeta(g(1) - g(0)), \quad \zeta \text{ in } D.$$

The required function f is

$$f(\zeta) \, = \, g_0(\zeta) - \frac{1}{2\pi i} \, \int_{|z| \, = \, 1} \frac{z^2 \bar{g}_0(z)}{z \, - \, \zeta} dz \; . \label{eq:fz}$$

(The line integral defines a function in $C^{n+1,\alpha}(D)$, by [7, p. 21].) The proof of the lemma, and of Theorem 2, is complete.

REFERENCES

- L. V. Ahlfors, Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn. Ser. A I, 206 (1955), 1-22.
- L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. 72 (1960), 385-404.
- 3. L. Bers, Riemann surfaces, Lecture Notes, New York University 1957-58.
- S. S. Chern, An elementary proof of the existence of isothermal parameters on a surface, Proc. Amer. Math. Soc. 6 (1955), 771-782.
- C. J. Earle and A. Schatz, Teichmuller theory for surfaces with boundary, J. Differential Geometry, 4 (1970), 169-185.
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, (Grundlehren math. Wissensch. 126), Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- 7. I. N. Vekua, Generalized analytic functions, Pergamon Press, Oxford, 1962.

CORNELL UNIVERSITY, ITHACA, NEW YORK

AND

STANFORD UNIVERSITY, STANFORD, CALIFORNIA, U.S.A.