MATH. SCAND. 36 (1975), 44—48

SOME REMARKS ON THE BELTRAMI EQUATION
CLIFFORD J. EARLE*
To Werner Fenchel on his 70th birthday.

1. Introduction.

It is very well known (see [2] or [6]) that if u(z) is an L* function on
the closed unit disk D with |ju, <1, there is a unique quasiconformal
mapping w(z) of D onto itself that fixes the points z=0 and 1 and solves
the Beltrami equation

w; = pw, .

In addition (see [1], [3], or [4]), if u(2) is a Holder continuous function
in D, the solution w(z) will be a diffeomorphism with Hoélder continuous
partial derivatives, and if the function x varies continuously in some
appropriate Holder space, then so does the solution w(z) (see [5]).

In this paper we offer a new proof of the existence of a smooth solution
w depending continuously on the parameter x. As usual we assume that
u is Holder continuous and close to zero. Our proof relies on the same
technical facts as the arguments in [3] or [4]. However we do not directly
solve any Beltrami equation. Instead we construct a family of diffeo-
morphisms of D onto itself. We then use the inverse function theorem in
Banach spaces to conclude that our family contains a solution to every
Beltrami equation with u sufficiently close to zero. The advantage of
this method is that it yields in one step a smooth solution that maps D
diffeomorphically onto itself and depends nicely on u.

2. A preliminary theorem.

2.1. We illustrate our method in this section by using it to prove a
weak form of our main theorem. We need two lemmas.

LeMMA 1. Let f(z) be a C* function in the closed unit disk D. Suppose
(1) max {|f,(2)| +|f5(2)| ; 2€ D} < 1.
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Then w(z)=z+f(z) is a C diffeomorphism of D onto its image.

Proor. Clearly w(z) is a C* function. Moreover,

lwl = 14+f] 2 1=f,| > |fzl = lwz| 2 0,
8o the Jacobian of w(z) is positive. Finally, (1) implies that |f(z) —f({)| <

|z—¢| if 24, so w maps D one-to-one onto its image.

2.2. For each integer n=0 and real number « in the open interval
(0,1), let C™=(D) be the space of C* functions in D whose partial deriva-
tives of order n satisfy a Holder condition with exponent x. We norm
C™*(D) in the usual way (see [7, p. 8]), making it a Banach space, in
fact a Banach algebra.

Fix n and «, and let ¥V be the closed subspace of C*+1-#(D) consisting
of the functions f(z) in C*+-+(D) satisfying

Sp=1f@)(z—0)1dz =0 if |{|<1.

Our next lemma is well-known.
Lemma 2. f— f; 18 an invertible bounded linear map of V onto C™»*(D).

Proor. The above map is obviously bounded, linear, and one-to-one.
The inverse map is given explicitly by

(&) = Pg(0) = —a1{§p9(2)(z— ) dady
for all ¢ in D and ¢ in C™#(D). For details see [7, p. 56] or [3, Lecture 5].

2.3. Now we are ready to prove our first theorem.

THEOREM 1. There are neighborhoods of zero Uy in C™»*(D) and Vyin V
such that for each u in U, there is a unique f in V, such that w; = uw,, where
w 1s the diffeomorphism w(z)=z+ f(z). Further, f and w depend continu-
ously on pu.

Proor. Let V; be the open set in V consisting of the f in V that satisfy
(1). Define a map ¢ from ¥V, into C»+(D) by
9(f)z) = f3(z)(1 +f,(2))* forall zeD.
(Thus, (f) = wgfw, if w(z)=2-+(z).)



46 CLIFFORD J. EARLE

It is clear that ¢ is a C* map in a neighborhood of zero in V,. Indeed,
¢(f) is given, for f near zero, by the convergent power series

q’(f) = Ziiofzfzk .
The derivative ¢'(0) is given by
¢'(0)f(2) = Lim,,,p(if)(2)/t = f3(z) -

Lemma 2 says that ¢’(0) is an invertible map. The inverse function
theorem in Banach spaces tells us there are neighborhoods of zero U,
in C*»*(D) and V,in ¥V, such that ¢ maps V, homeomorphically onto U,.
That proves the theorem.

We remark that w actually will depend differentiably on x because
o 1: Uy~ V,is a C map.

The main theorem.

3.1. The diffeomorphism w(z) in Theorem 1 solves the Beltrami equa-
tion w;=puw, but does not map D onto itself unless f(z)=0 on &D. The
Riemann mapping theorem gives us a solution mapping D to itself, but
to guarantee the continuous dependence of that solution on x we would
need detailed knowledge about the behavior of the Riemann mapping
function in variable regions. Although such knowledge is available we
prefer a direct approach along the lines of section 2.

3.2. We need to replace w(z)=2+f(z) by a function that maps D to
itself. For that purpose we use stereographic projection to identify D
with the upper hemisphere. For w(z) we choose an appropriate point on
the great circle through z in the direction f(z). To be explicit we prove

Lemma 3. Let f(z) be a C* function in D. Suppose

(2) max {|f(z)| +1fz(2)| +f:(2)| ; ze D} < }

and

(3) Re(zf(2)) = 0 whenever |z|=

Then

(4) w(z) = [((1+22)2+f(2)][(1 +22) —2f(2)]"}, zin D,

s a O diffeomorphism of D onto itself.

Proor. Easy calculations show that w(z) is a C* function in D with
positive Jacobian and that |w(z)|=1 when |z|=1. It follows for topo-
logical reasons that w is a diffeomorphism onto D.
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3.3. Let W be the closed subspace of C"+L%(D) consisting of the func-
tions f(2) in Cn+L+(D) satisfying (3) and

() f(0) =f(1) = 0.

Our main theorem is the following.

TrarorREM 2. There are neighborhoods of zero U, in C™*(D) and W, in
W such that for each p in U, there is a unique f in Wq with w;=pw,, where
w(z) is the diffeomorphism given by (4). Further, f and w depend continy-
ously on u.

Proor. Let W, be the set of f in W satisfying (2). Define p: Wy —
C™~D) by )
(1+22)%5(2) +£(2)
T 1+ 1+() - 221 +22) f(2)

(Thus, »(f)=w;/w, if w is defined by (4).)
We claim that ¢ is a C* map near f=0. To see this we put g(z)-
w(z) —z=0(f)(2), where w(z) is defined by (4), and we note that

0(f) = 2&oo Wif*+,

with A(z)=%(1+22)~1. Therefore 0 is a C* map near f=0. But y(f)=
@(6(f)) where

P(N)(2)

o(g) = g:(1+g,)*

is C* near g=0, so y is C! as we claimed.
The derivative y’(0) is again given by

Y (0)f(z) = lim,,oy(tf)(2)/t = f3(2) ,

8o Theorem 2 once again follows from the inverse function theorem,
provided that we prove the following lemma.

LemMa 4. The bounded linear map f — f; from W to C™*(D) is tnver-
tible.

ProoF. Lemma 4 follows rather easily from the better known Lemma
2. It is again clear that f — f; is a bounded one-to-one map of W into
Cn+(D). To see that it maps onto C™*(D), choose » in C™*(D) and choose
g in V with g;=». Put

90(0) = 9(£)—9(0)—{(9(1)—g(0)), (inD.
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The required function f is

1
10 = 9o0) 5=

27

2=
20(e) |
lel=1 #— Z

(The line integral defines a function in C»+L%(D), by [7, p. 21].) The
proof of the lemma, and of Theorem 2, is complete.
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