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INVARIANT OPERATORS AND INTEGRAL
REPRESENTATIONS IN HYPERBOLIC SPACE

LARS V. AHLFORS*

To Werner Fenchel on his 70th birthday.

1. Introduction.
1.1. The complex derivative f;=4(f,+if,) measures the lack of con-
formality of an infinitesimal deformation f: C — C. Indeed,
F(z,e) = z+¢f(2) +o(e)

has the complex dilatation F;/F,=¢f;+o(e).

There is a natural generalization of this notion, not to several complex
variables, but to » real variables. Suppose that F:R» — R» is a one
parameter family of mappings with the development

F(x,e) = x+¢f(x)+o(e) .

With F we associate its Jacobian matrix F’ and the positive definite
symmetric matrix ‘F’-F’'. Because conformality disregards size we nor-
malize by passing to

(det F')y-2mtF' - F' = 1, +¢[f' +if' —2n-Y(trf')1,]+o0(e) .
This is an indication that the matrix

(L) Sf(@)s; = Hfs[ox;+ ofyfox,) — 018y 3T (9f[0my)
is a suitable measure for the deviation from conformality of the infinite-
simal deformation f.

For n=2 it is customary to use the complex notation f=f,+ifs,
2=, +tzy. In this notation

- if )

This confirms our contention that Sf is a natural generalization of f;.

1.2. The operator S maps vector fields on matrix valued functions.
We shall use the customary notations of euclidean geometry:
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r = (wlf' . "xn)’ f = (.fl" . "fn) )
Y =Tyt ..+ TY, |2 = (2)t.

The dimension n shall be fixed and = 2. For the purpose of this paper
we may assume that all functions are C*. In a preliminary way ¥~ will
denote the vector space of mappings f: R* - R, and #” will be the space
of n xn matrixvalued functions ¢ with ¢ =% and trp=0. We regard S,
defined by (1.1), as a mapping from ¥~ to #".

From now on the summation convention will be in force. Stokes’
theorem yields

(1.2) S(Sf)ij‘pijdx = _Sfi(a(Pij/axj) dx

if either fe ¥~ or ¢ € #” has compact support (dx is the volume element
and the integrals are over R”). Consequently, §*: %" — %" with compo-
nents

(1.3) (8*@); = 0py;[ox;

is the adjoint of — 8. For n =2 there is again a connection with the com-
plex derivatives. Namely, if

— [P ‘Pz)

4 (‘Pz —¢1

is identified with ¢, +¢@,, then S§* can be identified with 2¢,.
The operators combine to

8*Sf = 3Af+ (34— 1/n)graddivf .

This is a special case of the elasticity operator (a—b) graddiv+ b4
(see [4]). It can be expected that S*S plays a role similar to that of the
Laplace operator in potential theory.

1.3. The operators § and S* are invariant only with respect to euclid-
ean motions. It would not be difficult to modify the definitions so as to
apply to deformations of an arbitrary Riemannian space. However, there
are special reasons to study infinitesimal deformations in their relation
to conformal mappings, and this turns out to be a good deal more tract-
able than the general situation.

We shall regard the unit ball B(1)={|x| <1} as hyperbolic space with
the metric

ds = eldz|, € = (1—|z|*)1.

The conformal self-mappings of B(1) are Mébius transformations gen-
erated by reflections in spheres or planes orthogonal to the unit sphere
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S(1). A somewhat detailed study of these transformations will be given
in Section 2.

For simplicity we shall consider only the subgroup G of orientation
preserving conformal mappings. The image of  under 4 € G is mostly
written as Az, but we use the notation A4’(x) for the Jacobian matrix.
The conformality is expressed by

(1.4) ‘A'(x)- A'(z) = |4'(x)[?

where |A'(z)| > 0 denotes the ratio of linear stretching. In (1.4) we have
followed the practice of suppressing the unit matrix 1, when multiplied
by a scalar.

1.4, The mapping x -~ Ax may be viewed as a change of coordinates.
If f(x) represents a contravariant vector field in the original variable,
then the components of the same vector field in the new coordinates are
given by the column vector

(1.5) fal®) = 4'@)f(4z) .
Note that (f)g=Ff45-

With the customary use of upper and lower indices f¢=p~2f;, and the
operator S can be invariantly defined in terms of covariant derivatives by

(1.6) (8f); = 3(f* 541, ) —n~20%f* ;.

It is easily verified that this expression does not change if the covariant
derivatives are replaced by ordinary derivatives. This means that Sf, as
originally defined by (1.1), behaves like a mixed tensor, and hence that

(1.7) S(f,) = A'(x)"Y(Sfod)A' () .

The notation (1.6) can now be abandoned in favor of a matrix notation
that uses only lower indices.

1.5. Consider the formula (1.2) which we now write as
e ()i pydx = ~{ sw/f(8*¢);dx

under the tacit assumption that the integral over the boundary S(1)
vanishes. The left hand side is invariant under conformal mappings if
¢ transforms as a mixed tensor density according to the rule

(1.8) pa(@) = |A'(@)[" A ()Y po )4’ () .
When this is so the invariance of the right hand side shows that S*p

behaves like a covariant vector density
We now redefine the vector spaces ¥~ and #  as follows:



30 LARS V. AHLFORS

¥ 18 the space of contravariant vector fields on B(1), and W~ is the space
of symmetric mized density fields on B(1) with zero trace.

In other words, fe ¥~ and ¢ € # shall transform according to the
rules (1.5) and (1.8). Observe that the symmetry of ¢ is invariant only
because we are restricting ourselves to orthogonal coordinate changes.
The operators S and S* shall retain their original meaning as explicit
differential operators defined by (1.1) and (1.3). Based on (1.7) and
(00A)|A'(x)]=p we introduce in addition the invariant operators
P:¥ W and P*: # — ¥ defined by

Pf = onSf, P*p = p " 28%¢p.
The invariant inner products are

LoDy = SB(l)figi9n+2 dx
{P: ¥y = Spw Pijvio " de,

and Stokes’ theorem implies (Pf,@)y = —(f,P*p),  under suitable
boundary condtions.

2. Explicit formulas in hyperbolic geometry.

2.1. In this section we introduce some special notations and derive
formulas that will be used in the rest of the paper. Most of the formulas
can be found in [1].

We shall use x*=x/|z|> to denote inversion in the unit sphere S(1).
The Jacobian matrix of z* is

(2.1) (@*)" = || =0y — 222,/ |]?) .

Because it occurs so frequently we introduce a special notation for the
matrix
Q=)y; = zgf|2|?
and write (2.1) as
(2.2) (@*)" = |a|*(1-2Q(x)) .

Note the relations Q2=@ and (1 —2Q)2=1. The latter shows that 1—2Q
is an orthogonal matrix.

2.2. We shall now give a formula for the most general conformal self-
mapping 4 of B(1). Set y=A-10 and assume that y+0. Let S, be the
sphere with center y* and radius (Jy*|2— 1)} Because S, is orthogonal
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to 8(1) reflection in 8, maps B(1) on itself, y going to 0. Explicitly, =
is carried to
y*+(y*P-1)(x—y*)*.

To make this transformation sense preserving we let it be followed by
reflection in the hyperplane through 0 perpendicular to y. This is ac-
complished by multiplication with 1—2@Q(y). The resulting mapping is
denoted by 7', and it is given by the formula

(2.3) T = (1-20(y)y*+(ly**— )z —y*)*] .

The definition is completed by setting T'(x=x. Note that T,y=0 and
T,0= —y. Furthermore, T',*=T_,.
A more explicit version of (2.3) is

_ (= lyPe—(1 -2y + |2ff)y

(2.4) Ty 1—2xy + |2|2|y[

The denominator in (2.4) occurs in many formulas and will be denoted
by [z,y]2. This means that we write

(2.5) [z.9] = lyllz—y*| = |x|ly—=a*.

Notice the symmetry in z and .
From T',A-10=T,y=0 we conclude that 7', 4-! is a rotation. Hence

(2.6) A=UT,

with a constant orthogonal matrix U. We have shown that (2.6) represents
the most general conformal self-mapping.

2.3. Together with (2.2) and (2.5) differentiation of (2.3) yields

1-|y2
[z, y]?

The matrix part on the right will play an important part and deserves a
notation of its own:

(2.8) A(z,y) = (1-2Q(y))(1 - 2Q(x—y*)) .

This is a proper orthogonal matrix.
It is often convenient to write (2.7) in two parts:

(2.9) 1T, ()] = (1 |y*)/[,y]*
(2.10) T,)(z) = |T,/(@)4(z.y) .

(2.7) T, (z) =

(1-2Q@)(1-2Q-y*)) .
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We leave it to the reader to derive formulas (2.11)—(2.15), the last three
for arbitrary 4 € G:

(2.11) T2 = |l2—yl/l=,y]

(2.12) 1-|Tz® = (1-|z)(1-ly*)/l=,y]?
. |4 ()] 1

(2.13) 1—|Az]2  1—|af?

(2.14) |[Az—Ay? = |4"(@)||4"(y)| |z —yl|?
(2.15) [Az, Ay? = |4'(2)||4"(9)|[=y]* .

Note that (2.13) expresses the invariance of the Poincaré metri¢ g|dz|.

2.4. There is a close relation between 7',z and T',y. We shall show that

(2.16) ‘ Tpw=—Axy)T,y .
To obtain this we observe that for any 4 € @ and any y € B(1)
A'(y)
(2.17) T,(dx) = ——T x.
“ @)

This is so because both sides map y on 0, and the Jacobian matrices at y
are both multiples of 4’(y), and hence equal. We apply (2.17) with
A=T,. Because T',x=0 and T,0= —y one obtains

T, (y)
- T
17 ()|

which is (2.16) with x and y reversed.
Repetition of (2.16) yields

(2.18) ‘ Ty = Ax,y)A(y,x)T jx .
To show that this implies A(x,y)A4(y,xz)=1 or, equivalently,

(2.19) Aw,y) ="Ay,=)

we replace z,y in (2.18) by Uxz,Uy where U is a constant orthogonal
matrix. It is evident from (2.8) that A(Uz, Uy)=A(z,y), and (2.17) yields
Ty,Ux=UTx. Therefore (2.18) remains true when 7', is replaced by
UT,, and since UT x ranges over all directions (2.19) follows.
Explicitly, (2.18) amounts to a not quite obvious identity

(2.20)  (1-2Q()(1-2Q(z~y*)) = (1-2Qy—*)(1-2Q(x)) .
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The identity can be proved more geometrically by interpreting each side
as a product of two reflections in hyperplanes through the origin.

A final remark: Although 7T',x is not defined when y e S(1) it is clear
by continuity, for instance from (2.4), that we must set T, x= —y when
|ly|=1. On interchanging x and y it then follows from (2.16) that

(2.21) Tx = A(x,y)x  for |z|=1.
This will prove quite helpful.

3. Statement of the theorems.

3.1. We are interested in solutions of the equation P*Pf=0. The sub-
class of ¥~ consisting of these solutions will be denoted by Z. If fe &

has a continuous extension to S(1) we shall say that f belongs to .
The classes F and & are both invariant with respect to conformal
mappings: If fe # or Z and A €@, then

Ja = A'(x)71f(42)
belongs to the same class. Similarly, if ¢ belongs to P# or P&, then
pq = |4'(@)|" 4" (x) p(A2) A’ (2)

has the same property.

It will be shown, first of all, that the continuous boundary value
problem has a unique solution. This solution will be given explicitly in
the form of a Poisson type integral. In the formulas below dw refers to
the (» —1)-dimensional area element on S(1), w, denotes the area of S(1),
and c,=n/2(n—1)w,.

TrEOREM 1. Every f e F can be represented as an integral

3.1 £9) = (s K (@0 f@)do(z)
with
— 2\n+1
(3.2) K@y) = op S 4 1+ (n—2)Q@)]

ly — [

Conversely, for any given continuous f on S(1) the right hand member of
(3.1) ¢s the unique element of F which is equal to f on S(1).

We recall that A(z,y) in (3.2) can be expressed in either of the forms

(2.8). With the second form there is a slight simplification inasmuch as

(1-2Q))(1+ (n—2)Q(z)) = 1—nQ(x) .

Math. Scand. 36 — 3
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3.2. For a larger class of harmonic functions the Poisson integral can
be replaced by a Poisson-Stieltjes integral. This Herglotz representation
generalizes to the present situation.

THEOREM 2.
a) The subclass F,<F of functions f satisfying

(3-3) Sslf(rz)|deo(z) = O(1)

Jor 0=r<1 is identical with the class of functions expressible in the form

(3.4) f@) = SswK(x,y)du(z)

where the components u; are finite Borel measures on S(1).
- b) The function f in (3.4) has non-tangential limit u'(x)=du(x)/dw(z)
at all points x € S(1) where this derivative exists.

The motivation for this more general result is that it may well be of
interest to consider functions fe % that vanish almost everywhere on
8(1) without being identically zero,

3.3. If f represents an infinitesimal mapping of the closed unit ball
which maps §(1) into itself, then f(x) is orthogonal to z, that is, f=0,
for z € §(1). The subclass of F for which this very natural condition is
fulfilled is denoted by ZF o- The condition implies @(z)f(z)=0 on S(1),
and it becomes possible to omit the factor 1—n@(x). In other words,
(3.1) can be replaced by the simpler formula

]___ 2\n+1
61) 1w =al U0 a0y -a)fe) dot).

sw |y —z|*

More generally, we shall write fe &, as soon as fe & and zf - 0
when || — 1. When fe F,n&, it will be shown that the measure u in
(3.4) satisfies xdu=0.on S(1). The formula will then simplify to

(I—lyP)m+t

SG)W (1-2Q(y —=)) dp(z) .

(3.4) 1) = ea

3.4. Starting from (3.1) or (3.4) one can of course obtain boundary
value representations of Sf or Pf by straight forward if tedious computa-
tion. We shall give the result only for the case that f is expressible in the
form (3.4').
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THEOREM 3. If fe F,nF,, then

A(z,y);p Az, y)jk

s [—g|™ (@ Dty + Ty dpap)

(35) Py = (vt 1),
with the same u as in (3.4').

Iffe Z, o it is easy to convert the integral in (3.5) to a volume integral.
We shall show, however, that the resulting formula is valid under much
weaker conditions. We shall use ¢ =Pf as a standard notation.

THEOREM 4. If ¢ € PF is such that

(3.6) (5w lp@)|(1—|2[?)"dz < o
then

3.7 ely) = 2n +1)cng A(z,y)p(x)4(y,2)

I (1 —|z[2)m do .

In (3.6) the norm of ¢ is defined either as max|p;| or by |p|?=tr (@)
The condition can also be written in the form

(3.6") $sw|Sfldz < oo

Although the integral is not invariant it is easy to see that f and f,
satisfy the condition simultaneously.
It is instructive to compare (3.7) with the kernel formula

o(y) = 371 ({41 <1@(@)(1 — [x|2)%(1 — Zy)~* da, dz,

for complex analytic functions in the unit disk. Note that the factors
A(z,y) and A(y,x) in (3.7) correspond to the argument of the kernel.

4. Proofs.

4.1. The equation S*p =0 has n linearly independent fundamental solu-
tions with integrable singularity at the origin, namely the matrices y*(z),
k=1,...,n with entries

(4.1)  YE(®)y = (O + Ozt — By5208) ||~ + (n — 2)w 2,0, ||~ +2) |

The reader may verify that both terms on the right are annihilated by
S*, The reason for forming a linear combination is to obtain solutions
with vanishing trace.

There are also Green’s functions ¢g* with Pgk =y* and g*(x) =0 on S(1).
However, they will not be needed in this paper.
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4.2. We shall make repeated applications of Stokes’ theorem. By way
of notation we shall write do(z)=7r""1dw(x) for the euclidean measure
on §(r). In other words, dw refers to solid angle.

Lemma 4.1. If p e # and S*@=0, then
$st0 Pidoo = 0
(% Y5t Pisjdeo = 0
SS(r) Q% xx do = 0

Jorall r < 1.

Proor. By Stokes’ theorem

2§50 Puyideo = §g pyxrtdo = (g (9py/0n)de = 0
and similarly
2 S5t @i do> = (5 Oyypiyde = 0,

the latter because @,;=0. In the same way
250 Pt A0 = oy Pij(04% + %) dx = (g pryda = 0
by virtue of the first equation (4.2).

4.3. For fe & there is a simple relationship between the values of f
on a sphere and at its center. We shall need it only for spheres S(r).

LemwmaA 2. If fe &, then
(4.3) f(0) = ¢, $snll+ (n—2)Qx)]f(x)dw(x) .

Proor. Another application of Stokes’ theorem yields
SB(r)—B(ro) (Sf )ij 7’1’;’ dr = SB(r)—B(ro) (3f i/ axj))’;'cj dx
= (Yot — Vstwp) o5 %5121 do .

The integral on the left is zero by virtue of (4.2) and the fact that Sf
differs from a ¢ with S*@=0 only by a factor that depends only on |z|.
In the resulting equality of surface integrals we let 7, tend to zero and
note that Imln-nyjxi is homogeneous of degree zero and equal to &, +
(n—2)zz; on S(1). Equation (4.3) follows on account of

SS(I)xixkdw = dgwp/n .
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44 . Iffe & it is clear that (4.3) remains true for r=1. We shall prove
Theorem 1 by applying (4.3) with r=1 to f, with the choice 4 =T,
By definition (see (1.5))

fary (@) = (T, @], ) .
Furthermore, 7',"'0=y and (2.7) gives
T, N0 =T,/ =1-y?,
and we obtain

f@) = cx(1=y*) {51 + (0= 2)Q@)I(T, ) ()] (T 2)doo() .
Replace 2 by T',x in the integral, thereby transforming it into

§swlTy) (@) "2 [1+ (n—2)QT @) T, (x)f(x)de(z) .
There is a simplification due to (2.21) together with (2.10) and (2.19).
Indeed, it follows that
QT )T (x) = T,/ (x)Q(x)
and hence

[1+(n=2)Q(T2)IT) (x) = T)/(2)[1+(n—2)Q(x)] .

In this way we obtain

44)  f@) = ca1=1yl®) $s | T (@)I" 1 T (@)[1 + (n - 2)Q())f () deo() -

Substitution from (2.7) proves Theorem 1.

4.5. We proceed to the proof of Theorem 2. The first step is to show
that every integral of the form (3.4), or equivalently (4.4), belongs to &.
This will be so if

(4.5) hi(y) = (1=lyPIT, ()| 1T ()

satisfies P*Ph=0 for every fixed z and k. This can be verified directly,
but the following worksaving exercise will be needed later anyway.

If we assume that |x| <1 the formulas of Sec. 2 allow us to express
(4.5) in terms of Ty and T',/(y). In fact, one finds rather easily that

(4.6) (1= [zB)mhy(y) = (1= |Tey)" T, () )ax -
On writing
(4.7) wi(y) = (1—1y[)"+1 0y

this can be read as (1—|z|*)"h=wy . It follows by the invariance of
P and P* that
(4.8) (1—[2[3)"Ph = (Pw)y,

(1-|z>)*P*Ph = (P*Puw)y, .
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Almost without computation
(4.9) Puw(y)y = —(n+1)(0u.y;+ 0y~ 20710, y1)
P*Pu(y); = ¢,/ 03(1— ly*)"+2

with an unimportant constant ¢,’. By use of the transformation rules
(1.5), (1.8) and formulas from Section 2.2 one finds that (Pw)y (y) con-
tains the factor (1—|z|®)" and (P*Pw)y (y) the factor (1—|z|?)+l. Al-
though the formulas obtained from (4.8) by dropping the factors
(1—]z|®)* have been proved only for |z| <1 it is clear that they remain
valid for z € 8(1). It follows that P*Ph=0 when |z|=1, and we have
proved that the integral (3.4) is in &.

For future reference we record the explicit formulas that result from
(4.8):

(4.10) Ph(y)y

n+1
[z, y]*"

(A (x,9)ad(z, Yiat A(z, y)jkA (%:Y)is—04j 6ka) (T

and
(4.11)  P*Ph(y); = ¢,/[#,y] (1 — |z|®) (1 - |y[>)"* 24 (2, Y) i -

For || = 1 (4.10) reduces to
(4.10)) Ph(y)i; = (n+ 1)z —y|-2"
(A (x’ y)ikA (x’ y)ja‘ + Y| (x, y)jkA (x? y)ia - 6i16ka)xa .
4.6. We show next that (3.4) implies (3.3). The vector field
fi(®) = (n—2)0y —n(2zx),— 6;|2]?)
with fixed % satisfies Sf=0. Therefore Theorem 1 is applicable. It yields
(n— 2)8; — n(2y Y5 — Ourcly1?)

= sn-1ye, | AN

sw |y —x|*

[1 - 2Q(y — )]y do(x)

and after passing to the trace

S dotw) _ 1+lyl*
swly -zl (1= Py "

for |y| < 1. With this identity (3.3) is an immediate consequence of (3.4).

4.7. It remains to show that (3.3) implies (3.4). This does not follow
as easily as the analogous property of harmonic functions, the reason
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being that f(rz) with 7 <1 is not in & and therefore cannot be expressed
through (3.1). Instead we must repeat the proof of Theorem 1 under
weaker conditions.

Equation (4.3) can be rewritten as

f(0) = ¢, §s[1+(n—2)Q()]f (rz)de(x) .

Exactly as in Section 4.4 we apply this to fr,- and replace by T,z as
integration variable. The result is a rather complicated formula

(412) f() = §swK (@) IT, 0T )] do)
with
K(z,y,r) = ¢,(1=y|)IT, @)1+ (n—2)QT,2)(T, ™) (rT )] .
It is readily seen that K(z,y,r) - K(z,y) as r — 1, uniformly for fixed .
Now we replace (4.12) by a weighted average

1 \1 dr
(4.13) f(y) (log ———9) Ssmx(o,p)K (z,y,7)f[T, l(rTvx)]dw(x)l—_—r

and change integration variables by means of the mapping
(4.14) (x,r)pu =T, (rTyx) .
The Jacobian determinant of (4.14) is

(T (r'Ty) ™ T ()|t = | T,/ ()| (1 +0(1))
and
v =x—1-r)T,/@) 1T, x+0(1-1).

By use of (2.21) the development of « simplifies to

w = [1=|T, @)1 —r)+o(l—7),
and this implies
1=|u| = |T)/(z)| (1 —r)(1+0o(1)) .

With all these estimates (4.13) yields

If ¢,,0, denote the minimum and maximum of |u| on 7',-1S(p) trivial
estimates show that

llog(1-g)/(1-gy)| and [log(1—p)/(1—egy)l

are uniformly bounded for fixed y. By use of the condition (3.3) it then
follows from (4.15) that

1 -1
419 fio) = (log =) Klwaf(urom) 2
v
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1\ dx
4.16 = (log — S K(z,y)f (x)——
wie)  fo) = (log =) | Keprert e
where (o) - 0 for o - 1.
Define a measure u, on S(1) by setting

1 \-! d
(4.17) #olo) = (10g I——e) Sux(o e)f(rx)dw(x)i

for any Borel set 0 <§(1). In terms of this measure (4.16) becomes

(4.18) @) = S K@ y)f(x)du,(x)+ (o) -

It follows from the hypothesis (3.3) that the vectorvalued measures u,
are bounded. Hence there exists a sequence g, — 1 such that the u,
tend to a limit y in the sense of weak convergence. When p runs through
this sequence (4.18) yields

@) = $so K(@,9)f()du(z) ,

thereby completing the proof of Theorem 2a.

We remark that according to (4.17) the limit measure depends only
on the values of f in the immediate neighborhood of S(1). In particular,
if f - 0 for || - 1, then zdu=0 on S(1).

4.8. To prove Theorem 2b we note first that Theorem 1 with f;=dy,
yields
(s K(z,y)do(z) = 1

as a matrix identity. Therefore b) is trivially true if 4 is & multiplying
a constant vector. As a consequence, when proving that

(4.19) I(y) = §swK(x,y)du()

has nontangential limit u’'(z,) for y — z, we are free to assume that
1 (o) =0. If we write
m(t) = |u{lw—| <t}

this means that m(t) <et®-! for any given ¢ and ¢<¢,, say.

The part of the integral (4.19) that corresponds to |z —x,| =, tends to
zero as y — g,. On the other hand, it is easy to see that the remaining
part is majorized by a constant multiple of

Sf« (1 [yl

4.20 LA
*20 o [(1—[y])*+e2]"

dm(t)
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provided that y stays in a Stolz cone with vertex z,. Integration by parts
shows, in familiar manner, that an integral of the type (4.20) increases
if m(t) is replaced by a larger increasing function. Therefore (4.20) is
dominated by
& S'°_(1;|1’_/_|Z'i1_ n-2dt < ¢ S:o_si_.z__ ds s
o [(1—y)*+e2]™ (1+8%)"

the last integral being convergent. This proves property b).

4.9. By deriving formula (4.10) we have essentially already proved
Theorem 3. In fact, it is clear that (4.4) remains valid with fdw replaced
by du. Since we are assuming that xdu =0 the factor 1+ (n —2)Q can be
omitted. When applying (4.10) to obtain Pf(y) we observe that 7' ,y=
-z, [x,y]=|xr—y|, and 6,;0,,x,du;=0. Formula (3.6) of Theorem 3 fol-
lows on renaming the indices.

4.10. We shall now prove Theorem 4. Qur first remark is that the

theorem is almost trivial if f e Z, o- In that case (3.6) with y =0 takes the
form

(4.21) 8f(0)y; = (n+1)e, Ss)(@.fi+2;f;)dw .

The integral can be transformed into a volume integral, and because
zf=0 on S(1) one obtains

(4.22) 8f(0) = 2(n+1)c, § g Sf(x)dx .

Formula (3.7) follows on applying (4.22) to Jr,1, exactly as in the proof
of Theorem 1.

The proof of (4.22) when f is in &, and satisfies condition (3.6’) will be
based on differentiation at y=0 of formula (4.12) which we write more
explicitly as
(4.23) fily) = SS(nKik(x’?/,7‘)fk[Tfl(7'Tyx)]dw(x) .

We remark first that (9/dy;)K(x,0,r) - (8/0y;)K(x,0) as r — 1. Secondly,
one finds by asymptotic development of (2.4) and the corresponding
formula for 7')-'=T_, that

T,rT,x = re+2r(1 —r)(xy)x+ (1 —7)%y +o(ly|)
and hence

@Oyl Ty T @]y mg = 2r(1 = 1)f 1o (r2)25, + (1= 1) 5(r2) .

It should be recalled, further, that K(x,0)=c,(1 + (n—2)@(z)). With all
this in mind we obtain from (4.23)
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_fi(o) = lim, [Ss()

*+ SS(r)(l +(n-2) Q(x))ik(2r(l — 1) f ka2, + (1 —7)%f () dw(x)] .

aK"‘ %0 (r2) doz) +

When forming Sf(0),; the two integrals above can be treated separately.
The first follows the same pattern as when f € F,and leads to an integral
with the same limit as

(n+1)c, SS(D (zofs(ra) + 2, fi(rx)) dew

Obviously, this limit is the right hand side of (4.22). Therefore, what
remains to be shown is that the second integral leads to a term with the

limit zero.
For this purpose we introduce the notations

L(")ij = Ssu)f éj(rx)dw(x)
M(r)y; = SS(I)f ;a(rx)xnxxjdw(x)
N(r)yy = Ssw S oplre)z,2p0;d0(2)
and the abbreviations
SL(r)y; = HL(r)y+ L(r);] — 0728 L(r )z
etc. We need to show that the expression
(1—r)E(r) = (1—=r)[(1 —r)SL(r) + 2rSM(r) +2(n— 2)rSN(r)]

tends to zero for r - 1. The limit is known to exist. If it is different
from zero the integral {} E(r)dr cannot converge. Therefore, it suffices to

show convergence.
By hypothesis
sg r”"ISL(T)u d?’ = SB(Q) Sf,‘j dx

has a finite limit for ¢ — 1. This easily implies the convergence of
{o(L—7r)SL(r)dr. Secondly, by Stokes’ theorem
S(G) M(T)ﬁ’l‘df = SB(e)lxI—nf‘:a(x)xaxfdx

= o' s fiwydo — §rdr (s fizsdo .
Here
$so fixido = r gy fi;d

so that, by changing indices,
(e SM(r),rdr = o="+2 (g Sfyyda— (& r1-ndr (g Sfyydec .
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The convergence of {JS8M(r),rdr is now an obvious consequence of
(3.6"). Thirdly,

CN(r)rdr = Spo |22 L pla)w 202 de
= Q_n—l SS(Q) faxa‘xixj do — SB(Q) ‘w‘ -n—zfo‘xax'ixj da .

Because f,x, — 0 the integral is bounded, and {j SN(r)dr converges. We
have proved (4.22), and as already pointed out, application to jp
proves Theorem 4.
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