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A REMARK ON DEGENERATE GROUPS
BERNARD MASKIT*

To Werner Fenchel on his 70th birthday.

Aside from existence and non-uniqueness (both due to Bers [3]), very
little is known about degenerate Kleinian groups. It was shown by Abi-
koff [1] that the limit set is not locally connected. In this note we show
that the limit set remains connected if we remove from it the limit set of
a Schottky subgroup. The main ingredient in the proof is an observation
concerning simply-connected regions which are invariant. under Schottky
groups.

1. Definitions.

Let G be a Kleinian group (i.e., a discrete subgroup of PSL(2; C)
which operates discontinuously at some point of é=CU{oo}).

A point z is a limit point of @ if there is a sequence {g,} of distinct
elements of @ and there is a point z € C with d.(x) — z. The limit set is
denoted by A(@) and its complement, the set of discontinuity is denoted
by ().

A finitely generated Kleinian group G is a degenerate group if (@) is
both connected and simply-connected, and A(G) contains at least 3
points.

2. Schottky groups.
Let D be a region of ¢ bounded by 27 disjoint Jordan curves C,,C,/,
.,C,,C,’ . Suppose there are fractional linear transformations 4,,. ..,
A, so that

A,0) =0/, and AMD)nD =@, i=1,..n.

Then H, the group generated by 4,,...,4, is called a Schottky group.
We will need the following well-known facts about Schottky groups.
H is Kleinian; D is a fundamental domain for H (i.e., A(D)nD =@, for
allhe H, h+1, and U, g h(D)>Q(H)); D is relatively compact in Q(H).
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It was shown by Chuckrow [4] that if H’ is another Schottky group
and if y: H - H' is an isomorphism, then there is a quasiconformal
homeomorphism w: C — C so that wohow-1=y(h) for all h e H.

It was shown in [5] that a finitely generated Kleinian group is a
Schottky group if and only if it is free and purely loxodromic.

3. Invariant discs.

TurorEM 1. Let H be a Schottky group and let T' be a connected and
simply connected open set which is invariant under H, where 0T nQ(H) is
a collection of disjoint Jordan arcs, each of which appears only once on the
boundary of T. Then 0T is a Jordan curve.

Proor. Let { be the Riemann map from the unit disc U onto 7.
Then (! conjugates H onto a Fuchsian group I. We denote the iso-
morphism from I'" to H defined by y — {oyol-1 by ».

Since H is purely loxodromic, by a lemma of Ahlfors [2], I" must be
purely hyperbolic; hence [5] I" is a Schottky group. By Chuckrow’s
theorem [4], there is a quasiconformal homeomorphism w: € - C with
y(y) =woyow for all y e I.

We next extend { to act on 0U. If z € 90U n(I"), then using the strong
form of the Riemann Mapping Theorem we can define { to be continu-
ous at 2z, and {(2) € 0T nQ(H). If ze A(I"), we set {(z)=w(z).

In order to complete the proof of this theorem, we need to show that
¢ is continuous at every point of A(I'), for we already know that ¢ is
injective on both A(I") and Q(I"), and that {(2(I"))nH(AI))=@.

Let D be a fundamental domain for H, and let D'={-YDn(U));
then D’ is a fundamental domain for the action of I" on U, and D’ is
relatively compact in Q(I").

Let z be some point of A(I") and let {z,} be a sequence of points of U
with z, - z. Choose y, € I' and s, € D’ so that y,(s,)=2,. Since D’ is
relatively compact in 2(I'), y,(s) - 2z for all s€ (I') (see Lemmas 1
and 2 in [6]). Now

8(zn) = Loyn(8n) = p(ya)ol(s,) = woyyowol(s,) .

The points {(s,) lie in D and so w0{(s,) all lie in a relatively compact
subset of 2(I'); hence
Ynowtol(s,) > z.

Hence {(z,)=woy,owto{(s,) - w(2).
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CoroLLARY. Let T be a disc as in Theorem 1 where each of the Jordan
arcs of 0T nQ(H) is smooth. Then T is a quasi-disc.

Proor. T and its exterior are both connected invariant open sets,
and so the result in [7] is applicable.

4. Degenerate groups.

THEOREM 2. Let G be a degenerate group and let H be a Schottky sub-
group of G. Then A*=A(Q)— A(H) is connected.

We set X =0Q(H)[H ; X is then a closed Riemann surface and we denote
the natural projection 2(H) — X by p.

Since H<G@G, 2(G)<Q(H). By assumption, 2(G) is connected, hence
p(2(@)), the complement of p(A*) is also connected.

LemwMmA 1. Every neighborhood of p(A*) contains a meighborhood N of
p(A*) with the following properties:

i) The complement of N is connected.
il) N 1s bounded by a finite number of smooth arcs.
iii) N carries no unnecessary homotopy; i.e., if N' <N is another neigh-
borhood of p(A*) then the inclusion induces an isomorphism of fundamental
groups.

Proor. We use the Poincaré metric on X, and observe that since
p(A*) is compact, for ¢ sufficiently small, the e-neighborhood of p(A*)
satisfies iii); of course any smaller neighborhood also satisfies iii). Next,
since the complement of p(A*) is connected, any neighborhood contains
one satisfying i). Finally, we approximate the boundary so as to satisfy
ii).

We choose a neighborhood N as in Lemma 1, and let Y be the comple-
ment in X of p(N). Let 7' be a component of p~1(Y).

Lemma 2. T s simply-connected.
Proor. Let v be some loop in 7. Since 7' is contained in (@) which
is simply connected, v is contractible in 2(G); hence v is contractible in

Q(H)—A*, and so v is contractible in 7.

LemMA 3. For N sufficiently small, T is invariant under H.
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Proor. Let z, be some point of 7', and let 4,,...,4, be generators
of H. Since (@) is connected, we can find paths connecting z, to 4,(z,)
which lie in 2(G@). These paths are at some finite distance, in the Poin-
caré metric, from A*, and so for N sufficiently small, these paths all
miss p~1(N). Then these paths all lie in 7', and so 4,(T')=7, for each of
the generators 4,,...,4,.

We now know that for N sufficiently small, 7" satisfies the hypotheses
of Theorem 1; hence p~!(Y) is connected, simply-connected, and in-
variant under H. We conclude that p—1(V) is connected, simply-connected,
and invariant under H. Therefore p(A4*) is connected and since N con-
tains no unnecessary homotopy, p=(p(A*)) is also connected; i.e., A* is
connected. This completes the proof of Theorem 2.

We remark in conclusion that in this proof we did not need G to be
finitely generated. We needed only that (@) is connected, simply-
connected and hyperbolic.
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