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PLANES WITH ANALOGUES TO EUCLIDEAN
ANGULAR BISECTORS

HERBERT BUSEMANN

To Werner Fenchel on his 70th birthday.

In the euclidean plane the bisector of an angle in a triangle divides the
opposite side in the ratio of the adjacent sides. Avoiding angular measure
this may be expressed as the following property:

(P) Inside a (nonstraight) convex angle with legs N, N, and vertex v there
18 a ray M with origin v such that any segment T'(a,,a,) with a, € N,
a;+v, intersects M in a point b=">b(a,,a,) for which the distances satisfy

va,:va, = ba,:ba, .

P is so strong that one might expect it to distinguish the euclidean plane

at least among all Desarguesian planes, i.e. the planes whose geodesics

fall on the ordinary affine lines. Actually one verifies easily that every

Minkowsk: plane has property P, see Note 1.

It is the purpose of this paper to show that P characterizes the Min-
kowskt planes among all Desarguesian planes and, if the (by P convex)
circles are differentiable, even among all two-dimensional straight G-spaces,
which we will briefly call straight planes!.

Whether the differentiability hypothesis is necessary is an open ques-
tion closely related to a problem which has remained unsolved for more
than forty years, namely, whether the Minkowski planes are the only
straight planes with convex circles satisfying the parallel axiom.

2.

A straight plane R is given by a metrization xy of the ordinary plane
such that any two distinct points @,b lie on exactly one curve, denoted
as the line L(a,b), which is isometric to the real axis, i.e. representable,
given an arbitrary ¢, as z(¢) with

(1) 2(ty) = a, z(ly+ab) = b, z(t)(t;) = |t 1,

1 All concepts occurring here can be found in [1], but for the convenience of the reader
we will briefly recapitulate in Section 2 the properties of straight planes used later.
Received August 26, 1974.
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and — oo <t <oo. The arc from a to b on L(a,b) is the segment T(a,b) and
is represented by (1) restricted to [t,,t,+ ab].

Orient the line I and let p ¢ L. If x traverses L in the positive direc-
tion then the line L(p,z) tends to the asymptote A+ to the positive orien-
tation of L and is independent of p in the sense that any ¢ € A+ also leads
to A+. The asymptote A~ to the negative orientation of L is defined
analogously. If A+ and 4- lie on the same line M, then M is called
parallel to L. But notice that this will, in general, not imply that L is
parallel to M, see [1, p. 141].

Convexity of curves or sets in R is defined in the usual way, but, of
course, with respect to the 7T'(x,y) as segments. The circle K(p,p0), 0> 0,
is the locus pr=g. The convexity of all circles is equivalent to the
existence of exactly one foot f of a given point p on a given line L (i.e.
pf =min, ; px, see [1, p. 121]).

If L+ is an oriented line, p € L+ and x traverses L+ in the positive
sense then K(x,zp) converges for px — oo to the so-called limit circle
K (L+,p) through p with central line L+. Limit-circles K (L*,p,) and
K (L+*,p,), p; € L*, are equidistant; they intersect any asymptote 4 to
L+ in points ¢,,9, With p;p,=q,9, and g; is the foot of ¢; (¢+j) on
K (Lt,p;), see [1, p. 138].

An angular domain D in R is defined as the convex set bounded by
two distinct rays N,, N, (a ray is a halfline) with the same origin » which
do not form a line. A ray M in D with origin v which has the property P
is called the bisector of D or also of N, and N,. We say that R has the
property P if every angular domain in R possesses a bisector.

3

We begin by showing that P implies another property P’ from which
our assertions will follow.

(2) If the straight plane R has property P then it also satisfies:

(P’) The parallel axiom holds. For two distinct parallel lines L, L, there is
a line L (parallel to the L;) which contains the centers of all segments
T(py, psy) with p; € L.

Let L, be given and p, ¢ L,, p, € L, and orient L,. If  traverses L, in
the positive direction, L(p,,x) tends to the asymptote 4,* to the positive
orientation L,*+ of L,. The bisector of the domain bounded by the rays
from x and through p,,p, intersects 7T'(p,,p,) in a point y with

TP1: TP = YP1:YPs »
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The inequality |zp, —2p,| < p,p, implies
rpyixp,—~1 as pyxr > oo,

therefore y tends to the center p of T'(p,,p,) and L(y,x) to the asymptote
A+ to Ly+ through p, see [1, p. 138].

If g, €L, g€ A,+ then by the same argument A+ passes through
the center g of 7'(q,,¢,). For, A+ does not depend on p, and the asymptote
to L;+ through g, is also A,*.

Also by the same argument, if « traverses L, in the negative direction
then L(p,,x) tends to the asymptote 4,~ to the opposite orientation L,
of L, and L(y,x) to the asymptote A~ to L, through p.

Choose ¢, on L, so close to (but different from) p, that L(qg,,p) inter-
sects A,* and 4, in points ¢,*,¢,~. Then 7'(¢,,9,*) and T'(¢,,¢,~) have p
as common center, so that ¢,*=¢,~ and 4,* and 4,~ fall on the same
line L, parallel to L,. Obviously L, is the only line through p, not inter-
secting L,, and since L, and p, were arbitrary this implies the parallel
axiom, in particular L, is also parallel to L,.

The asymptotes A+, A~ to L, through p then also fall on the same line
L parallel to the L; and L contains by the preceding discussion the cen-
ters of all 7'(¢,,q,) With ¢; € L;.

(3) If a straight plane has one of the properties P, P’ then its circles are
convex.

Because of (2) it suffices to prove that P’ implies the convexity of the
circles, or according to Section 2, that a given point p & L has exactly
one foot f on L.

Let f be a foot of p on L and L, the parallel to L through p. The paral-
lel L, to L through the center ¢ of 7'(p,f) bisects by (2) every segment
leading from L to L, therefore p is a foot of ¢ on L,. Choose f, such that
p is the center of T'(f,f,). Since f is a foot of p on L, the point f, is a foot
on the parallel L, to L through f,. If ¢, is the center of 7'(p,f,) then, as
before, p is a foot of ¢, on L,.

If now p had another foot ¢ on L then 7'(p,g) would intersect L, in
the center ¢, of 7'(p,g) and p would be a foot of ¢, on L,. This leads to
a contradiction because ¢,, p,c, are not collinear so that 7'(c,,c,) intersects
L; in ¢%p and

C20p = Cad+qCy < C2P +PCy
but cyp=c,g and pcy = gc,.

THEOREM 1. A Desarguesian straight plane is Minkowskian if, and only
if, it has one of the properties P, P’.
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This follows from the fact, see [1, p. 144], that Desarguesian spaces
with convex spheres satisfying the parallel axiom are Minkowskian.

Without the assumption that the space be Desarguesian we derive
from the preceding arguments the following additional fact:

(4) If a straight plane has one of the properties P,P’, then a family of
parallel lines has a family of parallels lines as common perpendiculars.

A perpendicular to L is a line H intersecting L at a point f such that
every point of H has f as foot on L. The existence of a unique perpendicu-
lar to a given line through a given point (in two dimensions) follows
from the convexity of the circles, see [1, pp. 121, 122].

With the same notation as in the proof of (3) the center of 7'(c,f)
has ¢ as unique foot on L, . By iterated bisecting and doubling of distances
on L(p,f) we obtain a set S dense on L(p,f) such that L(p,f) is perpendic-
ular to every parallel to L through a point of S, so that by continuity
L(p,f) is perpendicular to every parallel to L.

Since perpendiculars to the same line do not intersect and the parallel
axiom holds, the common perpendiculars must be parallel.

4.

This is as far as we have been able to proceed without differentiability
assumptions or the Desargues property. The circles being convex they
are differentiable (i.e. have a unique supporting line) except at an at
most countable number of points.

(5) In a straight plane with the parallel axiom and differentiable convex
circles parallel lines are equidistant.

If L is perpendicular to H we call H transversal to L. If HnL=p
and x € L, z+p then H is the supporting line of K(x,zp) at p and hence
the only transversal to L at P. This implies that transversals to a given
line L are parallel. For, if two distinct transversals H,, H, to L intersected
at a point g then the parallel L, to L through ¢ would be perpendicular
to both H, and H, at ¢, and L, would have two transversals at g.

Let H be given and L perpendicular to H at p. Orient L obtaining
L+ and let « follow p on L+. For px — oo the circle K(z,zp) tends to the
limitcircle K (L+*,p). On the other hand it follows from the general
theory (see [1, p. 147]) that K _(L*,p)=H.

The limitspheres with L+ as central line are therefore transversals of L.
Consequently, see Section 2, they are equidistant and have the perpen-
diculars to H as common perpendiculars.
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THEOREM 2. If the straight plane R has one of the properties P,P’ and
differentiable circles then it is Minkowskian.

The proof which follows can be simplified if it is known beforehand
that a pair of mutually perpendicular lines exists, as it does in every
Minkowskian geometry.

Let u(x), —oco < < oo, represent an arbitrary line M in the form (1).
Denote the two sides of M by =+ and n—. To any point p we assign co-
ordinates z,y as follows: z is determined by the intersection u(x) of the
transversal to M through p. For p € M put y=0. For p ¢ M let f be the
foot of p on M and put y=pf if pent, y= —pf if p e x~. There is ex-
actly one point with given coordinates z,y, because for a fixed x, the
ordinate y increases monotonically from —oco to co on the transversal
x =z, to M, since the parallels to M are by (5) the lines y = const.

Let L be any line which is neither transversal nor parallel to M and
a,e L (1=1,2,3) with a,a,=a,05. If a;=(;y;) it is no restriction to
assume that x; <z, <x; and ¥y, <y, <y;.

For 1=1, 3 let the parallels to M through a, intersect the perpendicular
to M through a, at b; and let the transversals to M through a; intersect
the parallel to M through a, at ¢;. Then b, = (w;,y;), ¢;=(%;,2;) with suit-
able w;,,z;.

Because of (4) and P’ we have

bia, = ah; and c¢a, = a,Cy.

Moreover by (5) ¢,ay=u(x,)u(x,) =, —x, and similarly a,c;=2;—2,.
By definition b,a,=y,—¥;, @b =y5—y,, so that

(6) (Y1=Y2) (21— %5) = (Y3—Ys): (25— 2,) .

Bisecting and doubling segments on L and using (6) we obtain a dense
set S on L such that for (z,y) € S the relation

Y—Ys _ Yi—Y:
x'—xz xl_x2

(7)

holds. Therefore (7) is the equation of L. The fact that all lines have
linear equations is obviously equivalent to the Desarguesian character
of R and the assertion follows from Theorem 1.

Note 1. To show that a Minkowski plane has property P denote
(using the notations of P) by u, the point «; € N; with vu,=1 and select
an ellipse with center v passing through %, and u,. The ellipse is the unit-
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circle of a euclidean metric ¢(z,y) (invariant under translations). Let M
be the angular bisector of N, and N, with respect to &(x,y). Then

e(v,a,):6(v,ay) = &(b,a,):e(b,a,) .

Now &(v,u;)=vu;=1 implies &(v,a;)=va; and e&(b,a,):e(b,a,)=">ba,:ba,
holds because a,,b,a, are collinear.

NorE 2. Since the question probably occurred to the reader we ob-
serve:

(8) If in a straight plane the angles of a triangle possess bisectors then
these are concurrent.

The proof is obvious: If abc is the triangle and the bisectors of the
angles at a and b intersect at p, put L(c,p)nT(a,b)=q. Then

cp:gp = ac:aq=bc:bq ,
hence
ac:bc = aq:bq ,

so that ¢ and hence p lies on the bisector of the angle at c.

Note 3. The condition P’ can be replaced by a seemingly much weaker
one.

(9) In a straight plane P’ is equivalent to:
(P'") For any line L and any point p & L the centers of the segments T (p,x),
z e L, lie on a line L.

That P’ implies P"’ is obvious. Let P’ hold and orient L obtaining L+.
When x traverses L+ in the positive direction L, intersects T'(p,x) in its
center x, and the line L(p,z) tends to the asymptote M to L+ through p.
Either M infersects L; or M is asymptote to the induced orientation L,+
of L,. The first case is impossible, because px, would tend to a finite
limit whereas px — co.

Repeating the argument yields a sequence of lines L;, ¢=1,2,..., with
induced orientations L;+ such that L,,, contains the centers z;,, of all
T(p,x;), xz;€ L;, and M is asymptote to all L,*. Consequently L, con-
verges to M. Since L, is independent of the orientation L+ of L, the line
M is also an asymptote to the opposite orientation of L, hence parallel
to L. Because L and p were arbitrary, the parallel axiom holds, in par-
ticular L, is parallel to L and M.

Let x € L, then the centers of all 7'(z,y), y € M, lie on a line L,’, so L,’
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passes through the center z, of T'(p,x), whence L,"=L,. Therefore L,
contains the centers of all T'(z,y), x € L, y € M, and P’ follows.
Thus we have as a corollary of Theorem 2 and (9)

TaEOREM 3. If, in a straight plane, for a given line L and a given point
P & L the centers of the segments T(p,x), x € L, lie on a line and the (by (3)
and (9) convex) circles are differentiable, then the metric 1s Minkowskian.
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