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3 AS A NINTH POWER (MOD p)

KENNETH S. WILLIAMS*

1. Introduction.

Let p be a prime +3. If p=2 (mod3) then 3 is always a ninth power
(modp) so we may restrict our attention to primes p=1 (mod3). For
such primes Gauss showed that there are integers L, M such that

(L.1) 4p = L2+2TM?, L=1 (mod3).

Indeed there are just two solutions of (1.1), namely (L, + M). Jacobi
proved that 3 is a cube (mod p) if and only if M =0 (mod3). As 3 cannot
be a ninth power (modyp) without being a cube (modp) we assume from
now on that M =0 (mod3), say M =3N. If p£=1 (mod9), as it is a cube
(modp), 3 will also be a ninth power (modp), so we need only consider
primes p=1 (mod9), in which case, 3 may or may not be a ninth power
(mod p). It is the purpose of this note to give a simple necessary and suf-
ficient condition for 3 to be a ninth power (modp) in this case. This
condition takes the form of a simple linear congruence (mod3) in the
variables of a certain triple of diophantine equations (see (3.5)-(3.7)).
This theorem is proved using a new expression for the index of 3 modulo
9 in terms of the cyclotomic numbers of order 9 (see Lemma 6) and
certain clagsical results concerning these cyclotomic numbers proved by
Dickson in [2].

2. Preliminary results.

From this point on we emphasize that p is assumed (unless otherwise
stated) to be a prime=1 (mod9) such that 3 is a cube (modp), so that
M =0 (mod3), say M =3N, and L=7 (mod9). First of all we wish to
fix the sign of N. Let g be a fixed (once and for all) primitive root (mod p)
and for any integer n==0 (modp) we define ind(n)=ind,(n) to be the
least non-negative integer ! such that

n = ¢' (modp) .
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We set f=exp(2ni[9), so that
B+f+1 =0,
and define a primitive 9th order character y by
x(n) = pind®,  n==0 (modp) .

For completeness we set y(n)=0, if n=0 (modp). For any integers r
and s the Jacobi sum J(r,s) is defined by

J(r,8) = DP21 x"(n)g¥(1—n) .

If Q denotes the field of rational numbers, J(r,s) is clearly an integer of
the sextic field Q(f). As J(3,3) is invariant under the transformation
B — B4, it is an element of Q(%)=Q()—3) (<=Q(p)), and Dickson [2,
equation (6)] has noted that we may fix the sign of N by

(2.1) J(3,8) = HL+9NV=3).
Also following Dickson [2, equation (14)] we define integers

CpsC1,C25C3,C4,Cp
by
(2.2) J(1,1) = 3% ¢ 8.

Dickson [2, equation (25)] showed that (for any prime p=1 (mod9))

(2.3) = -1 ¢ =c

i

—Cg = —C5 €3 =0 (mod3).

In view of our additional assumption that M =0 (mod3) we are able to
prove more, namely,

LEMMA 1. ¢;=cy=c3=c4=c¢;=0 (mod3).
Proor. We use the notation (%, k), for a cyclotomic number of order 9,
that is, the number of solutions z,y of the congruence
g¥th 4 1= gw+k (mod p)

with 052,y < §(p— 1), and the notation (k,k), for a cyclotomic number
of order 3, that is, the number of solutions z,y of the congruence

gaz+h+ 1= g3ﬂ+k (modp)
with 0<z,y < #(p—1). These numbers are related by the equation
(2.4) (h,K)g = D mp (h+37,k+38),,

(see Dickson [2, equation (2)]. Gauss showed that for any prime p=1
(mod 3)
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9(0,0)3=p-—8+L, 18(0,1)3=2p—4—L+9M,
(2.5) 9(1,2); = p+1+L, 18(0,2); = 2p—4—L—9M s
(110)3 = (0’1)3 = (2:2)3’ (1’1)3 = (2’0)3 = (0’2)3’ (2’1)3 = (1,2)3 ’

and Dickson [2] evaluated the (%, k), implicitly in terms of L, M,c,,. . .,Cg.
The explicit expressions for the (h,k), have been given by Baumert and
Fredricksen [1, Tables 1 and 2]. From Dickson’s work [2, p. 189] we
have modulo 3

¢, = (0,1)g+(0,4)g—2(0,7)g+ 2(1,3)— 4(1,6)y+ 2(2,5),
= (0,1)g+ (0,4)+ (0,7)g+ 2(1,3)g+ 2(1,6)+ 2(2,5),
= (0,1)g+ (0,4)g+(0,7)g+ (3,1)g+(3,4)g+(3,7)y +
+(6,1)9+ (6,4)+(6,7)g = (0,1)g,
by (2.4), so that by (2.5), as M =0 (mod3), we have
(2.6) 18¢, = 2p—4—L (mod 27) .

As p=1 (mod9), L=7 (mod9), we can define integers « and v by p=
9u+1, L=9v+17, so that (2.6) becomes

(2.7) ¢, = u+v+1 (mod3).
Finally as M =0 (mod3) we have (see [1, Table 2])

81(3,6)g = p+1+1L,
so that

(2.8) u+v+1

0 (mod?9).

(2.7) and (2.8) show that ¢,=0 (mod3). This completes the proof of the
lemma, in view of (2.3).

Lemma 1 enables us to define integers dy,dy,d,,d3,d4,dgs by
(2.9) 60 = do, cl = 3d1, 62 = 3d2, 03 = 3d3, 04 = 3d4, 65 = 3d5 ,

with (by (2.3))
(2.10) dy = —1 (mod3).

We next relate N to the d, modulo 3 by proving

LemMa 2. N =d, (mod3).



312 KENNETH 8. WILLIAMS

Proor. From [1, Table 2] we have

162(2,5)g = 2p+2— L+ 27N + 6d,+ 18d, + 18d,— 36d, — 36d,— 36d,
and
162(2,6), = 2p+ 2 —L— 27N + 6dy+ 18d, + 18d, + 18d, — 36d, — 36d,

80 that
54N = b4d,+162{(2,5),— (2,6),} ,
that is
N = d; (mod3) .

3. The diophantine system.
Using Lemma 1 and Dickson’s Theorem 3 in [2] we obtain

Lemma 3. The triple of diophantine equations
(3.1) P = wyZ+ (w2 + wy? + wy% + w2+ wy?) — 3wywg — w, wy — w,wy ,
(3.2)  wowy+ 3wy wy + 3waw, + 3wy wy + 3w, Wy — Wyw, — 3w, Wy — wowy = 0,
(3.3)  wow,+ 3wy wy + 3wyw, + 3wy wy — wow, — 3w, Wy —wewy; = 0,
has exactly six solutions
(wo, wy, Wy, wg, wy, ws) *+ ($(L +9N),0,0, +3N,0,0)

satisfying wy= —1 (mod 3). If (we,w,, Wy, ws, w,, w;) s one of these six solu-
tions the other five are given by

(wo — Bwg, ws, wy — Wy, — Wy, Wy, —W,) ,

(wo» — Wy, W5 — Wy, W3, Wy — Wy, — wz) ’
(3.4) (wo— Bws, —wy, — Wy, — W3, W5 — Wy, Wy —Wy) ,

(wo, Wy — Wy, —Wg, Wy, — Wy, Wy — W) ,

(wo — 3w, wy — Wy, Wy, — W3, —W;, W) .

Moreover (dy,d,,dy,ds,dy,d5) i3 one of these six solutions.

Diagonalizing equation (3.1) by an appropriate linear transformation
we obtain the following diophantine system in terms of which the neces-
sary and sufficient condition for 3 to be a ninth power (modp) will be
given, namely
(3.5) 8p = 2@+ 182,% + 1822 + 27,2 + 27,2 + Bdarg? ,

(3.6) 9x,2— 9x% + 4z, x5 — 62, 2, + 22, X5 + 122,25 + 62,24 + B2y 5 +

+ 24,24 — 6252, + 6255 + 122524 + 182,204 + 182524 = O,
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(3.7) 2@ 25— 32,y — @, X5 + 6Ty, + 6y 25 + 62y g — 6y, + B2y X5+
+ 122326 4 92, — 9252 = O .

Before giving the transformation between the system (3.1)—(3.3) and the
system (3.5)—(3.7) we prove some simple congruences for the solutions of
the system (3.5)—(3.7) which we will need in order to show that the trans-

formation is a bijection.
Lemma 4. Any solution (%,,%y,%s,%,,25,%¢) of (3.5)—(3.7) satisfies
T+ % = X4+ %5 = T+ 23+, = 0 (mod?2)

223+ x4+ x5 = 0 (mod4) .

Proor. Reducing (3.5) modulo 2 we obtain
Z,+x; = 0 (mod2).
Thus we may define an integer ¢ by
(3.8) xy = x5+ 28 .
Reducing (3.5) modulo 4 we obtain
(3.9) 0 = 2,2+ 22,2 + 2252 + 3x,% + 3% + 22,2 (mod4) .
From (3.8) we have z,2=x;% (mod4). Using this in (3.9) gives
0 = 22,24 2,2 + 22,2 + 22,2 + 224 (mod4),
that is
(3.10) Zy+ X+ T3+ 24+ 25 = 0 (mod2) .
Next taking (3.6) modulo 8 we obtain
(3.11) =z 2— 2%+ 4, X5 + 201 Xy + 2%, T5 + 42y X3 — 22,7y — 22,75+
+ 2,1, — 22, %5 + 43 g + 22,76 + 2252 = 0 (mod 8) .
Using (3.8) in (3.11) we obtain
£(2y + g + g + 5 + Tg) + 12+ (2, + Ty + 26) (T3 +75) = 0 (mod?2),

which in view of (3.10) gives

(3.12) t = 23+ 25 (mod2)
that is
(3.13)  }(w,—25) = x3+x5 (mod2), 2xz+x,+a5=0 (mod 4) .
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Finally reducing (3.7) modulo 4 we obtain, using x,=x; (mod 2),
(21 +2g) (225 + 24— x5) = 0 (mod4)

that is, by (3.13),

(3.14) (21 +2g) (g + 23+ 25) = 0 (mod2) .

By (3.10) and (3.14) we have
2 +2 = Xp+ 23+ 25 = 0 (mod2) .

We are now in a position to relate the two systems (3.1)-(3.3) and
(8.5)—(3.7). We prove

LemmaA 5. The diophantine system (3.5)—(3.7) has exactly six solutions
(2, T, X3, 2y, X5, ) + (L,0,0,0,0, + 3N)
with ;=1 (mod3). If one of these is (1, %y, X5, %,, %5, %g) the other five are
(@1, 23, }( — 2009+ By — 35), }(200y — x4 — 3x5), }(225 + By + 75), — )
(21, }(— 225 + 324 — 35), — (225 + 3, + 32;) ,
H—2g 25— 2y), $(@p + 25— 25), %) »
(3.15) (@, — }(2x5+ 324+ 325), — }(225+ 32, — 32;) ,
— $(xa + 25— x,), — $(%a — 3+ 25), — ) ,
(%1, — (24 + 32, — 3irg), }( — 225+ 324+ 32;) ,
@y — 23— ), — $(@y + %3+ 25), %)
(21, 3( — 225+ B2y + 35), X5, } (225 — 24 + 35) |
— $(2%5+ 32, — w5), — ) -

Proor. For any solution (wy,w;,w,,ws, w,,w;) With wy= —1 (mod3)
of (3.1)-(3.3) we obtain a solution (z,,,%s, 24,25, 2s) of (3.5)—(3.7) by
setting
(3.16) {a:l = 2Wo—3w,, Xy = 2wy—w; T3 = 2w, —w,,
Ty = Wyt Ws, Tp = Wy—W;, Tg=Ws,

with z,=1 (mod3).

Conversely if (z,,2,,%3,%,, %5, %) i8 a solution of (3.5)—(3.7) with z,=1
(mod 3) we may define, by Lemma 4, a solution (w,w,, w,, s, wy, w;) of
(3.5)—(3.7) by setting
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2wy = X+ 3w, 4w, = 2x;+ x4+ 75,
(3.17) dw, = 2wy + x4 — 25, Wy = Ty,
2wy = Xy+x5, 2wW5 = y—x5,
which satisfies
wy = —1 (mod3).

Finally it is easy to check that the excluded solutions correspond to one
another and that (3.4) gives rise to (3.15).
For example when p="73 the six solutions of (3.5)-(3.7), with z;=1
(mod 3), different from (7,0,0,0,0, + 3), are
(-2,-2,2,2,2,2), (-2,2,1,-3,1,-2), (-2,1,—4,1,—-1,2)
(-2,—4,1,1,1,-2), (-2,1,2,-3,-1,2), (-2,2,—-2,2,—2,-2).

4. Index of 3 modulo 9.

In this section we assume only that p=1 (mod9). The cyclotomic
polynomial of degree ¢(9)=6 modulo p is

f(x) v=1 (x_gvf) ’

(v, 8)=1
where f=}(p—1) is even. It is well-known that F(1)=3 (modp) so that
(4.1) 3=TI., (1-g) (modp).
v, 3)=1

The congruence
2/ —g¥ = 0 (modp)

has the f roots z=¢%+® (modp) (1<i<f) so that
(4.2) ol —g = T, (z—g*+) (modp).
Taking = +1 in (4.2) we obtain
(4.3) 1-g" = [Ty (1—g**) (modyp).
Putting (4.1) and (4.3) together we obtain

3=TI; T, (1-g"") (modp)

(»,3)=1
so that

(4.4) ind(3) = 3°_, 3Y_,ind(1—g%+) (mod9).

(v, 3)=1
Collecting together terms in (4.4) for which
l—g’“’" = _g9j+w (modp)

we obtain, as ind(—1)=9f/2=0 (mod9) (recall f even),
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LeMMA 6.

ind(3) = 37_, 8 —o W(w,v)y (mod9) .

,3)=1

We remark that the right-hand side of the expression in Lemma 6 can
be further simplified but this is unnecessary for our purposes.

5. Statement and proof of main result.
We prove

THEOREM. Let p be a prime=1 (mod9) such that 3 is a cube (modp).
Then 3 is a ninth power (modp) if and only if

(8.1) Zy— T3+ 2% = 0 (mod3),

where (y,%,, %3, %4,%5,%g) *+(L,0,0,0,0, + 3N) 18 a solution with z;=1
(mod3) of (3.5)—(3.7).

Note that in view of (3.15) condition (5.1) does not depend upon
which of the six solutions of (3.5)—(3.7) is chosen.

Proor. By Lemma 6, 3 is a ninth power (modp) if and only if
> 8 o Ww,v)y = 0 (mod?9) .
(v,3)=1
Using Dickson’s formulae for the cyclotomic numbers of order nine, when
ind3=0 (mod3), see Baumert and Fredricksen [1] (Tables 1 and 2), this

condition becomes
d,—dy+dy—ds+ N = 0 (mod3) .

Appealing to Lemma 2, Lemma 3 and (3.17) this simplifies to

Zy— X3+ %4 = 0 (mod3) .

6. Application of theorem to primes p<1000.
From tables for the values of L, M in the representation 4p= L2+ 27?2
we see that the only primes p=1 (mod9), p < 1000, for which 3 is a cube

(mod p) are
p = 173, 307, 523, 6577, 613, 757, 919, 991 .

For these primes Mr. Barry Lowe used Carleton University’s 29 com-
puter to calculate a non-trivial solution of the diophantine system (3.5)—
(3.7). The results are listed in table 1.
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Table 1

P z, %y x5 x, X Zg | T3— %3+ x5 (mod3)

73 -2 -2 2 2 2 2 +1
307 7 2 -2 8 4 -1 0
523 | —-20 4 -7 1 -7 4 0
677 | —20 8 10 -4 4 0 +1
613 -2 -2 -1 —-11 -1 2 +1
757 16 -8 -7 9 =17 0 -1
919 | —-11 -14 -10 0o -4 5 +1
991 | —20 6 9 -7 -3 8 -1

Thus, by the theorem, of these primes, only p=307 and 523 have 3
as a ninth power (mod p). Indeed it is easy to check directly that

3 = 298° (mod307), 3 = 65° (mod523).

7. Conclusion.

Baumert and Fredricksen [1] (equation (3.6)) have noted that for
primes p=1 (mod9)
(7.1) ind(3) = — M (mod3),

and it would be straight-forward to extend the ideas of this paper to
obtain a corresponding congruence for ind(3) (mod9).
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