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PFISTER 'S DIMENSION AND THE LEVEL OF FIELDS

P. RIBENBOIM

Let K be a field. For every integer n>1 let [n]x denote the set of
sums of n squares of elements of K, let [co]x denote the set of sums of
squares of elements of K.

DeriniTiON 1. The Pfister dimension of K is oo or the smallest integer
n =1 such that [co]x=[n]x. We denote it by Pf(K).

Thus Pf(K)=1 if and only if every sum of squares of elements of K
is the square of an element of K. In this case, K is called a Pythagorean
field. For example, if K has characteristic 2, or if K is an algebraically
closed field, or a real closed field, or an F-closed field (where F is a for-
mally positive subset) (see [5, pages 145 to 153]), then Pf(K)=1.

Lagrange’s theorem states that Pf(Q)=4. Pfister and Cassels have
shown that if K is a real closed field then

n+1 < PH(K(X,,...,X,)) s 2°

for every n>1 (see [5, pages 205 and 211]).
Landau has shown that Pf(Q(X)) <8 (see [3]) and recently Pourchet
proved that Pf(Q(X))=5 (see [4]).

DeriniTION 2. If K is an orderable field, its level is infinity. If K is
not orderable, the level of K is the smallest integer m such that —1 € [m]x.
We denote by A(K) the level of K.

Pfister has shown that the level of any non-orderable field is a power of
2 (see [5, page 191]).

Hilbert has stated and Siegel published a proof (see [5]) of the fact
that the level of any totally imaginary algebraic number field K is at
most 4. Connell has indicated the necessary and sufficient condition in
order that A(K)=2 (see [1]).
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2.

We state some properties relating the level and the Pfister dimension
of a field.

(a) If K< L then A(K)=A(L).
Proor. This is obvious.
(b) MK)=AMK(X))=...=MK(X,,...,X,)).

Proor. If K is orderable, so is K(X) and both fields have infinite level.
We assume that K is not orderable, hence K(X) is also not orderable.
Let A(K)=2", A(K(X))=2%hence 2™ 2 2, Since —1 € [2°], by eliminat-
ing denominators, we have

—--g2 == 2?8:1 hiz With g’hi (S K[X] .
Let g=X"(a,+a,,, X+ ...) with r20, a.+0, and let
hi = Xt(bi.‘+bi’t+1X+ oy o)
with 20 and b, ,+0 for at least one index 4y, 1=4,<2¢% If t<r we

would have
0= f"=1 bi,lz

and dividing by b, 2 we have
=1 = Disi, 0s,ifbs, ) € [2°— 1] .

Hence 2™ < 23— 1 < 22, which is impossible. Similarly, if »r <¢ then a,2=0,
which is impossible. So r=¢ and therefore
"‘a'r2 = ?11 bi,r2 ’
hence
-1= %:1 (bi, r/a'r)2 € [28]K .

Therefore 2™ < 22 and we have the equality A(K(X))=A(K).
(c) PE(K) < 1+A(K).

Proor. If K is orderable or if K has characteristic 2, the assertion is
true. Now we assume that A(K)=2" and K has characteristic unequal
to 2. Since —1 € [2"]g, for every x € K we have

z = (3r+D))>2+(=-1)(3x-1)2e[2*+1]g .
In particular [oo]x=[2"+1]x and so Pf(K) =<1+ A(K).
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(d) If Pf(K)—1 is not a power of 2 then Pf(K)=< A(K).

Proor. This is true when K is orderable, and also when K is not
orderable, as follows from (c) and the hypothesis.

(e) Pf(K(X,,...,X,)) £ L+ A(K).
Proor. This follows from (c) and (b).

(f) If K has characteristic 2, Pf(K)=Pf(K(X))=1. If K is an orderable
field, then Pf(K) < Pf(K(X)).

Proor. We may assume that Pf(K(X)) is finite, say equal to m. Let
a € [oo] g S[lgx) = [M]kix). After eliminating denominators, there ex-
ist non-zero polynomials

g’fiEK[X]) i—ly---,m,

(where m’ <m) such that g%a=3" f2. Let g=Xrg’ with ¢’(0)%0, r20;
similarly, let f;=X"f," with f,/(0)=0, ,2 0. If v =min {r;} < r, comparing
the terms of degree 2" we would have a non-trivial sum of squares in K
equal to 0, which is not possible since K is orderable. Then we may write

fi = X(by+buX + ... +b, X%)
and comparing the terms of degree 2r, we have the relation

g'(0)*a = 371, by?

a = 371 (bilg'(0))* € [m]g .
This proves that Pf(K) < m.

hence

It may happen that Pf(K)+Pf(K(X)); for example, Pf(Q)=4,
P£(Q(X))=5 or also Pf(R)=1, Pf(R(X))=2.

Similarly, Pf(R(X,))=2 and Pf(R(X,,X;))=4 (see [5, page 211]; this
is a result of Cassels, Ellison and Pfister). Hence Pf( K (X)) may be larger
than Pf(K)+1.

We now discuss what happens for non-orderable fields.

(g) If K is not an orderable field and has characteristic different from 2

then
Pf(K(X,,.. X)) = 1+ 4(K).



304 P. RIBENBOIM

Proor. It is enough to consider n=1, in view of (b). If A(K)=1, then
Pf(K(X))z 2 since X2+ 1 is not a square in K(X), because K has charac-
teristic different from 2.

If A(K)=2m, with m =1, we may write

~1=3" a2 with q,eK.
Then
X2—1= X243 ate 2"+ g -

However X2%—1 ¢ [2™]kx), otherwise by a lemma of Cassels (see [5,
page 194]), we would have —1e[2™—1],, against the hypothesis on
the level of K. This shows that Pf(K(X))=A(K)+1, hence by (e)
P(K(X))=1+A(K).

Hence for an arbitrary field K we have Pf(K) < Pf(K(X)).

If K is a finite field then A(K) is 1 or 2, and correspondingly
Pf(K(X,,...,X,)) is 2 or 3. If Q, denotes the field of p-adic numbers
then 1(Q,) <4 (as follows from Hasse’s theorem: the polynomial

X2+ X2+ X2+ X 2+ X 2

has a non-trivial zero in Q,); hence Pf(Q,(X,,...,X,))<5. Similarly,
if K is a totally imaginary algebraic number field, then

Pf(K(Xy,...,X,)) < 5.

In [5, page 208], we have given the proof of the following result of
Pfister:

(h) Let K be an orderable field, d = 0 an integer and assume that for every

non-orderable algebraic extension L of K, —1¢€[2%],. Then Pf(K(X))<
2d+1

With this result, we have a quick proof of Landau’s theorem:
(i) Pf(Q(X))=8.

ProoF. As we quoted, if L is a non-orderable, i.e., totally imaginary
algebraic number field, then A(L)<4. It follows from (h) that
Pf(Q(X))=8.



PFISTER’S DIMENSION AND THE LEVEL OF FIELDS 305

Let A be a commutative ring (with unit) and A[[X,,...,X,]] the ring
of formal power series in n indeterminates. This ring is canonically iso-
morphic to (4[[X,,..., X, JDI[X,]]. If 4 is a domain, then so is
A[[Xy,. .., X,]]. If K is a field, let K((X,,...,X,)) denote the field of
quotients of the domain K[[X,,...,X,]].

We shall also consider the following fields, which are defined induc-
tively: Sy=K, 8;=K((X,)), 8,=8,_1((X,)) and we denote this field also
by K((X,))((Xy)) ... ((X,)). Up to isomorphism, this field is independent
of the order of adjunction of the indeterminates.

Since 8§, is the field of quotients of §,_,[[X,]], it contains
K[[X,,...,X,]], hence it contains its field of quotients K((X,,...,X,)).
However S,+K((X,,...,X,)) (when n22); indeed, 32,X,~X,* be-
longs to S, but not to K((X,,X,)).

If K is an orderable field then K((X)) is also orderable. Indeed, let P
be the set consisting of 0 and of all series F'=X"(ay+a, X+ ...) with
reZ,a,€ K, ay>0 (in a given order of K). Then P is the set of positive
elements of a total order on K((X)) compatible with the operations and
extending the given order of K.

Therefore if K is orderable so are the field K((X,))((Xy))...((X,))
and the subfield K((X,,...,X,)).

() AB(XDN(X9) - - - ((Xn) =A(E((Xy,- . -, X)) = HEK).

Proor. We have
AE(XD)(X)- - - (X)) < (K(Xs,. .., X)) < XK).

It is enough to prove the other inequality and we may assume n=1, and
that K is not orderable. Let A(K)=2m, A(K((X))) =28, go 2™ > 28, Since
—1 € [2%gqxy), Py eliminating denominators, we have

—G2 =% H2 with G,H; e K[[X]].
Let
G = X"(ap+a, X+...), a;€K, a,+0,
let
Hi = X!byy+byX+...), byekK,

and for some index g, 1 =<4y = 28, b0+ 0.
If ¢ <7 then 0=3% 5,2 and dividing by b;,* we have

—1 = Sipi, (bofbi0)? €[22~ 1],

Math. Scand. 35 — 20
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80 2m < 28— 1 < 28, which is a contradiction. Similarly, if r <t then a2=0,
which is impossible. So r=¢ and

—ay® = ?:1 by’
hence
=1 = 3%, (bio/ay)? € [2°]k -

i=1

So 27 < 28, and this proves the equality.

(k) Let K be a field of characteristic not equal to 2, let
F = X"(ag+a, X+ ...) € K((X)), where reZ,
ag%0. Then: F is a square in K((X)) if and only if r is even and a, is a

square in K.

Proor. If F is a square in K((X)), then r is clearly even and q, is a
square in K. Conversely, let r=2s, let a,=b,%, where b, € K. We define
by, by« . sby,. . . inductively by the relation

Ditjem bib; = @y,
80
bm = (2b0)_1(am_2i+j=m bibj) .
4,740
Let G=X53(by+b,X +b,X2+ ...). Then it is immediate that G2=1F'.

As a corollary, we have:

(1) If K has characteristic different from 2, if F,G € K((X)) have orders
satisfying 20(F)<o(Q), then F2+@ is a square in K((X)).

Proor. The order of F2+@ is 20(F) and the coefficient of the term
of lowest degree is a square. By (k) F2+@ is a square in K((X)).

We shall compare the Pfister dimensions of K and K((X)).

(m) If K is an orderable field, F=X"(ag+a,X+...) € K((X)) with
reZ, ay+0, then F € [m]g(xy if and only if r is even and ay € [m]x.

Proor. We assume F =37 G2 where G; € K((K)); let s be the mini-
mum of the orders of the series ¢; (t=1,...,m). By comparing the co-
efficients of X2¢in F and 37, G2, we see that 2s=r (since K is orderable
and a,+0) and a4 € [m]g.
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Let us assume that r=2s and ay=3" b2 Then
F = X237 b2+a, X+...)
= X2(b2+a, X+ ...)+ X202+ ...+ X2p,2.

It follows from (k) that F € [m]g(xy-

(n) If K has characteristic 2, or if K is orderable, then Pf(K)=
Pi(K((X)))-

Proor. This is trivial when K has characteristic 2, so we assume that
K is orderable.

If Pf(K)=m then Pf(K((X))) <m. In fact, if F € [8]g(x) then by (m),
F has even order and the coefficient a, of the term of lowest degree of F
is such that a4 € [s]g S [m]g. Hence by (m), F € [m]g(xy-

Now we show that if Pf(K((X)))=m then Pf(K)<m. Let

a€lslg € [Slxxy € Mgy -

We apply (m) to the series F =a and conclude that a € [m]g.

(o) If K is not orderable and has characteristic different from 2, then
Pi(K((X))) = 1+A(K) = P{(K(X)).

Proor. Under these hypotheses, we have
Pf(K((X))) = 1+A(K((X))) = 1+4K) = P{(K(X)),

as follows from (c), (k), and (h).
Conversely, if A(K)=2" then —1€[2™]gx<[2™]g(xy. Hence Xe
(2™ + 1]g(xy, since

X = (HX+DP+(-1HX-1)).
We shall prove that X ¢ [2"]x(xy- Indeed, if X =3%" F 2, where s=o(F,)
is the minimum of the orders of the series F;, by (1),
F2+F,2+...+F,* (with o(F;)>s,...0(F,)>s)

is a square in K((X )). Hence we may write X =37., G2 with m’ < 2™ and
o(Gy)=...=0(G,,)=s. Letting

Gi = X‘(bio"l" b,th+ . .) (With b.‘o* 0)

it follows that
X = Xzs(z?::o bi02+01x+ .o -) .
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Hence 3™ b,,2=0 and so
—le[m'-1lg < [2"- 1]k,

against the hypothesis. This proves the statement.

In particular, if K is a Pythagorean field, i.e. Pf(K)=1, then K((X))
is Pythagorean if and only if K is orderable. This result was proved al-
ready by Griffin (see [2]).

We conclude with a remark and a problem.

The polynomial f=1+ X2+ Y2 e R[X, Y] is such that for every = € R,
yeR,
flx,Y)e (2] fX,y)e [(2Inxy

however by Cassel’s result 1+ X2+ Y2 ¢ [2]z x, ¥)-
Is it true that if fe Q[X, Y] is such that

f@, Y) € [2lqy> fX,y)e [(2lorx;
(for every x,y € Q) then fe [2]qx, 1?
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