PFISTER'S DIMENSION AND THE LEVEL OF FIELDS

P. RIBENBOIM

1.

Let K be a field. For every integer $n \ge 1$ let $[n]_K$ denote the set of sums of n squares of elements of K, let $[\infty]_K$ denote the set of sums of squares of elements of K.

DEFINITION 1. The Pfister dimension of K is ∞ or the smallest integer $n \ge 1$ such that $[\infty]_K = [n]_K$. We denote it by Pf(K).

Thus Pf(K)=1 if and only if every sum of squares of elements of K is the square of an element of K. In this case, K is called a Pythagorean field. For example, if K has characteristic 2, or if K is an algebraically closed field, or a real closed field, or an F-closed field (where F is a formally positive subset) (see [5, pages 145 to 153]), then Pf(K)=1.

Lagrange's theorem states that Pf(Q)=4. Pfister and Cassels have shown that if K is a real closed field then

$$n+1 \leq \Pr(K(X_1,\ldots,X_n)) \leq 2^n$$

for every $n \ge 1$ (see [5, pages 205 and 211]).

Landau has shown that $Pf(Q(X)) \le 8$ (see [3]) and recently Pourchet proved that Pf(Q(X)) = 5 (see [4]).

DEFINITION 2. If K is an orderable field, its *level* is infinity. If K is not orderable, the level of K is the smallest integer m such that $-1 \in [m]_K$. We denote by $\lambda(K)$ the level of K.

Pfister has shown that the level of any non-orderable field is a power of 2 (see [5, page 191]).

Hilbert has stated and Siegel published a proof (see [5]) of the fact that the level of any totally imaginary algebraic number field K is at most 4. Connell has indicated the necessary and sufficient condition in order that $\lambda(K) = 2$ (see [1]).

Received February 11, 1974.

2.

We state some properties relating the level and the Pfister dimension of a field.

(a) If $K \subseteq L$ then $\lambda(K) \ge \lambda(L)$.

PROOF. This is obvious.

(b)
$$\lambda(K) = \lambda(K(X)) = \ldots = \lambda(K(X_1, \ldots, X_n)).$$

PROOF. If K is orderable, so is K(X) and both fields have infinite level. We assume that K is not orderable, hence K(X) is also not orderable. Let $\lambda(K) = 2^n$, $\lambda(K(X)) = 2^s$ hence $2^m \ge 2^s$. Since $-1 \in [2^s]_K$, by eliminating denominators, we have

$$-g^2 = \sum_{i=1}^{2^s} h_i^2$$
 with $g, h_i \in K[X]$.

Let $g = X^r(a_r + a_{r+1}X + \dots)$ with $r \ge 0$, $a_r \ne 0$, and let

$$h_i = X^t(b_{i,t} + b_{i,t+1}X + \ldots)$$

with $t \ge 0$ and $b_{i_0,t} \ne 0$ for at least one index i_0 , $1 \le i_0 \le 2^s$. If t < r we would have

$$0 = \sum_{i=1}^{2^s} b_{i,i}^2$$

and dividing by b_{i_0,t^2} we have

$$-1 = \sum_{i \neq i_0} (b_{i,i}/b_{i_0,i})^2 \in [2^s - 1]_K$$
.

Hence $2^m \le 2^s - 1 < 2^s$, which is impossible. Similarly, if r < t then $a_r^2 = 0$, which is impossible. So r = t and therefore

$$-a_{r}^{2} = \sum_{i=1}^{2^{s}} b_{i,r}^{2},$$

hence

$$-1 = \sum_{i=1}^{2^s} (b_{i,r}/a_r)^2 \in [2^s]_K.$$

Therefore $2^m \le 2^s$ and we have the equality $\lambda(K(X)) = \lambda(K)$.

(c)
$$Pf(K) \leq 1 + \lambda(K)$$
.

PROOF. If K is orderable or if K has characteristic 2, the assertion is true. Now we assume that $\lambda(K) = 2^n$ and K has characteristic unequal to 2. Since $-1 \in [2^n]_K$, for every $x \in K$ we have

$$x = (\frac{1}{2}(x+1))^2 + (-1)(\frac{1}{2}(x-1))^2 \in [2^n+1]_K$$
.

In particular $[\infty]_K = [2^n + 1]_K$ and so $Pf(K) \le 1 + \lambda(K)$.

(d) If Pf(K) - 1 is not a power of 2 then $Pf(K) \leq \lambda(K)$.

PROOF. This is true when K is orderable, and also when K is not orderable, as follows from (c) and the hypothesis.

(e)
$$Pf(K(X_1,\ldots,X_n)) \leq 1 + \lambda(K)$$
.

PROOF. This follows from (c) and (b).

(f) If K has characteristic 2, Pf(K) = Pf(K(X)) = 1. If K is an orderable field, then $Pf(K) \leq Pf(K(X))$.

PROOF. We may assume that Pf(K(X)) is finite, say equal to m. Let $a \in [\infty]_K \subseteq [\infty]_{K(X)} = [m]_{K(X)}$. After eliminating denominators, there exist non-zero polynomials

$$g, f_i \in K[X], \quad i-1, \ldots, m'$$

(where $m' \leq m$) such that $g^2a = \sum_{i=1}^{m'} f_i^2$. Let $g = X^rg'$ with $g'(0) \neq 0$, $r \geq 0$; similarly, let $f_i = X^{r_i}f_i'$ with $f_i'(0) \neq 0$, $r_i \geq 0$. If $r' = \min\{r_i\} < r$, comparing the terms of degree 2r' we would have a non-trivial sum of squares in K equal to 0, which is not possible since K is orderable. Then we may write

$$f_i = X^r(b_{i0} + b_{i1}X + \dots + b_{isi}X^{si})$$

and comparing the terms of degree 2r, we have the relation

$$g'(0)^2 a = \sum_{i=1}^{m'} b_{i0}^2$$
,

hence

$$a = \sum_{i=1}^{m'} (b_{i0}/g'(0))^2 \in [m]_K$$
.

This proves that $Pf(K) \leq m$.

It may happen that $Pf(K) \neq Pf(K(X))$; for example, Pf(Q) = 4, Pf(Q(X)) = 5 or also Pf(R) = 1, Pf(R(X)) = 2.

Similarly, $Pf(R(X_1)) = 2$ and $Pf(R(X_1, X_2)) = 4$ (see [5, page 211]; this is a result of Cassels, Ellison and Pfister). Hence Pf(K(X)) may be larger than Pf(K) + 1.

We now discuss what happens for non-orderable fields.

(g) If K is not an orderable field and has characteristic different from 2 then

$$Pf(K(X_1,\ldots,X_n)) = 1 + \lambda(K) .$$

PROOF. It is enough to consider n=1, in view of (b). If $\lambda(K)=1$, then $Pf(K(X)) \ge 2$ since X^2+1 is not a square in K(X), because K has characteristic different from 2.

If $\lambda(K) = 2^m$, with $m \ge 1$, we may write

$$-1 = \sum_{i=1}^{2^m} a_i^2$$
 with $a_i \in K$.

Then

$$X^2-1 = X^2 + \sum_{i=1}^{2^m} a_i^2 \in [2^m+1]_{K(X)}$$
.

However $X^2-1 \notin [2^m]_{K(X)}$, otherwise by a lemma of Cassels (see [5, page 194]), we would have $-1 \in [2^m-1]_K$, against the hypothesis on the level of K. This shows that $Pf(K(X)) \ge \lambda(K) + 1$, hence by (e) $Pf(K(X)) = 1 + \lambda(K)$.

Hence for an arbitrary field K we have $Pf(K) \leq Pf(K(X))$.

If K is a finite field then $\lambda(K)$ is 1 or 2, and correspondingly $Pf(K(X_1,\ldots,X_n))$ is 2 or 3. If Q_p denotes the field of p-adic numbers then $\lambda(Q_p) \leq 4$ (as follows from Hasse's theorem: the polynomial

$$X_1^2 + X_2^2 + X_3^2 + X_4^2 + X_5^2$$

has a non-trivial zero in Q_p); hence $Pf(Q_p(X_1,...,X_n)) \le 5$. Similarly, if K is a totally imaginary algebraic number field, then

$$Pf(K(X_1,\ldots,X_n)) \leq 5.$$

In [5, page 208], we have given the proof of the following result of Pfister:

(h) Let K be an orderable field, $d \ge 0$ an integer and assume that for every non-orderable algebraic extension L of K, $-1 \in [2^d]_L$. Then $Pf(K(X)) \le 2^{d+1}$.

With this result, we have a quick proof of Landau's theorem:

(i)
$$Pf(Q(X)) \leq 8$$
.

PROOF. As we quoted, if L is a non-orderable, i.e., totally imaginary algebraic number field, then $\lambda(L) \leq 4$. It follows from (h) that $Pf(Q(X)) \leq 8$.

3.

Let A be a commutative ring (with unit) and $A[[X_1, \ldots, X_n]]$ the ring of formal power series in n indeterminates. This ring is canonically isomorphic to $(A[[X_1, \ldots, X_{n-1}]])[[X_n]]$. If A is a domain, then so is $A[[X_1, \ldots, X_n]]$. If K is a field, let $K((X_1, \ldots, X_n))$ denote the field of quotients of the domain $K[[X_1, \ldots, X_n]]$.

We shall also consider the following fields, which are defined inductively: $S_0 = K$, $S_1 = K((X_1))$, $S_n = S_{n-1}((X_n))$ and we denote this field also by $K((X_1))((X_2)) \dots ((X_n))$. Up to isomorphism, this field is independent of the order of adjunction of the indeterminates.

Since S_n is the field of quotients of $S_{n-1}[[X_n]]$, it contains $K[[X_1,\ldots,X_n]]$, hence it contains its field of quotients $K((X_1,\ldots,X_n))$. However $S_n \neq K((X_1,\ldots,X_n))$ (when $n \geq 2$); indeed, $\sum_{i=0}^{\infty} X_1^{-i!} X_2^i$ belongs to S_n but not to $K((X_1,X_2))$.

If K is an orderable field then K((X)) is also orderable. Indeed, let P be the set consisting of 0 and of all series $F = X^r(a_0 + a_1X + \ldots)$ with $r \in \mathbb{Z}$, $a_i \in K$, $a_0 > 0$ (in a given order of K). Then P is the set of positive elements of a total order on K((X)) compatible with the operations and extending the given order of K.

Therefore if K is orderable so are the field $K((X_1))((X_2))...((X_n))$ and the subfield $K((X_1,...,X_n))$.

$$(j) \lambda (K((X_1))((X_2)) \dots ((X_n))) = \lambda (K((X_1, \dots, X_n))) = \lambda (K).$$

Proof. We have

$$\lambda(K((X_1))((X_2))\ldots((X_n))) \leq \lambda(K((X_1,\ldots,X_n))) \leq \lambda(K).$$

It is enough to prove the other inequality and we may assume n=1, and that K is not orderable. Let $\lambda(K)=2^m$, $\lambda(K((X)))=2^s$, so $2^m \ge 2^s$. Since $-1 \in [2^s]_{K((X))}$, by eliminating denominators, we have

$$-G^2 = \sum_{i=1}^{2^s} H_i^2$$
 with $G, H_i \in K[[X]]$.

Let

$$G = X^r(a_0 + a_1X + \ldots), \quad a_i \in K, \ a_0 \neq 0,$$

let

$$H^i \,=\, X^i(b_{i0}+b_{i1}X+\ldots), \quad b_{ij}\in K \ ,$$

and for some index i_0 , $1 \le i_0 \le 2^s$, $b_{i_0 0} \ne 0$.

If t < r then $0 = \sum_{i=1}^{2^s} b_{i0}^2$ and dividing by $b_{i_00}^2$ we have

$$-1 = \sum_{i \neq i_0} (b_{i0}/b_{i_00})^2 \in [2^s - 1]_K,$$

so $2^m \le 2^s - 1 < 2^s$, which is a contradiction. Similarly, if r < t then $a_0^2 = 0$, which is impossible. So r = t and

$$-a_0^2 = \sum_{i=1}^{2^s} b_{i0}^2$$

hence

$$-1 = \sum_{i=1}^{2^s} (b_{i0}/a_0)^2 \in [2^s]_K$$
.

So $2^m \le 2^s$, and this proves the equality.

(k) Let K be a field of characteristic not equal to 2, let

$$F = X^r(a_0 + a_1X + \ldots) \in K((X)), \quad \text{where } r \in Z$$
,

 $a_0 \neq 0$. Then: F is a square in K((X)) if and only if r is even and a_0 is a square in K.

PROOF. If F is a square in K((X)), then r is clearly even and a_0 is a square in K. Conversely, let r=2s, let $a_0=b_0^2$, where $b_0 \in K$. We define $b_1, b_2, \ldots, b_m, \ldots$ inductively by the relation

$$\sum_{i+j=m} b_i b_j = a_m ,$$

so

$$b_m = \, (2b_0)^{-1} (a_m - \sum_{\substack{i+j=m\\i,j \neq 0}} b_i b_j)$$
 .

Let $G = X^{s}(b_0 + b_1X + b_2X^2 + \dots)$. Then it is immediate that $G^2 = F$.

As a corollary, we have:

(1) If K has characteristic different from 2, if $F, G \in K((X))$ have orders satisfying 2o(F) < o(G), then $F^2 + G$ is a square in K((X)).

PROOF. The order of $F^2 + G$ is 2o(F) and the coefficient of the term of lowest degree is a square. By (k) $F^2 + G$ is a square in K((X)).

We shall compare the Pfister dimensions of K and K((X)).

(m) If K is an orderable field, $F = X^r(a_0 + a_1X + ...) \in K((X))$ with $r \in \mathbb{Z}$, $a_0 \neq 0$, then $F \in [m]_{K((X))}$ if and only if r is even and $a_0 \in [m]_K$.

PROOF. We assume $F = \sum_{i=1}^{m} G_i^2$ where $G_i \in K((K))$; let s be the minimum of the orders of the series G_i $(i=1,\ldots,m)$. By comparing the coefficients of X^{2s} in F and $\sum_{i=1}^{m} G_i^2$, we see that 2s = r (since K is orderable and $a_0 \neq 0$) and $a_0 \in [m]_K$.

Let us assume that r=2s and $a_0=\sum_{i=1}^m b_i^2$. Then

$$F = X^{2s} (\sum_{i=1}^{m} b_i^2 + a_1 X + \dots)$$

= $X^{2s} (b_1^2 + a_1 X + \dots) + X^{2s} b_2^2 + \dots + X^{2s} b_m^2$.

It follows from (k) that $F \in [m]_{K((X))}$.

(n) If K has characteristic 2, or if K is orderable, then Pf(K) = Pf(K((X))).

PROOF. This is trivial when K has characteristic 2, so we assume that K is orderable.

If $\operatorname{Pf}(K) = m$ then $\operatorname{Pf}(K((X))) \leq m$. In fact, if $F \in [s]_{K((X))}$ then by (m), F has even order and the coefficient a_0 of the term of lowest degree of F is such that $a_0 \in [s]_K \subseteq [m]_K$. Hence by (m), $F \in [m]_{K((X))}$.

Now we show that if Pf(K((X))) = m then $Pf(K) \leq m$. Let

$$a \in [s]_K \subseteq [s]_{K((X))} \subseteq [m]_{K((X))}$$
.

We apply (m) to the series F = a and conclude that $a \in [m]_K$.

(o) If K is not orderable and has characteristic different from 2, then

$$Pf(K((X))) = 1 + \lambda(K) = Pf(K(X)).$$

Proof. Under these hypotheses, we have

$$Pf(K((X))) \leq 1 + \lambda(K((X))) = 1 + \lambda(K) = Pf(K(X)),$$

as follows from (c), (k), and (h).

Conversely, if $\lambda(K) = 2^m$ then $-1 \in [2^m]_K \subseteq [2^m]_{K((X))}$. Hence $X \in [2^m+1]_{K((X))}$, since

$$X = (\frac{1}{2}(X+1))^2 + (-1)(\frac{1}{2}(X-1))^2$$
.

We shall prove that $X \notin [2^m]_{K((X))}$. Indeed, if $X = \sum_{i=1}^{2^m} F_i^2$, where $s = o(F_1)$ is the minimum of the orders of the series F_i , by (l),

$$F_1^2 + F_{i_1}^2 + \ldots + F_{i_k}^2$$
 (with $o(F_{i_1}) > s, \ldots o(F_{i_k}) > s$)

is a square in K((X)). Hence we may write $X = \sum_{i=1}^m G_i^2$ with $m' \le 2^m$ and $o(G_1) = \ldots = o(G_{m'}) = s$. Letting

$$G_i = X^s(b_{i0} + b_{i1}X + \dots)$$
 (with $b_{i0} \neq 0$)

it follows that

$$X = X^{2s}(\sum_{i=0}^{m'} b_{i0}^2 + c_1 X + \dots)$$
.

Hence $\sum_{i=0}^{m'} b_{i0}^2 = 0$ and so

$$-1 \in [m'-1]_K \subseteq [2^m-1]_K$$

against the hypothesis. This proves the statement.

In particular, if K is a Pythagorean field, i.e. Pf(K) = 1, then K((X)) is Pythagorean if and only if K is orderable. This result was proved already by Griffin (see [2]).

We conclude with a remark and a problem.

The polynomial $f = 1 + X^2 + Y^2 \in R[X, Y]$ is such that for every $x \in R$, $y \in R$,

$$f(x, Y) \in [2]_{R[Y]}, \quad f(X, y) \in [2]_{R[X]}$$

however by Cassel's result $1 + X^2 + Y^2 \notin [2]_{R(X,Y)}$.

Is it true that if $f \in Q[X, Y]$ is such that

$$f(x, Y) \in [2]_{Q[Y]}, f(X, y) \in [2]_{Q[X]}$$

(for every $x, y \in \mathbb{Q}$) then $f \in [2]_{\mathbb{Q}(X, Y)}$?

BIBLIOGRAPHY

- 1. I. G. Connell, The "Stufe" of number fields, Math. Z. 124 (1972), 20-22.
- 2. M. Griffin, The Pythagorean Closure of Fields, Queen's Math. Preprints, 1972 nr. 19.
- 3. E. Landau, Über die Darstellung definiter Funktionen durch Quadrate, Math. Ann. 62 (1906), 272-285.
- Y. Pourchet, Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques, Acta Arith. 19 (1971), 89-104.
- 5. P. Ribenboim, L'Arithmétique des Corps, Hermann, Paris, 1972.
- C. L. Siegel, Darstellung total positiver Zahlen durch Quadrate, Math. Z. 11 (1921), 246-275.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA