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ON THE CLASSIFICATION OF
COMPLEX LINDENSTRAUSS SPACES

GUNNAR HANS OLSEN

Abstract.

- We prove the Lindenstrauss—Wulbert classification scheme for com-
plex Banach spaces whose duals are L,-spaces, and give some characteri-
zations of the different classes by means of the unit ball in the dual
space. The work leans heavily on [8] and the real theory. I am indebted
to B. Hirsberg and A. Lazar for a preprint of [12]. Finally I would like
to thank E. Alfsen and A. Lima for making literature available and for
helpful comments.

1. Preliminaries and notations.

Any unexplained notation in this paper will be standard or that of
Alfsen’s book [1]. Otherwise we will use the following notations:

T is the unit cirele in C.

V is a complex Banach space.

K is the unit ball in V* with the w*-topology.

M(K) is the Banach space of complex regular Borel measure on K
with total-variation as norm.

M,(K) is the set of those measures in M(K) with norm =£1.

M, +(K) is the set of probability measures on K.

When F is a convex set then 0, F will denote the set of extreme points
in F. If u is a measure then |u| is the total variation of u. A measure u
is said to be maximal or a boundary measure if |u| is maximal in
Choquet’s ordering. The set of maximal (probability-) measures on K is
denoted by M(d,K) (M,+(3,K)).

We shall now repeat some results and definitions from [8].

A function f € C(K) is said to be T-homogeneous if f(xk)=«f(k) for all
a €T, ke K. The class of T-homogeneous functions in Cc(K) is denoted
by Cpom(K). If f e Cc(K), then the function

[hom,f](k) = §a1f(ak)dx, keK
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where du is the unit Haar measure on 7', is continuous and T-homogene-
ous. It is now verified that hom; is & norm-decreasing projection of C(K)
onto O, (K). Taking the adjoint of this projection on M(K)

hom;u = yohomy,

we get a norm-decreasing w*-continuous projection of M(K) onto a
linear subspace denoted by M, ..(K).

A measure y € My,.,(K) is called T-homogeneous and satisfies o u=ou
where 0,: K - K is the homeomorphism b+ ak, x €T, k€ K.

Each v € ¥V canin a canonical way be regarded as an affine 7'-homogene-
ous w*-continuous function on K. Conversely, by a result of Banach—
Dieudonné [1, corollary I.1.13], each affine 7'-homogeneous function
can be extended to a w*-continuous complex-linear functional on V*,
i.e. to an element of V. We may therefore identify V with the affine
functions in C}on(K). If 4 € M(K), then the resultant of u is defined to
be the unique point r(u) € V* satisfying

r(u)(v) = u(v) forall veV.

If u e M,+(K), then it can be proved that r(u) coincides with the bary-
center of u. (See [8] for a proof.) Moreover, it is readily verified that
r: M(K) - V* is a w*-continuous normdecreasing linear surjection.

Let X be a topological space and u € M+(K). A function f: K - X is
pu-measureable if for every >0 there is a compact set D< K such that
MEND)<e and f|D is continuous. If X =R or C then this definition
coincides with the customary one by virtue of Lusin’s theorem. Let
1 € M(K). Then there is a complex |u|-measurable function ¢ on K with
|pl =1 a.e. |u| such that u=ep|u|, (that is, {fdu=fed|ul, f € Cc(K)). This
representation is called the polar decomposition for x4 and is unique up
to zero sets. Since ¢: K — C is |u|-measurable it follows that the map
w: K — K defined by w(p)=¢(p)- p is also measurable. Hence, by Lusin’s
theorem, the measure w(|u|) defined by

o(lu)(f) = (fowdlul, feCc(K),

is a regular Borel measure. (This definition is due to Phelps.) Clearly
llwo(leDl| £ lpll, and the other statements in the following lemma are
proved in [8].

Lrmma 1. Let u € M(K), then

8) r(homqu)=r(u)
b) r(w(|ul))=r(x)
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¢) llo(luDll = llul
d) homyw(|u|)=homyu

e) If u is maximal, then so are w(|u|) and hom;u.

LemMA 2. Let uy,p5 € M(K), and put p=py+py. If ||pll=llugll+ lleell,
then u, and u, admit the same polar decomposition, i.e., there is a complex
measurable function ¢ on K with |p|=1 a.e. |u| such that

P = @lil,  pe = @lugf .

Proor. Since |lul|=luyll+ ljusll, we easily get |u| = ;] + |usl. In partic-
ular |u,|, |us|<K|ul, so by the Radon-Nikodym theorem there are non-
negative measurable function f;, f, such that |u,|=f|u|, |#.l =falp|- Let
u=olul, uy=@1lu], ta=psu,| be the polar decompositions. Then

Pl = @1lpal +@glpel
e(fi+fa)lpl = (pufD)lul + (@afo)lul
o(fit+fa) = pufi+@afe ae. |y,
Q=@ = @, a.e |y,

which proves the lemma.
The above lemma immediately gives

CoROLLARY 3. Let uy, pp € M(K) and put p=py + pty. If ||l =lpeall + lltall,
then

o(lu]) = w(lm])+ o) .

2. Complex Lindenstrauss spaces and complex affine selections.

A complex Banach space W is called an L-space if W~ L:Y(Q,%,m)
for some measure-space (@,%,m).

A complex Lindenstrauss space is a complex Banach space whose dual
is an L-space.

THEOREM 4. If W is an L-space and n: W — W a projection with
norm one, then (W) is an L-space.

Proor. See [8].

CoroLrARY 5. If V is a Lindenstrauss space and n: V - V a projec-
tion with norm one, then n(V) is a Lindenstrauss space.
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Proor. Let n* be the adjoint projection. Then the restriction map
y: V* > (nV)* takes n*(V*) isometrically onto (zV*) and n* is a pro-
jection with norm one.

In [8] Effros proved that

Complex Lindenstrauss spaces may be characterized by: If u,v € M,*(9,K)
and r(u)=r(»), then hom;u=homqy.

This theorem will be fundamental in the following, and we shall refer
to it as Effros’ characterization.

A map ¢: K - M,(K) is said to be a complex affine selection if ¢ is
affine, p(ak) = xp(k) and r(p(k))=Fk; k € K, « € T. p is called T-homogeneous
if p(k)=hom,e(k), ke K .

THEOREM 6. V is a Lindenstrauss space if and only if there is a complex
affine selection on K. Moreover, if a complex affine selection exists, then
there 18 a unique T-homogeneous complex affine selection ¢ on K and ¢(k)
18 maximal for all k € K.

PRrOOF. Necessity. Put g(x)=hom;»,, where », is a maximal measure
in M,*(K) with r(»;)=2. ¢ is well-defined by Effros’ characterization,
and it follows from his proof that ¢ is a complex affine selection.

Suffictency. Assume that ¢: K -~ M,(K) is a complex affine selection.
Let @: V* > M(K) be defined by @(k)=||kllp(k/||k|]). Then ¢ is complex
linear and extends ¢ so ||¢|| < 1. Since r is a norm-decreasing projection,
we get

Il = (@@ = llp®)l < |k, kekK.

Hence @ is an isometry. Let now n: M(K) - @(V*) be defined by n(u)=
@(r(n)). Then = is a projection onto @(V*) with norm one, and since
M(K) is an L-space it follows from theorem 4 that @(V*) is an L-space.
Hence V* is an L-space, which implies that V is a Lindenstrauss space.

" Uniqueness. Let x € K with |jz/|=1. From Lemma 1 it follows that

1 = |zl = lir(a(le@)))ll S lo(lp@I)I < llp@)] <1,
50 w(lg())) € M,+(K).
Let v, € M,+(K) with r(»,) ==, let f: K - R be continuous and convex,
and ¢>0. Choose a simple probability measure 37_,a,¢,, such that (by
[1, proposition I.2.3])
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(2.1) vo(f) £ iy wig)(f)+e, Doy, ==
Since g is affine, we get @(x)=37_, x;¢(y;). Moreover
1 = llp@)l| = 20 xllp@ll = 2105 =1,

so by corollary 3
o(lp(@)]) = Zio1 ool -

Now by lemma 1
2:';1 Ki€y; < Z?ﬂ o‘iw“?’(?/i)l) .
Since f is convex, we get from (2.1):
vo(f) = (2 io(le@) ) +e = [o(lp@)](f) +e .

Hence o(|p(x)|) is maximal and it is the only maximal probability measure
with barycenter x. By lemma 1, homyo(|p(z)|) is maximal. But if ¢ is
T-homogeneous, we get from lemma 1

hom;w(|p(x)]) = homrp(z) = () .

The theorem now follows from the relation

o) = |lzllp@@/lll), xeK.

The proof above also shows

CoroLLARY 7. If V s a Lindenstrauss space, then every ke K with
norm one can be represented by a unique maximal probability measure.

Now by [1, theorem II.3.6]

CoroLLARY 8. If V is a Lindenstrauss space and F is a w*-closed face
in K, then F is a compact simplex.

RemMaRrk. The above corollary may of course be proved by a direct
argument, since a face-cone in an L-space must be a lattice-cone.

THEOREM 9. The following statements are equivalent

i) V is a Lindenstrauss space such that 9, KU{0} is w*-closed.
i) There exists a continuous complex affine selection ¢: K — M (K).
iii) For each f € Cpom(K) there exists v € V such that f|9,K =v|0,K.

Proor. i) = ii). Put @(r)=homyu,, where u, is a maximal probabi-
lity measure with r(u,)==. Then, as in the proof of theorem 6, ¢ is a

Math. Scand. 35 — 16
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complex affine 7'-homogeneous selection. We first prove that ¢(K) is
compact. Let {u,}<¢(K) be a net which converges to u e M,(K). Let
f € Oc(K). Then, since each u, is T-homogeneous:

u(f) = limp,(f) = lim[bomqp,)(f)
= hmlu’y(homTf) = /l’(homTf) = homT/l'(f) ’

which proves that u is T-homogeneous. By lemma 1, each u, is maximal,
and since 9,K U{0} is closed it follows from [1] that

supp (1) € 3,K U {0} .

But since x4 is T-homogeneous, u({0})=0, hence ux is maximal (by [1,
proposition 1.4.5]). Let k € 0,K. Then by lemma 1 the measure

v = o(lu|) + 31— llo(uDl) e+ e-x)

is a maximal probability measure. Since x is T-homogeneous, we get by
lemma 1
#(r()) = homyy = hom(w(ju))) = homyp = 4.

Thus u € ¢(K), which implies that ¢(K) is compact. The map u + r(u) is
1—1 and continuous from the compact set p(K) onto K, thus the inverse
map is continuous, i.e. ¢ is continuous.

ii) = iii). If @ is a complex affine continuous selection on K, then so
is hom;op. Hence we may assume that ¢ is T-homogeneous. By ii) the
map z - [p(x)1(f), x € K, is continuous, affine and T-homogeneous for
all f e C-(K). But if f is T-homogeneous, it follows from theorem 6, Effros’
characterization and [1, corollary 1.2.4]

f(@) = [p@)])(f) forall ze0,K .
iii) = i). When f € Com(K), then by iii) and Bauer’s Maximum Prin-
ciple [1, theorem 1.5.3] there is a unique function v, in ¥ such that

(2.2) f10.K = v;|0, K and |If]l 2 |logl

Assume u,» € M, +(0,K) with r(u)=r(»)=k. Let fe Cyon(K). Then by
(2.2)
m(f) = u(vy) = vy(k) = »(vy) = »(f) .

Hence hom;vy=hom;u, so by Effros’ characterization, ¥ is a Linden-
strauss space. It remains to prove that 9,Ku{0} is closed. By (2.2) it
suffices to prove

(2.3) a¢K u {0} = nfeChom(K) {.’L’ ek I f(x)=vj(x)}
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a) Assume z € K and |jz|| < 1. Let
g:Jfox| aeT}-C

be defined by g(xx)=«. Then g is continuous. By Tietze’s theorem, we
can extend g to §: K - C with ||§]|=|lg|. Put f=hom;§. Then f(z)=1
and ||f]|=1. Hence

f(x)

I

L=l 2 llgll 2 lodaflll])I
lllI= [oge)] > [vg(@)] -

b) Assume x € K with |z||=1 and that there is no » € ¥V such that
[lwll=1 and v(x)=1. Construct f as above. Then f(x)=1v/x).

¢) Assume vz € K, |z]|=1, x ¢ 0,K and that there is v € ¥V such that
v(x)=1=|v||. Then

I

F={yekK|vy=1}

is a w*-closed face in K. Since z ¢ 9,K there are y,z € F such that z=
3y + 32, y,2+ . By the Hahn-Banach theorem, there is a real convex con-
tinuous function g, on F such that

9r(y) = gpz) = 1, gpx) =0.

Define g on U, .poF by g(ak)=ogg(k), x € T, k€ F. The function g is
well defined since F is a face. Extend g to § € C(K) by Tietze’s theorem
with ||§||=|lg]] and put f=hom.§. Then f|F=gp. Let u, be a maximal
probability measure on K with r(u,)==x. Since F is a face, supp(u,)sF
and u, is seen to be maximal on F. Hence

Uf(x) = Sva d/"’:c = SF”}' d:ux = SFgF d.ua,' .
By corollary 8, F is a simplex so [1, theorem II.3.7] gives

SFgF du, = Jp(®) = H9p(y)+9r(2))
21>0=f().

”f(x)

(9 denotes the upper envelope of gz, see [1, p. 4].) (2.3) now follows from
a), b) and c¢) and the proof is complete.

Notes. Theorem 6 was proved for simplexes by Namioka and Phelps,
and for real Lindenstrauss spaces by Ka-Sing Lau [18] and independently
by Lacey [25], and by Fakhoury in a weaker form [24]. However, as
pointed out to us by Hirsberg, there exists a very simple proof in the
simplex-case, and it is this idea we have used in the uniqueness-part.
Ka-Sing Lau [18] also proved theorem 9 in the real case. We have pro-
ceeded in the same way, but the proof is somewhat simplified.
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3. Complex C,-spaces.

A compact Hausdorff space X is called a T, -space if there exists a
map ¢: Tx X - X such that

i) o is continuous,
ii) o(«,0(8,2))=0(xp,x), o«,feT, z€X,
iii) o(1,z)==.

Let X be a T,-space. Then each x €T defines a homeomorphism
0,: X - X where o, (x)=0(x,2), re X (0, and g,-, are continuous by i),
and ii) and iii) imply that ¢,00,, is the identity on X). A function
J € Cc(x) is said to be o-homogeneous if f(o,x)=of(,) for all x €T, z € X,
The class of o-homogeneous function in C(X) is denoted by C,(X).

A complex C -space is a complex Banach space which is isometric to
C,(X) for some T, -space X. If fe Cc(X), then the function

(3.1) [7f1(p) = §a-'flo,p)dx, peX,

where d« is the unit Haar measure, is seen to be continuous and ¢-homo-
geneous. The operator x, is easily shown to be a normdecreasing projec-
tion of C(X) onto C(X). Hence, by corollary 5, complex C -spaces are
Lindenstrauss spaces.

When 7Y is a locally compact Hausdorff space, then Cy(Y) shall denote
the space of all continuous functions on Y vanishing at infinity.

ProrosrtioN 10. If Y s a locally-compact Hausdorff space, then Cy(Y)
18 a C -space.

Proor. Let X=(Tx Y)u{w} be the one point compactification of
Tx Y, and define ¢: Tx X - X by

) = {(ococo,y) if 2= (xg,)eTXY,
)

o(x,x .
(o, ifr=w.

i). o is easily seen to be continuous.
ii). Let x=(xg,¥)€Tx Y, B€T. Then

U(“:“(ﬁ:x)) = 6(0"0(5’ (0‘0,.7/))) = 0(0‘:([3“0,?/))
o(afg,y) = o(ap,(x0,y)) = o) .

I

Moreover
o(x,0(8,w)) = o(x,0) = 0 = o(af,w) .

iii) is verified in a similar way as ii).
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Hence X is a T,-space. Each fe Cy(Y) can in a canonical way be re-
garded as a continuous function on ({1} x ¥)U{w} vanishing at w. Ex-
tend f to f on X by f(«, y)=of(y), (x,y) € Tx Y. Then f is continuous
and o-homogeneous. The map f+ f defined above is seen to be an iso-
metry of Cy(Y) into C,(X). Since each g € C,(X) satisfies g(w)=0, the
above map is surjective, i.e. Cy(Y) is a C,-space.

Let now X be a T -space and V=C,(X). A subset Z<X is called
a-symmetric if x € Z implies o,(x) € Z for all x € T'. Observe that if Z is
o-symmetric, then X\ Z is ¢-symmetric as well. Let ¢ embed X into K
in the canonical way. Then p is continuous, and we have

LeMma 11.

= {o(x) | o (x)*x forall x e T\{1}, z€ X}
and Q(X)gaeKU{O}.

Proor. First we observe that ap(x) =p(o,x) when x € T, z € X and we
note that g(z)=0 if ¢ (z)=x for some x € T\ {1}. Hence by [5, p. 441
lemma 6]

c {o(x) | o(x)*x for all xe T\ {1}, z€ X}.

Let x € X and assume o,(z)+2 for all x e T\ {1}. We shall prove that
o(x) € 9, K. We use a o-symmetric modification of the argument given
in [5, proof of Lemma 6]. Assume

(3.2) o(x) = Yy + ks ko€ K .

Let f,e O(X) with ||f|£1 and assume that f, vanishes on an open
neighbourhood N(x) of z. Since f, is o-homogeneous, we may assume
that N(z) is g-symmetric. Let

h:{ox) | 6« e TTU{X\N(x)} ~C

be defined by k(o,2)=x, « € T and h(y)=0 if y € X\ N(x). Extend A by
Tietze’s theorem to % on X with ||k||=||#|| and put g=n,(k). Then

gx) =1, g(y) = 0 if y¢ N(z) and |g| = 1.
Thus by (3.2)
= g(z) = e(x)(9)
= J(k:(9) +ko(9)) < H(1kalg)] + |Ea(9)])
Hence k,(g) = ko(g) = 1. Similarly we get k(g +fo) = ko(g +fo) = 1. Hence

(3-3) kl(fo) = kz(fo) =0.

1.

IIA
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Let f, € C,(X) with ||f||=1 and f(z)=0. For each integer n=2 there is
an open o-symmetric neighbourhood N, (x) of x such that |fi(y)|<1/n
if ye N, ().
Let M,(x) be an open set containing « such that
M, (z) = M,(z) S N,().
Since N, () is o-symmetric, we get

UaeT Ga(Mn(x)) & UaeT g, ﬂn(x) = Nn(w) b

UaeT Uaﬂn(x) = G(T X M—n(x))

is closed. Thus as above we may construct g,, € Cf(X) such that ||g,|| < 1/n,

ga(y)=0if y ¢ N, (2), and g,(y) =f,(y) if y € o(T x M,,()). Then f, —g,, - f
uniformly and ||f;~g,lls1.
Now since f, —g, vanishes on o(T x M, (x)), we get by (3.3):

0 = lim#k,(fy—9g,) = ky(f1)

0 = limky(f; —g,) = ko(fy) -

Hence o(z)(f) =0 implies k,(f)=Fky(f)=0, f e C(X). By [5, lemma 3.10]
there are «,,x, € C such that k; =, 0(x), ky=oxy0(x). But ||&,||,||k,]| <1, so
lotq]; |oxg) £1 and by (3.2) we get &, =ap,=1, that is, p(x)=k,=k,.

and note that

THEOREM 12. V is a C,-space if and only if V is Lindenstrauss space
and 9,KU{0} is closed.

Proor. If V is a C,space, then V is a Lindenstrauss space and
0,Ku {0} is closed by virtue of lemma 11. Conversely, assume that V is
a Lindenstrauss space with X =0, Ku{0} closed. X can be organized to
be a T,-space by scalar multiplication. Then theorem 9 iii) completes the
proof.

A complex Cz-space is a Banach space which is isometric to a C(X)
for some T -space X, where o, has no fixed points if x € T\ {1}. Now as
in the proof of proposition 10 we get

Prorosrrion 13. If X is a compact Hausdorff-space, then Cc(X) t8 a
C;-space.

The next theorem may be proved by a method similar to that used in
proving theorem 12,
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THEOREM 14. V is a Cy space if and only if V is a Lindenstrauss space
and 0,K s closed.

REMARK. Theorem 14 also proves proposition 13, just as theorem 12
proves proposition 10, by virtue of [5, p. 441 lemma 6].

Nores. The real C -spaces were introduced and studied by Jerison
[16]. His results are presented in Day’s book [4, p. 87-93]. The real ver-
sion of theorem 12 was suggested by Effros [7], and proved by Fakhoury
[9] and independently by Ka-Sing Lau [18]. Theorem 14 is due to Lin-
denstrauss and Wulbert. We have proceeded as in [18].

4. Complex simplex spaces.

Let (@,%,m) be a measure space and assume V*=L.(Q,%,m). Let
¢ € L™(Q,%,m) with |p|=1 a.e. m. Then

(4.1) S={pp|pek, p20 a.e. m, |jp|=1}

is seen to be a maximal (with respect to inclusion) face in K. Conversely,
since the norm must be additive on a face-cone [2], we get that all maxi-
mal faces in K are of the form given in (4.1). If p € 9, K, then it is not
hard to see that p=ay_,, where @ € C and x4 is the characteristic function
of an atom A4 € 4. Thus if § is a maximal face in K and p € 9,K, then
ap € S for some « € T'. Hence

(4.2) VV|S.

A complex Lindenstrauss space V is called a complex simplex-space if
there is a maximal face S< K such that conv(Su{0}) is w*-closed. (Ob-
serve that this definition coincides with Effros’ in the real case [6], see
[9, théoréme 18]).

We shall need the notion of split face which is defined in [1, p. 133]

Lemma 15. 8 is a split-face tn conv(Su—:iS).

Proor. Assume
My + (1 —=A)(—1x) = Ay, +(1=25)(—1¥a) ,

where z;,9;,€ 8, 054, =1, ¢=1,2. Since S is a maximal face in K, there
is @ € V** gsuch that ¢|S8=1. Thus A, =A,=A4. Let u;,v,e M,*? K),
1=1,2, with

() = 25, r(pg) = —1xy, (1) = Yy, 7'(1’2) = —1Y,.
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Since S is a face and Sy=8uU{0} is w*-compact, we get
(4.3) supp (4y), supp(¥;) € So
supp (), supp(vy) € —iS, .

Since the barycenter-map is norm decreasing, we also get

(4.4) /"i({o}) = vi({o}) =0, ¢=12.

Let now f € Cx(8S,) with f(0)=0. Extend f to a T-homogeneous function
f on K. By Effros’ characterization we get

Aua(F) + (L=Dpa(f) = () + (1= Awy(f) .

But f is real on S, and imaginary on —iS,, so by (4.3) u,(f)=»,(f). But
by (4.4) this holds for any f e Ci(S,). Hence v, =y, , which gives z, =y, and
the proof is complete.

COROLLARY 16. Any z € Zy=conv (SU—SU{0}) may be written uniquely
in the form
2 = o Tq+ o —125) + 03+ 0

where 0;20,0=1,2,3, oy + oot oz=1, 25,2, € 8.

Lemma 17. Let a be a real, affine, w*-continuous function on Sy=
conv (Su{0}) with a(0)=0. Then a may be extended to a real, affine, w*-
continuous function ¢ on Z, such that c|—iS8y=0.

Proor. Let ¢: Z, - R be defined by c(z)=«,(x,), 2 € Z,, where z=
0%y + oo —125) + 3+ 0 is the unique decomposition as in corollary 16.
¢ is easily verified to be affine. To see that ¢ is continuous, let {"}< Z,
be a net converging to z € Z,. Applying corollary 16, we get

2 = o @)+ ot (—1x,%) + g’ O,
2 = “lxl + 0‘2( _ixz) + “30 .

By compactness, we may assume that the nets {z,’}, {xs"}, {~,"}, {&2"}
are convergent. Let y,, ¥,, B1, B2 be the limitpoints. Then

2 = Biy1+Ba(—1y2) = Bullyall(wi/llyall) + Ballyall( — e yaf lyall) + 8- O

where B'=1—(|yll8,+IyalBo). (The case [jgs=0 or [yg=0 can be
treated similarly). Now, since the decomposition in corollary 16 is unique,
we get

o = Bilvall, 21 = yifllwill -
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Hence
c(2”)

" a(x,”) > Bya(y,)
Bulylla@/llyall) = ma(@;) = (),
which proves that ¢ is continuous. Since ¢ extends a and c¢| —¢8,=0,

the proof is complete.

When H is a compact convex set, A(H) (44(H)) will denote the space
of complex affine continuous functions on H (vanishing at a fixed ex-
treme point x, in H).

I

THEOREM 18. The following statements are equivalent.

i) V is a simplex-space.
ii) V. A4y(8,) for some simplex S,.
iii) V> A4, where A is a closed self-adjoint linear subspace of Cc(X),
with X a compact Hausdorff space and where Re 4 is a real simplex space.

PRrooOF. i) = ii). Assume that V is a Lindenstrauss space with a maxi-
mal face S< K such that S,=conv(Su{0}) is w*-compact. We have by
(4.2)

(4.5) V2 VI8 < AoSe),  (@=0).

Let a e 4,(S,) and put b,=Rea, b,=Ima. Then b, b, are real affine
w*-continuous functions on S, with b,(0)=b,(0)=0, and may therefore,
by corollary 17, be extended to affine w*-continuous functions &,, &,
on Z, such, that

(4.6) by| —iSy = 0, by|—iSy=0.

By [1, corollary 1.1.5] there are sequences {b;"}, {b,"} of w*continuous
real linear functionals on V* such that b, — b;, b,® - b, uniformly
on Z,.

Let a,™a," € V, n=1,2,..., be defined by

a,Mx) = b*(x)—1b"(ix), =xeV*,
a,™(x) = byMx)—ib(ix), =xzeV*.

Then, by (4.2) and (4.6), a,”+1a," converges to an element c € V satisfy-
ing ¢|8,=a. The set S, is, by [1, theorem IIL.3.6] and corollary 7, a
simplex, so the proof of ii) is complete.

ii) = iii) is trivial.

iii) = ii). Let p € (Re4)* and put

p(a) = p(Rea)+ip(Ima) .
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Then p € A* with ||p||=||p|| and p has only this extension in 4A*, so we
may regard (ReA)* as a subset of A*. Let

So={ped*| |Ip|£1, p(a)=0 for all a € [Red]+}
and let y: 4 — 4y(S,) be defined by

[¥(@)](®) = pla), PpeS, acd.
Then o is an isometry since S, contains the evaluations. Theorem 2.2
in [6] implies that y is onto and that S, is a simplex.

ii) = i). By Hirsberg’s version of Hustad’s theorem ([11] and [13])
each p e A(S,)* may be represented by a measure ue M(9,S,) such
that ||u||=||p|. Moreover, since S, is a simplex, this representation is
unique. Hence

(4.7) A(8e)* ~ M(0,8,)

and the latter is proved in [8, proof of theorem 4.3] to be an L-space.
Let
S=|J{F| Fafacein S,, F n {z,}=9}.

Then 8 is a G, set [1, proposition I1.6.5]. Let e: M(3,8,) - M(2,8,) be
defined by e(u)(C)=u(Cn8), C a Borel set in S,. Then e is seen to be
an L-projection in the sense of [2]. We shall prove

(4.8) e[M(0,8,)] = Ay(Sp)*,
which implies that 4,(8S,) is a Lindenstrauss space. Let p € 4,(S,)* and
let p € A(S,)* be a norm preserving extension of p. By (4.7) there is a
unique measure u € M(9,8,) which represents p and satisfies |ul||=|p|.
Let £> 0. Choose a € 44(8,) with |ja]|<1 such that |p(a)| > ||p||—&. Then
lpll—e = |pll—& = lIpll—¢& < |p(a)]

= |§s,adul = |{sadu| = |ul(S)

= |ul(8) + [ul({zo}) = 11l(So) = llull -
Hence u € e[M(9,8,)]. Let x denote the characteristic function to x, and

assume that u € e[ M(0,8,)] annihilates 4,(S,). Let {a,} be a net of real
affine w*-continuous functions on 8, such that

a,/ 1-%.

(See [1, corollary I.1.4, theorem II1.6.18 and I1.6.22].)
Let £> 0. By [1, (2.3)] we may choose « such that

W((1-%)—a,) < §¢  and |a,(0)] < Feflull .
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Then
lw(D] = 1§ zedpl = 1§(1=%)dul
< |§a,dul+te = |§(a,—a,(0))du| +
+1§a,(0)dul+ 3¢ < de+4e = .

Hence u annihilates A(S,), so by (4.7) u=0. This proves (4.8). Let
0: 8y —> ¢(M(0,8,)) be the canonical map. Then by [1, lemma I1.6.10]

o(8) = {ue M;+(0,8,) | u(S)=1}.

The polar decomposition gives that {[,u + || ll=]lpl|+|lu]| implies x=0, so
we may conclude that o(S) is a maximal face of the unit ball
in ¢(M(9,:8,)). Since g(8S,) =conv (o(S)u{0}) is compact, the proof is com-
plete.

Let V be a Lindenstrauss space and assume that e is an extreme point
of the wnit ball in V. Put

S ={peV*| ple)=1=|p|}.

Then 8 is w*-compact. Let y: V — C(S) be the canonical embedding.
Then the following theorem is proved in [12]:

THEOREM 19. (Hirsberg—Lazar.) The map v is an isometry such that
y(e)=1g.

As in the proof of i) = ii) in theorem 18 we now get

CororrArY 20. If V is Lindenstrauss space and the unit ball of V
admits an extreme point, then V = A(S) where S is a compact simplezx.

REMARK. As in the last part of the proof of ii) => i) in theorem 18,
we see that the unit ball in a Lindenstrauss space V admits an extreme
point if and only if there is a maximal w*-closed face tn K. For more in-
formation about such Lindenstrauss spaces see [12].

e

A complex Banach space V is called a complex M-space if it can be
represented as follows: There is a compact Hausdorff space X and a set
& of triples (%,,Y,,4,) € X x X x[0,1] such that V is the subspace of
Oc(X) satisfying

f(xa)zlaf(ya)r aed,feV.

Clearly V is self-adjoint, and by [17] ReV is a Kakutani M-space.
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Moreover, each self-adjoint linear subspace of Cc(X) whose real part is a
Kakutani M-space arises in this way. Now, by theorem 18, a complex
M-space is a complex simplex-space.

Notes. The real simplex-spaces were introduced and studied by
Effros in [6]. Our results are based on the ideas of [12]. Furthermore,
our lemma 17 is closely related to [1, proposition II.6.19].

5. Complex G-spaces.

Let X be a compact Hausdorff space. A linear subspace V< Cc(X) is
called a complex G-space, if ¥V consists of those fe C(X) satisfying a
family &7 of relations:

f(#g) = Agoof¥a); ZTa¥a€X, 0, €T, 4,€[0,1], a el .

Complex G-spaces are complex Lindenstrauss spaces by corollary 5 and by
the following:

PropositioN 21. If V is a G-space, then there is an M-space A such
that V ~ P(A) where P: A - A is a projection with ||P|| 1.

Proor. We adopt the notation in the definition. Let Y=Tx X be
organized to a T, -space in the canonical way. (See the proof of Proposi-
tion 10). Let A be the closed subspace of Cc(Y) satisfying

F(B,x,) = 2, F(xof.y,), ae, BeT.
Then A is a complex M-space. The map 7': V - A defined by
[Tfl(x,2) = of(x), (0,2)eTxX,
is seen to be an isometry of ¥V onto a linear subspace of A4, since
(TF1(B,%a) = Bf(@a) = 2aB%af(¥a) = AlTf)Boxasya), a€S, BET .
If F € A is o-homogeneous, then
F(l,2g) = A F(%3,9a) = Ao F(L,4,), aesd .

Hence T takes V onto the o-homogeneous functions in 4. Now the pro-
jection P==,|A will do. In fact, let F € 4, then

P(F)(ﬂ’xa) = So‘_lF(‘xﬂ’xa) do = S“.I}'aF((o‘aﬁ)o‘7ya) do
= A P(F)(;B.Ys), a€s, BeT.
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LeMMmA 22. Assume that V is a Lindenstrauss space and let E <0, K be
compact with Enol =@ whenever « € T\{1}. Then F=conv(E) is a
w*-closed face in K.

Proor. By Milman’s theorem [1, p. 50] we have
F = {r(p)| peM*EB)}.

Observe that a measure y € M,*(#) is maximal on K.
Assume k,k, € K, A€ (0,1] such that

k = Ak, +(1—Ak,e F .

Let u € M H(E) with r(u) =k, py, py € M1*(0,K) With r(py)=ky, r(ps) =4ks.
Put B'=U_;aF, let ¢>0 and choose a compact set C such that

CnkE =0,
m(E'V0) 2 1—¢, puy(B'UC) = 1—¢.

Let f be a T-homogeneous function on K such that f|E=1, f| U _,«C =0,
Ifll£ 1. By Effros’ characterization we get

1= u(f) = () + (1 - Dus(f)
2 Mpldu+(1=2A)\g 1du,+ 26 < 1+ 2¢.

Hence u,(E')=py(E')=1. Assume now u,(H)=+1.
Let f be a T-homogeneous function on K with f|E=1 and ||f||<1.
Put E'=U,r,xE. By Effros’ characterization we get

1 = w(Ref) = dpy(Ref)+(1—Dpug(Ref)
= A{gRefdu, +A{gRefdu, + (1—2A)ps(Ref)
< ASgldu+A\gldp +(1=A)py(1) = 1,
which is a contradiction. Hence y,(£)=1, which implies %k, € ' and the
proof is complete.
Let V< C(X) be a G-space. Put
Z ={zxeX| 3(y,4x) e X x[0,1)xT such that
f@) = Aaf(y) forall fe V}.
Let 6: X - K be the canonical map. Then we have

LeMMA 23.
0. K = Jper 20(X\2).
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Proor. We use the same notations as in the proof of proposition 21,
and when W is a Banach space, then B(W) will denote the unit ball.
Clearly no point in §(Z) is extreme, so by [5, p. 441 lemma 6] we have

0. K S Uger x0(X\Z) .

To prove the converse inclusion, let ;e X\ Z, g € A. Then
P*(a(l;wo))(g) = 6(1,“’0)(1)(9)) = Szx“lg((x,xo) do
= §aL(x, zo)(g) dx .
Hence
(5.1) P¥(6(1,,)) = §a~18(x,,)(*) dox .
Let
Sy = conv({8(x,x) | x€T, xe X}u {0}).

Then §, is a simplex and 4 44(S,) (see section 4). By the real theory
[7, Remark 8.2], U, 1 d(x,z,)U{0} is a w*-closed subset of 9,8,. Let

foir User 8(a,7) U {0} > C

fo(b(x,®)) = «, a€T,
fo(0) = 0.

By [3, corollary 4.6], f, can be extended to an element of A44(S,) with
norm one. Thus there is an f € 4 such that f(«,z))=«, x € T and ||f||=1.
Let

be defined by

By = User 678, 2), By = Uajper B, 7,) -
Then E,, E,< 0, B(4*) by the real theory. Put F' = conv (¥,), H = conv (£,).
It follows from Milman’s theorem that 0,F = E; and 0,H = E,. Moreover,
f_l(l) n Ea = El .

Hence f-1(1) n H=F. Assume P*(§(1,x,)) ¢ F. Then P*(é(1,x,)) ¢ H and
since H is circled it follows from the Hahn—-Banach theorem that there is
g € A such that

[P*3(1,x0)(g)l > 1, [8(x,%o)(g)] < 1, a€T;

which by (5.1) gives a contradiction. Thus P*(é(1,z,) € F.
Assume
8(xy) = Aky+ (1 —A)ky, kyk,e K.

Since B(P*(A*)) and K are affinely homeomorphic, there corresponds
unique
Fo= PrTeYly),  Ey = PRI,
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such that
PX(8(1,3,)) = Aky+ (1 —A)k, .

But F is, by lemma 23, a face in B(4*). Hence k,,k, € F. Since each
g € P(A) is constant on F, we get

ky(g) = Fylg) = P*(3(Lxo)(g), forall ge P(4).
Thus d(xy) =k, =k,, that is, d(x,) is an extreme point.

THEOREM 24. Let V < Cc(x) be a Lindenstrauss space. Then the following
statements are equivalent.

i) _V__@;s: a G-space,

ii) 9,K <[0,119,K.

Proor. Let z € Z. Put

A =inf{A€[0,1)| 3y, € X, x, €T, f(&)=Ax,f(y,) forall feV}.
By compactness, we may without loss of generality assume that (4,y,,;)
converges to (Ag, ¥y, %) € [0,1) x X x T. By continuity
f(x) = Agoof(y,) forall feV.
If 4,=0, then é(x)=0¢€[0,1]0, K. If 4,=0, then d(y,) € 2,K, which gives
d(x) = Ao(xgd(yy)) € [0,110, K .

In fact, if d(y,) ¢ 9, K, then by lemma 23 there is (4,y,4) € [0,1) x X xT
such that f(y,)=2«f(y) for all fe V. This implies that

J@) = Aooof(yo) = (AA)(xox)fly) forall feV,

contradicting the definition of 4,. i) =>ii) follows now easily from lemma
23.

ii) = i) Let A<C.(0,K) be the space of T-homogeneous functions f
satisfying

(5.2) f(k) = RIS K], ked K.
Then A is a G-space. We shall prove A~ V. It is enough to prove
AcV|o,K.

Let fe A. Then Ref satisfies (5.2), and since V is a Lindenstrauss
space and f is T-homogeneous, we have

(5.3) v,(Ref) = vy(Ref)
whenever v,,v, € M,+(0,K) with r(y;)=7(v). Assume k € 9,K. Then
v = 31+ |-l ey + 31— 11olD)dreryyiyy
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is a maximal probability-measure with r(»)=%k by ii), and »(Ref)=
Ref(k). By (5.3) this holds for any maximal probability measure with
barycenter k. Hence by [7, theorem 2.3] Ref may be extended to an
affine real w*-continuous function g on K with ¢g(0)=0. Let F: K - C

be defined by F(z)=g(x)+19(—1x), * € K. Then F € V and Flae_K=f.

RemMARk. The G-spaces include the M-spaces and it is readily verified
that a C -space is a G-space.

Nores. The real G-spaces were introduced by Grothendieck in [10].
Proposition 21 was announced in [22] in the real case, but, as pointed
out to us by Jan Raeburn, the proof is incomplete. However, the same
idea can be used to give a correct proof. Theorem 24 was proved by
Effros in the separable, real case [7] and in general by Fakhoury [9].
It is on his ideas that we have based the proof of lemma 23, and the
other part of theorem 24 is proved as in [7]. Lemma 22 was proved by
Lazar for real Lindenstrauss space [19].

6. The classification scheme.
Summarizing the foregoing we get the diagram

62 < @(X) — ff(S)

y v
aa <~ OO(Y)

¥ ¥
G« M — 4,8)
v v

{V| V*=LMNQ,%,m)}

where A(S) denotes the class of Lindenstrauss spaces with extreme points
on the unit ball, 4,(S) denotes the simplex-spaces, and so on. The symbol
A — B means that the class 4 is included in B.

It is also possible to derive the intersections between the classes. In
fact:

(6.1) GnA®) = Cyndys) = 0(X),
(6.2) GnAdys) =1,
(6.3) C,nA,8) = Oy(7).

Proor. If V is a @-space with an extreme point on the unit ball,
then there is a maximal w*-closed face § in K with closed extreme-
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boundary. Hence S is a Bauer-simplex and the first equality in (6.1)
follows from [1, theorem I1.4.3]. If § is a maximal face in K such that
conv (SU{0}) is compact and 0,K is closed, then 9,5 is closed. Hence S
is closed and [1, theorem II1.4.3] will do. If V is a simplex-space with

0, K < [0,1]0,K ,

then there is a maximal face § in K such that conv (Su{0}) is w*-compact
and

0,8 = [0,115,8 .

Now [7, theorem 2.3] gives (6.2) as in the proof of theorem 24. If V is a
simplex-space with 9, K U{0} closed, then there is a maximal face 8 in K
such that 9,SU{0} is compact. Hence S,=conv(Su{0}) is a Bauer
simplex and by [1, theorem 11.4.3] we get

Co(0.8) = Ay(Sy) = V.

Nortes. The classification scheme is essentially due to Lindenstrauss
and Wulbert [22], but was later on modified in [20]. For more informa-
tion about complex Lindenstrauss spaces, see Hustad’s works [14] and
[15], where he studies intersection properties of balls and extensions of
compact operators. These topics are related to Lindenstrauss’ results [21]
in the real case.
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