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ON NORM-CONTINUITY AND COMPACTNESS
OF SPECTRUM

DORTE OLESEN

Introduction.

In [5] R. R. Kallman proved that a unitary representation of a locally
compact abelian group is norm-continuous, if and only if, the support of
its associated spectral measure is compact. For the case of a one-para-
meter group of invertible isometries of a Banach space, it is well-known
that norm-continuity is equivalent to boundedness of the infinitesimal
generator.

In section 2 we generalize these statements using the concept of spec-
trum of a representation introduced by W. Arveson in [2] (see 1.4(i)
below). Specifically, we prove that a representation of a locally compact
abelian group as invertible isometries on a Banach space is norm-con-
tinuous if and only if it has a compact spectrum.

In section 3 we show that when two representations (U,X) and (V,Y)
of the group G give rise to a suitably continuous representation @ on
B(X,Y),

o(4) = V,AU_, Vge@G, YAeB(X,Y),

then the spectrum of @ is the closure of the difference between the
spectrum of ¥ and the spectrum of U. This generalizes a result in [6]
concerning the spectra of a derivation of B(B(X,Y)) and its generators
in B(X) and B(Y), in the case where the operators are Hermitian.

In [7] J. Moffat shows that a norm-continuous representation of a
connected abelian group as automorphisms on a von Neumann algebra
is inner, i.e. implemented by a unitary group in the algebra. His proof
uses the result by Kadison and Ringrose [4] that the connected compo-
nent of the identity automorphism consists of inner automorphisms. In
section 4 we use the compactness of spectrum to construct a unitary
group with minimal positive spectrum which implements the norm-
continuous automorphism group, in the case where the group is locally
compact abelian and connected. The structure theorem for locally com-
pact abelian groups is used to reduce this problem to that of constructing
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mutually commuting unitary implementations for the reals and a com-
pact connected group. As shown in [8], this method yields a proof of the
result that every derivation of an AW*-algebra is inner (thus a new
proof that the same holds in a von Neumann algebra, see also [2, theo-
rem 4.1]).

In section 5 we show that if a norm-continuous locally compact abelian
connected group of automorphisms acts on a simple C*-algebra 4, the
,»»minimal’’ unitary implementing group in the enveloping von Neumann
algebra of 4 actually multiplies 4, thus belongs to A when A4 has a
unit. This result generalizes the result by Sakai [13] that every deriva-
tion of a simple C*-algebra is inner (see also [9, 2.4 and 2.5]). In case the
group is compact, the spectral projections of this unitary group multi-
ply A.

The idea of investigating the action of a compact connected group on
a simple C*-algebra arose in a conversation with G. K. Pedersen.

1. Notation and preliminaries.

1.1. In the following, @ denotes a locally compact abelian group, @ its
dual group, X a Banach space, X, a subspace of the dual space of X
satisfying that

(i) llel=sup{le(®)| | o€ X4, llollS1} for every z in X;
(ii) the o(X, X,)-closed convex hull of a o(X, X, )-compact subset of X
is o(X, X 4 )-compact.

For example, X, may be the whole dual of X, or it may be a predual.
We say that

DerintTION 1.2, (U,X) i8 a representation of G on X, if U is a homo-
morphism of @ into the group of invertible isometries in B(X) which is
(X, X,)-continuous, i.e.

o(Ug—x) >0 as g—>0 VzeX, VoeX,.

1.3. If (U,X) is a representation of G and u a complex measure of
finite variation, then the linear functional on X, defined by

0 > Se(Ug)dulg) = o(y)

gives an element y in X, thus the map 2+ y defines an operator U(u)
on X. The map

ue Ulp)
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is a homomorphism of the convolution algebra of bounded measures
into B(X), which satisfies that ||U(u)|| < ||u|.
With I the identity on X we say that

(i) U is norm-continuous when
IU,~I| >0 as g0
(ii) U is strongly continuous when
U~z >0 as g >0 VxeX.
(Note that (ii) is equivalent to ¢(X,X')-continuity.)

DErFinITION 1.4. Let (U, X) be a representation of G.
(i) the spectrum of U is
spU = hull{fe LY(@) | U(f)=0}
(ii) the spectrum of z in X with respect to U is
spyz = hull{fe LY(@) | U(f)x=0}
(iii) for every closed subset E of @ the spectral subspace is
MUE) = {xe X | spyx<E}

ProposrTioN 1.5. Let u, and u, be measures of finite variation such
that ji, = ji; on a neighbourhood of spU. Then

Up))r = Ulpg)x VzeX.

Proor (see also [3, lemma 2.1.3(k)]). Let (f,);., be an approximate
unit for LY{(@), then

U(f)U(uy— po)x - Ulpy — pg)x

and each function f, * (u; —u,) Will by the generalized Wiener Tauberian
theorem belong to the ideal

= {feI}G) | U(H=0}

since its transform vanishes on a neighbourhood of hulll.

ProrosiTION 1.8, Let (U, X) be a representation of G, let Y be the norm-
closure in B(X) of the image algebra U(LXG)). The spectrum of Y, Ay,
18 equal to the spectrum of U.

Math. Scand. 35 — 15
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- ProposrrioN 1.7. Let (U,X) and (V,Y) be representations of @, let
D=V -U-1 (that is, D,(A)=V, AU, for every A in B(X,Y)) be a repre-
sentation on B(X,Y). For E, and E, two closed subsets of G, let Eq be the
closure of E,+ E,. Then

M*(E)MU(Ey) < MV(Ey) .

For the proofs of these statements, the reader is referred to [2], [3] or
[10].

2. On norm-continuity and compactness of spectrum.

ProposiTioN 2.1. Let (U,X) be a norm-continuous representation of G.
Then sp U is compact.

Proor. Take (f;), to be an approximate unit for L'(G). Under the
assumption of norm-continuity of U we see that
UG -1 >0 along 4,

where I denotes the unit element in B(X). Thus Y =U(LYG))" is a
commutative Banach algebra with unit, from which it follows that its
spectrum A, =spU is compact.

ProrosiTioN 2.2. Let (U,X) be a representation of G with compact
spectrum. Then U 18 norm-continuous.

Proov. Choose f € L}(@) such that f is identically 1 on a neighbourhood
of spU and has compact support. Then by 1.5 above we have that
Ufix=2 VzeX,
that is, U(f)=1. But then with f,=¢,+f we see that

U,—-1 =U(f,—f)

NUp=1l = 1Uf=Nll = IIfy—1ll

from which the desired continuity property is evident.

thus

Lemma 2.3, Let (U,X) be a representation with compact spectrum. Let
o(U,) denote the spectrum of the operator U, as an element of B(X). Then

o(U,) = {(9,7) | yespU} Vged.
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ProoF. As seen above, U,=U(f,), where f is an element of LY@,

whose transform f has compact support and is identically 1 on a neigh-
bourhood of spU. Now

or(U(f)) = {fg(y) | yespU}
= {f»)g.7) | yespU}
= {(9,7)| yespU},

and since the spectrum is a subset of the unit circle, thus equal to its
boundary, we have that

UB(X)(Ug) = O'Y(Ua) = {(g,)’) l Y €SP U} .

ExampLE 2.4. Let (U,H) be a strongly continuous unitary group.
Then by Stone’s theorem we know that

U, = $4(9,7)dP(y)

with P the associated spectral measure. It is not hard to see that sp U
is the support of P on G (for a more detailed account, see [10, 2.5]).

ExampLE 2.5. Let D be a Hermitian operator on X, that is, U,=e%P
is a one-parameter group of isometries on X. It follows from the above
considerations that

o(D) =spU.

ExampLE 2.6. Let (U,X) be a representation of the compact abelian
group G. Then
yespU < U(—y) £ 0.
This is seen as follows:
Each y in @ is in L}Q) with
- — 0 +w
(~0) = §@N)g.0)d = Sa.y-w)dg = {] 772
Thus —y ¢ spU implies that the support of ¥ is in the complement of
spU, that is, U(—y)=0.
If y esp U then by definition U(—1y)+0.
Note that for y and o in G
U =@
U@ = Uwa) = {0 100

ExamprE 2.7. Let (U, X) be asin 2.6, and assume that sp U is compact,
that is, spU={yy,...,7,}. Then

U, =270U0(=v)gv:) Vge G.
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To see this, let ze X, g€ X,. Denote by f the function gr o(Ux).
We have

fo) = §e(Ua)g.9)dg = o((UR)z)
so f has support in {—y,,..., —y,}. It follows that

f(g) = o(Ugz) = 370 o(U(—v1)2)(9,74)

and so we have the conclusion

U, = Z?-o U(—y:(9,74) -

(That U is then norm-continuous as claimed in proposition 2.2 is now
immediate.)

3. On the spectrum of composed groups.

3.1. Let (U,X) and (V, Y) be strongly continuous representations of ¢
and let @ be the homomorphism defined by

®,(4) = V,AU,* VAeB&X,Y).

Then @ is a representation on B(X,Y) in the sense of 1.2, when we take
B(X,Y), to be the closed linear span of elements p @« forp € Y’, z € X,
where (o @ z)(A4)=p(Ax).
The integral
D(p)A = §D,(4)du(g)
defines a o(B(X, Y), B(X, Y),)-continuous linear operator ®(u). For the
proof of this, see [2, section 1].

ProrosITioN 3.2. Let (U,X) and (V,Y) be strongly continuous repre-
sentations, and let ®=V-U-2 be as in 3.1. Then sp® is the closure in @ of
{spV —-spU}.

Proo¥. Let y € @ which is not in the closure of {sp V —sp U}. Let ¥,
be a compact neighbourhood of y, which is disjoint from {sp V —sp U}.
Then

(Vo+spU)nspV = O

from which it follows that
M®(V)MU(spU) = MY (Vy+spU) = {0}
since M¥(spV)=1Y and
MV (Vy+spU)n M¥(spV) = MY((Vo+spU)nspV) = M¥ (D).
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Since MU(spU)=X this means that M®(V,)={0}, thus &(f)=0 for
every f in L}(G) whose transform has support in V,. This shows that
y ¢ sp®P. So we have obtained that

sp® < {spV-spU}-.
We also want to show that
spV—-spU < sp®.

Let AespV, uespU. Let V,, respectively V,, be compact neighbour-
hoods of these elements. Then

MY(V,) + {0} and MU(V,) + {0}.

Pick z, in MU(V ), with ||jzs||=1, and y, in MV (V,), with [ly,||=1. Choose
@ in X’ such that ¢(x,) =1, ||¢||=1. The operator 4: z » y,p(x) in B(X, Y)
has norm 1. Thus

M¥(V) € BX,Y)MU(V,) = Msp®)MU(V,) < M7 (spd+7,).

It follows that Aesp®+ V,, since otherwise we could choose a neigh-
bourhood V,° of 4 disjoint from sp®+ ¥ ,, and

MY(VonV) € MV(V,O)n MV (spP+7V,) = {0}
in contradiction with A € sp V. Thus we obtain

AeNav, (5PP+V,) = spP+{u}.

CoroLLARY 3.3. Let (U,X), (V,Y) and (P,B(X,Y)) be as in 3.2. Then
D is norm-continuous if and only if U and V are both norm-continuous.

Proor. Follows directly from 2.1, 2.2 and 3.2.

CoROLLARY 3.4. Let o be the element of B(B(X,Y)) defined by
«(X) = AX-XB

where A and B are Hermitian elements of the algebras B(Y) and B(X)
respectively.
Then o(x)=0(4)—a(B).

Proor. Both ¢it4 and e#B are norm-continuous representations of R
with spectra equal to those of the generators (compare with 2.5).
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4. Connected groups acting on von Neumann algebras.

Let A be a von Neumann algebra acting on a Hilbert space H. Let
G be a locally compact abelian group, and assume («, 4) to be a g-weakly
continuous representation of G as *-automorphisms on A. For every
closed subset B of G p(E) denotes the largest left-annihilating projection
of M*(E)in A. Let Z(M*{0}) denote the center of the fixed-point algebra
M={0}.

LeEMMA 4.1. p(E) € Z(M*{0}).

Proor. That p(E) e M*{0} follows from the invariance of M*(E) under
the group. Assume z to be a self-adjoint element of M*{0}. Since, by
taking U=V =« and noting that for every closed ¥ in @, M®(F) con-
tains the left multiplication opperators defined by elements in M*(F),
we see from 1.7 that

M*{0}M*(E) < MXE) .

We conclude that p(E)x € Ap(E) and thus
p(E)e = p(E)xp(E) = (p(E)xp(B))* = zp(E) .

From now on, assume that G is also connected. By the well-known
structure theorem (see [12, 2.4.1]) G is the direct sum of R” for some n
in N and the compact group K. Since K is a continuous image of G,
K is also connected, thus the dual group K can be ordered (see [12, 8.1.2
(a) and 2.5.6 (c)]). Let S be a semigroup in K which satisfies that

8n(-8) =10, Bu(-8=~F.
Let 7 denote the product [0,c0)".

THEOREM 4.2. Let (x,A) be a morm-continuous representation of
G=R"QK. .
There exists a unitary group (w,H) in A with spucV x 8 such that

ay(®) = uyzu*
Jor gin G and z in A. .
If (v,H) is another unitary group implementing x with spv< ¥ x 8,
then (vu*,H) is a unitary group satisfying

spou* < ¥ x K
ProoF. Let (a%,4) denote the subgroup «g ... ¢, 10,...,0, Where? is the

ith coordinate. This one-parameter group has a self-adjoint derivation d¢
as its infinitesimal generator, that is, af, =% for every ¢ in R.
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Let p,=p[s, ) be the largest left-annihilating projection of M g, o).
Then

Sk Py
is an increasing projection valued map with py=0 and
Pisifj+e = 1, Ve > 0.
It is proved in [8, theorem 2] that the unitary group in 4 defined by
ui, = lim,_,, SQ"‘”“e“sdp(s)

(where the integration is carried out in the Riemann-Stieltjes sense)
satisfies that
oi(z) = uhz(ui)* Vxed, ViteR.
Whenever v, implements «* each v%,€ 4, and spv®<[0,0), we have by
[8, proposition 3] that
spovi(ut)* < [0,00) .

Since p, € Z(M “‘{0}) by 4.1, the families all commute, i.e.
wud = wut  Vi,j.

Now let (8,4) denote the compact subgroup f,=«,... o, Here we
define .
(I-p)H = [M{y + S}H])

(that is, py=p(y+;§) with notation as in 4.1). The map y - p, is mono-
tone increasing, and is piecewise constant, taking on only a finite number
of values (compare with examples 2.6 and 2.7). Let

spf = {""7n’° e =700, ¢ °s7n} .

(That the spectrum is symmetric follows from the biimplication

ﬂg(x) = (g3yk)x < ﬂg(x*) = (g’Yk)x* .
Define

uﬂ = 2;;0 (9»71!)(Pyi+l—py,~) .
Then

Mufy+8) = [(M{y+8}H]
and so for all w and y in @
MP{w+8)Mufy+ 8} € Mu{w+y+5}.
Thus by [2, theorem 2.3]
M{w+8) € Mvv*{w+8)
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for every w in @, which shows that
Mo} = MP{w+8}n MP{w-8} = M*{w+8} n (MP{—w+8})*
S M {o+8) n (M***{—w+8})* = M¥="{0}.

Thus inspection of 2.7 reveals that g=wu-u*.
Whenever v, is an implementing group for g with spv<S, that is,
M?(8S)=H we have that

MPy+S}H = M*{y+8}M~(8) ¢ M*{y+8}
thus . N
Me{y+8} ¢ M°{y+8} vye@,

from which we see that spvu* <=R.
Using 4.1 to see that w, commutes with each uf, ¢=1,...,n, we have
that the unitary group

(- stpg) P Ul udy .o ut w,

implements « and has positive spectrum.
The spectral minimality claimed in the theorem follows from the
minimality property of each subgroup.

5. Connected groups acting on simple C*-algebras.

Let A be a C*-algebra and denote by A’’ the enveloping von Neumann
algebra of A, isomorphic with the second dual of 4. For any set B in
the self-adjoint part A, of A", let B~ denote the norm-closure and B™
the set of operators in A., which can be obtained as strong limits of
increasing nets from B. Likewise B, = —(—B)™. The class ((4s)™)~
consists of the so-called lower semi-continuous elements of 4,,. If 4

denotes the C*-algebra obtained by adjoining the unit 1 of A"’ to 4, then

((Asa)m)_‘l‘ R1 = (Jsa)m .
([1, Proposition 2.5]).

If M(A) denotes the C*-algebra in A" of elements z such that x4 <A

and Az< A then
M(4) = (Aw)™ 0 (dia)
([11, theorem 2.5]).

Assume (x,A4) to be a norm-continuous representation of G on A.
Then («’’,A") is a norm-continuous representation of G on A"’ and this
implies that the results of the preceding section are applicable, so we
have the following
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ProprosITION 5.1. Let (x,4) be a norm-continuous representation of the
locally compact abelian and connected group G. Then there is a unitary
group (u,H,) in A" with spectrum in the positive cone of @, which imple-
ments the action of &' on A", and which satisfies that whenever (v,H,)
has spectrum in the positive cone of G and implements &', then the spectrum
of vu* is positive in G.

Here we want to sharpen this result in the special case where 4 is a
simple C*-algebra, that is, 4 has no closed ideals except {0} and 4. As
a first step we prove the following, which may be of independent interest.
Let A denote the spectrum of 4.

PropoSITION 5.2. Let G be a compact connected abelian group, let (x,A)
be a norm-continuous representatwn of G. Assume @ to be ordered by the
semi-group 8. For each n in A4, let v, denote the maximal element in the
spectrum of m+x. The map =y, is continuous on A if and only if the
largest left- -annihilating projection p, and the largest right-annihilating
projection q, of M*{y + S} in A" both belong to M(A) for every y in G.

ProoF. Let spa={—y,,..., =91,0,%1,. . .,¥5}, With y,<y,,, for each
t=0,...,n. (y, denotes 0). Let m denote the map m y,. If m is con-
tinuous, the inverse image m~'({y,}) is both closed and open for every
k=0,...,n. Thus A4 is decomposed as a direct sum of two-sided ideals

A=10..0I,

with [, =m-1({y,}). As the action of « leaves each I, invariant we may
restrict attention to the case where m+ y, is the constant y,. Now the
unitary group with minimal positive spectrum which implements « is

Uy = 200 (97 (P —Py) » X
Py denoting 1. The group with minimal positive spectrum implement-
ing x~1 is
V= im0 (7@ = ) »
4,,,, denoting 1.
The group (g,7,)v., implements & and has positive spectrum, thus
by 5.1 .
Sp((9,7n)v-g%—) < 8
that is, R
sp(wv) < y,—8.

We know from our assumption that « and then also (x)-! have y, in
the spectrum, and so this must also hold for the groups u, and v, im-
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plementing these automorphism groups. The spectral projections corre-
sponding to y, are 1 —p, and 1—gq, , and both are thus different from 0.
We see, however, that

(I-p,)1-g,)=0.

If not, y, +y, € sp(wv), a contradiction to y, being an upper bound on
this set. Analogously

(l_pyn)(qVi+1—Qyi) =0 Vi:l:" N
and so we have by summation

(1-p,)(1-g,) = 0
that is,

(1-p,)8, = 1-p,,.

(Note that this observation formed a part of the proof of 4.2.) Thus
1-p,, %0 implies that (1—-p, )g, + 0 and since this projection is a sub-
projection of the spectral projection for u,v, corresponding to y,, we have
that y,, € sp(uv).

Analogously we can show that the assumption y, € sp(n-«) for every
irreducible representation x implies that y, € sp(n(u)n(v)). Since for
every g uyw, implements the identity automorphism, it is a central ele-
ment. Thus its spectral projections are all central, and therefore their
images under & are either 0 or 1. The fact that y, € sp(n(u)n(v)) thus
implies that

n(ug'pg) = (gsyn)l
for every g in G.
Using that

1 —py € (A+)m’ (1 —qy) € (A+)m

we have that u, and v, are universally measurable in the sense of [11]
and as the atomic representation z,=@, 4# is faithful on this subset

n

of A" (see [11, theorem 3.8]) we get that
Uy = (grYn)vg* Vgel@.
This shows that
spu = {0,...,7,} = Yn+spo*
and as y;<y;,, for ¢=0,...,n we have the identification
Yi = Vn"Vn—
of the eigenvalues as well as the identification

Priva™ Pri = Tynisr™ Iyn
of the spectral projections.
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l—pyn = q‘}’l 4
Pon=Ppuy = Ty= 8y = =140,

and so on. Thus in general
1 =Py = Gpry -

As (1-p,) € (4,)™ this shows that ¢, € A )mn(4),,.
Thus each g,€ M(4) by [11, theorem 2.5] and so this also holds for
each p,, y in Q.

Conversely, if we assume that p, € M(4) and ¢, € M(4) for every y
in @, then the group

’
U, = Uy = ’Ug’l,l«g

is central and multiplies 4. So its spectral projections

e = (g7, dg

are central and multiply 4, which means that the function e: z & ||lz(p,)||
takes on the values 0 and 1 only and is continuous. Thus

| va=wi} = {=| alp) =1} = e({1}) = e((3,3))

is both open and closed, that is, & - 9, is continuous.

THEOREM 5.3. Let A be a simple C*-algebra, let G be a locally compact
abelian and connected group. Let (x,A) be a norm-continuous representation
of G. Then « is implemented by a unitary group in M(4).

Proor. For G@=R, the proof of this is given in [9, 2.4 and 2.5]. For @
compact connected and abelian it is an immediate corollary of 5.2. As
in the proof of 4.2 we note that the unitary groups in M(4) we have
constructed, which implement the subgroups

0(‘, = 0‘(0..__,{._“,0)’ ﬁka" = lx(o,...o,k)

all belong to Z(M{0}), thus are mutually commuting, and so their
product is a unitary group in M(A) implementing the total action of «.
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