MATH. SCAND. 35 (1974), 215-222

MAXIMAL p-SYSTEMS AND REALCOMPLETENESS

DON A. MATTSON

1. Introduction.

Let X be a non-compact, completely regular Hausdorff space, and let
C(X) be the ring of continuous real-valued functions defined on X. The
subalgebras of functions in C(X) that vanish at infinity or which have
compact support are denoted by C.(X) and Cr(X), respectively.

Each (Hausdorff) compactification 6X of X may be viewed as the
Smirnov compactification of the proximity space (X,d), where subsets
A and B of X satisfy A46B if and only if the closures of 4 and B in §X
have non-empty intersection. Let P(X) be the collection of proximity
mappings of (X,d) into the real numbers R, where the proximity on R
is induced by the usual metric. The rudimentary algebraic structure of
P(X) has been observed in [1].

If P*(X) is the algebra of bounded members of P(X), then P*(X) is
also the algebra of real-valued uniformly continuous functions relative
to the uniformity on R associated with the standard metric and the
unique totally bounded uniformity in the proximity class of é.

In this paper we show that for any compatible proximity on X,
O, (X) is the intersection of all the free maximal p-systems in P(X), and
that C(X) is always the intersection of all free ideals in P*(X).

A member f of C(X) is constant at infinity if f—r e C(X), for some
r € R. The collection of functions constant at infinity is characterized as
the collection of functions uniformly continuous with respect to every
admissible uniformity on X.

Realcompleteness for (X,0) is characterized by means of clusters and
p-stable families of closed subsets of X. From this several characteriza-
tions of realcompactness are obtained. When é =4, the proximity asso-
ciated with the Stone-Cech compactification X of X, it is shown that
X is realcompact if and only if no free maximal p-system is an ideal.

2. Proximity spaces and Cg(X), C(X).
The following results concerning Cx(X) and C,,(X) may be found in [2].
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(2.1) Cg(X) is the intersection of all free ideals in C*(X).
(2.2) Cg(X) is the intersection of all free ideals in C(X).
(2.3) C,(X) is the intersection of all free maximal ideals in C*(X).

(2.4) Cg(X)cC,(X), and the inclusion is proper if X is locally com-
pact, o-compact and non-compact.

Notation and general background for C(X) may be found in [2]. The
definition of a p-system in P(X) and properties of p-systems are devel-
oped by Njastad in [6] and [7]. For f € P(X), let f° denote the Smirnov
extension of f from 46X into the Smirnov compactification of R. The
distinct maximal p-systems in P(X) can be characterized by

I* = {fe P(X): f'(z)=0},

where z € 8X. (See [5], [6].)
Let Z(f) denote the zero-set of a member f of C(X). For fe C(X)
and each positive integer =, set

Fo={zeX: [f@)|z1fn}.

By definition, each F, is a compact subset of X.

ProrosrrioN 2.5. For each proximity space (X,4), if fe C(X), then
J e P¥X).

Proor. Take 46B in X and f in C(X). If AcF,, for some n, then
Cly A is compact so that Cly B meets ClyA. The continuity of f now
provides that f[A] is close to f[B] in R.

Next, suppose that for every =, neither 4 nor B is contained in F,,.
Take &> 0 and choose n such that 2/n <e. If

ac(X-F,)nA and be(X-F,)nB,

then |f(a)—f(b)| <e, and it follows that f[4] is close to f[B].
Thus, in either case fe P*(X), and the proof is complete.

" For §=p, we note that P(X)=C(X) and P*(X)=C*(X).
The following theorem shows that (2.1) is true for all such “P*-alge-
bras’’.

THEOREM 2.6. For each compatible proximity 8 for X, Cx(X) is the
tntersection of all free ideals in P*(X).
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Proor. Let fe Cx(X) and let I* be any free ideal in P*(X). Since
Clx (X —Z(f)) is compact, there exists g € I* for which

Z(g) n Clx (X~ Z(f)) = @.

Thus Z(f) is a neighborhood of Z(g) and f=g-k where Z(h)=Z(f). (See
LD. of [2].) By Proposition 2.5, h € P*(X), hence f e I*. It now follows
that Cx(X) is contained in every free ideal in P*(X).

Conversely, assume that f is a member of every free ideal in P*(X).
For x € 0X - X, let #* be the unique maximal round filter in (X,d)
which converges to z. Set

J* = (ge PXX): Z(g) e F7),

so that each J*® is a free ideal for x € 6X — X. If g € J**, Cl,x Z(g) is a
neighborhood of x in 6X. Since fe J*%, for all x € X — X, Cl;x Z(f) is
a neighborhood of X — X. Let Z,x(f°) be the zero-set of f° in 6X. Then
0X — Zyx(f°) =X — Z(f), so that

Clyx (0X — Zyx(f*) = Clix (X — Z(f))

is a compact subset of X. Hence Clx (X — Z(f)) is compact and f € Cg(X).
This completes the proof.
In contrast to (2.3) we have the following theorem and example.

TaEOREM 2.7. For each compatible proximity & for X,
C(X) = {I*: zeéX-X}.

Proor. Take fe C(X) and z € X — X. Now fe P¥X) implies that
the Smirnov extension f° of f takes real values. Since the maximal
round filter ## corresponding to I* is free, no F, € #=. Thus, for each
n, there exists K, € #¢ such that B, <X —F,. Since |f|<1/n on E,,
it follows that f°(x)=0, hence f € I=.

Conversely, if f € I*, for all x € 6X — X, then f*(z)=0 on 6X — X. Thus,
Sf[6X] is a compact subset of R, and the set

{xedX : |fox)21/n} = {xeX: |f(x) 21/n}
is a compact subset of X. Therefore f € C(X), and the proof is complete.

ExampLE 2.8. Let X =N, the positive integers with the discrete topo-
logy, and take d=p. If j(z) =21, for z € X, it is well-known (see 4.7 of
[2]) that j is a member of every free maximal ideal of C*(X). Since j is
a unit of C(X), j belongs to no maximal ideal of C(X). Yet j € C (X), 80
that

jeN{I*: zepX-X}.
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Thus, even when P(X)=C(X), maximal p-systems are, in general,
distinet from maximal ideals.

3. Functions constant at infinity.

A member f of C(X) is called constant at infinity if f—r e C(X), for
some r € R.

THEOREM 3.1. For fe C(X), the following are equivalent:

(A) f 18 constant at infinity.

(B) f can be extended continuously (with real values) to every compactifi-
cation of X.

(C) f is uniformly continuous with respect to every admissible uniformity
on X. :

(D) fe P¥X) for every compatible proximity on X.

Proor. The equivalences of (B), (C) and (D) follow readily from basic
properties of proximity and uniform spaces.
" (A) implies (B). If f—r € C(X), it follows from Theorem 2.7 that

f-reN{I*: zeéX-X},

where § is any compatible proximity for X. Then (f—r)%(x)=0 implies
Sfl(x)—r=0, for all x€6X —X, so that f° carries 6X into R. Thus the
Smirnov extension of f takes real values. Since every (Hausdorff) com-
pactification of X can be viewed as the Smirnov compactification of its
associated proximity space, we now have established (B).

(B) implies (A). Let fX be the Stone-Cech compactification of X.
If BX — X consists of a single point, then (A) follows trivially. Hence we
assume that card (X — X) is greater than one. Suppose that f satisfies
(B), but there exist z,y € X — X such that f(x)+f#(y). We can assume
that f#(z)=0 and f#(y)=1. In X choose disjoint neighborhoods N, and
N, of « and y, respectively, such that f’[N,] is remote from f?[N,]. Let
8(X)={BX — {=,y}}u{z}, where z ¢ X, and define a mapping 7 of X
onto 6X by z(p)=p, if p+=z, y, and 7(x)=17(y)=2. Let X have the
largest topology rendering t continuous. Since the restriction of 7 to X
is the identity, X is a compactification of X. Let § be the proximity
on X associated with 6X.

Set A=N,nX and B=N,nX. For any neighborhood N of z in 4X,
77}(N) is a neighborhood of both z and y. But if ae v}(N)n4 and
be tY(N)nB, then 7(a)=aec N and 7(b)=b e N. Thus

2€ClzAnClLgB,
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so that A6B in (X,d). But f separates A and B, hence f ¢ P*(X) and f
does not have a Smirnov extension to 6X. This contradicts (B).

Thus, there exists r € R such that f%(x)=r, for all z € $X — X. Now by
Theorem 2.7, f—r e C,(X), and the proof is complete.

From Theorem 3.1 it is clear that the collection of functions constant
at infinity is precisely () P*(X), where the intersection is taken over all
compatible proximities for X, or equivalently, over all admissible totally
bounded uniformities for X.

4. Realcompact and realcomplete spaces.

We recall that a proximity space (X,d) is realcomplete if there is no
point of X —X to which every member of P(X) can be proximity-
extended with real values. (See [6]). Let R* be the one-point compactifica-
tion of R, and let f* be the extension of a member f of C(X) mapping
pX into R*,

For z € X, the maximal ideals M= in C(X) are characterized by

M= = {feO(X): xeClxZ(f)}.
(See Theorem 7.3 of [2]).

THEOREM 4.1. For §=8 and x € X, the following are equivalent.

(A) M= 18 real.
(B) M==]=,
(C) I= is an ideal of C(X).

Proor. For ze€ X, the equivalences are clear. Thus we assume
that # € BX — X. If 4, is the usual metric proximity for R and 6* is the
proximity for R associated with R*, then the identity mapping z, of
(R,8,) onto (R,5*) is a p-mapping. Let v be the continuous extension of
7, mapping &,R onto R*. Take f e C(X), and let f# be the Smirnov exten-
sion of f mapping X into ,R. Evidently, f*=1of?. Now the statement
fe€ M= if and only if f*(x) =0 holds precisely when M= is real, by Theo-
rem 7.6 of [2]. But f*(x)=0 implies that f#(x) =0, since v carries 6,R —R
onto the ideal point of R*. Thus, when M= is real, f e M= if and only if
feI=, Hence (A) implies (B).

That (B) implies (C) is obvious.

Next, assume that IZ is an ideal. Now f e M= implies f*(x)=0. Thus
f%=x)=0 and fe I*. Since now M*<I® and M* is maximal, we have
M= = I, Thus (C) implies (A), and the proof is complete.
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CorROLLARY 4.2. X s realcompact if and only if mo free maximal
p-system in C(X) i8 an ideal.

By 7.9 of [2], for x € fX — X, I” fails to be an ideal precisely when I*
contains a unit of C(X). Thus X is realcompact if and only if every free
maximal p-system in C(X) contains a unit. It follows immediately from
Theorem 2.7 that if C(X) contains a unit which vanishes at infinity,
then X is realcompact. The converse is false, since the space Q of rationals
is realcompact, but C(Q)={0}. (See 7.F.5 of [2].) Theorem 4.1 and
Theorem 5.8 of [2] also show that X is pseudocompact if and only if
every maximal p-system is C(X) is an ideal.

The following definition extends that of Mandelker in [4] to proximity
spaces. For the case §=p, the definitions coincide.

DerintTION. A family # ={F,:xec A} of subsets of a proximity
space (X,0) is p-stable if, for each fe P(X), there exists F e .# such
that f is bounded on F_.

The theory of clusters in proximity spaces is developed by Leader in
[3]. In particular, it is shown that (X,d) is compact if and only if each
cluster contains a point. The following theorem now provides a character-
ization of realcompleteness in terms of clusters and p-stable families of
closed sets.

TrEOREM 4.3. For a proximity space (X,0), the following are equivalent:

(A) (X,8) 18 realcomplete.

(B) Every p-stable cluster in (X,08) contains a point.

(C) Every p-stable family of closed subsets of X having the finite inter-
section property has nonempty intersection.

Proor. (A) implies (B). Let € be a p-stable cluster in (X,4), and sup-
pose that € does not contain a point. By Theorems 2 and 3 of [3], we
can choose p € 6X — X such that

pe({Chxd: Ac¥}.

If #7 is the unique maximal round filter in (X,d) which converges to p,
then #7 is not real. By Theorem 2.2 of [5], for each positive integer =,
there exist f e P(X) and sets G,, in #? such that |[f|=% on G,,.

Take 4 € ¢. Now Cl;x @, is a neighborhood of p in 6X, hence each
G, meets 4. But |f|=n on G,nA, so that f is unbounded on 4, which
contradicts the assumption on €.
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(B) implies (C). Let .# be a p-stable family of closed subsets
of X having the finite intersection property. Then the collection
{ClyxF : F € A} has the finite intersection property, and there exists p
in 86X satisfying

pe({ClxF: Fe d}.

Thus every member of .# is also a member of the cluster €, in (X,d)
consisting of all subsets 4 of X satisfying p € Cl,x 4. Now .# is p-stable
implies %, is p-stable. By (B), €, contains p. Thus p belongs to every
member of #, and .# has non-empty intersection.

(C) implies (A). Assume that (X,0) is not realcomplete. Choose
p €dX — X such that #? is real. For fe P(X), it follows from Theorem
2.2 of [5] that there exists F € #P such that f is bounded on F, hence
on Clg F. Thus the family {ClxF : F € #7?} is p-stable and has the finite
intersection property. But

N{ClyF: FeF?r} =0,
contradicting (C).
This completes the proof.

For §=p, the equivalence of (A) and (C) in Theorem 4.3 is Theorem
5.1 of [4]. In this case, if 0% is the ideal in C(X) consisting of all f € C(X)
with the property that Cl,x Z(f) is a neighborhood of z, then the z-filter
Z[0~] is a base for the maximal round filter #<* in (X, ).

The following corollary provides several characterizations of realcom-
pactness. That (C) implies (A) is Theorem 4 of [6].

COROLLARY 4.4. For a completely regular Hausdorff space X, the fol-
lowing are equivalent:

(A) X s realcompact.

(B) (X,p) is realcomplete.

(C) X admits a compatible proximity 6 for which (X,0) is realcomplete.

(D) Every stable cluster in X contains a point.

(E) X admits a compatible proximity & such that every p-stable family
of closed sets with the finite intersection property has mon-empty
intersection.

(F) For x € BX — X, there exists f € C(X) such that f is unbounded on
every member of the z-filter Z[0"].

(G) X admits a compatible proximity & such that if x € X —X, there
exists f € P(X) such that f is unbounded on every member of F=.
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Proor. All implications except (C) implies (A) follow from the previous
theorems and Theorem 2.2 of [5]. For completeness, we provide a new
proof that (C) implies (A). Let I be a real maximal p-system in C(X),
and let 7, be the canonical injection of X into 6X. Then z, has a con-
tinuous extension v mapping fX onto 6X. For y = v(x) in 6X and f € P(X),
we have fi(y)=(f%c7)(x)=f*(x), which is real. Thus, the maximal p-
system [,¥ in P(X) is real, so that y € X. But v carries X — X into
6X — X, hence x € X. Thus X is realcompact, and the proof is complete.
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