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INVARIANT FOURIER INTEGRAL OPERATORS
ON LIE GROUPS

BORGE P. D. NIELSEN and HENRIK STETKZER

1. Introduction.

This paper follows the notations of Hérmander [3] to which we refer
for the definition and proofs of properties of Fourier integral operators.

In Section 3 we show that a necessary and sufficient condition for a
class of Fourier integral operators on a Lie group @ (i.e. a class I,(@ x G, A)
of Fourier integral distributions on G x G) to be left-invariant is that the
Lagrangean submanifold A of T*(G@ x G)\ 0 is left-invariant. The ana-
lysis of the set of closed conic Lagrangean submanifolds of 7*(G x G)\ 0
which are left-invariant, is carried out in Section 4.

In Section 5 we prove that up to a constant factor there is a canonical
isomorphism from the set of left-invariant operators in a left-invariant
class I™(@x@,A) onto the class of Fourier integral distributions
I,m+aimG8(G, A4.) on G. The isomorphism is given by a kind of point
evaluation at the identity element e € G. Here dim @ enters due to con-
ventions, and A, denotes the Lagrangean submanifold of 7*@\ 0 which
arises by the transversal intersection of A and the part of 7*(G' x @)
lying above {e} x G. Also the connection between the principal symbols
of operators related by this isomorphism is explicitly described.

In Section 6 we briefly discuss the set of bi-invariant operators in a
left-invariant class. Examples show there do exist non-trivial, bi-inva-
riant Fourier integral operatos, in contrast to the case of pseudodiffer-
ential operators, cfr. A. Melin [4], L. P. Rothschild [5] and H. Stetkeer [6].

Finally we wish to thank A. Melin for advice that led to considerable
improvements of the exposition.

2. Notations.

By a manifold we shall understand a C™ paracompact manifold, and
by a submanifold an imbedded submanifold. A smooth map means a
C* map.

The cotangent bundle of a manifold M will be denoted T'*M, its zero-
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section 0, its projection map n;,: T*M — M, the canonical 1-form ©,,
and the canonical (symplectic) 2-form w,,, cfr. Abraham [1, p. 96]. When

f: M 1> M 2
is a diffeomorphism between the manifolds M, and M, then
f*: T*.M2 i T*Ml

denotes the induced diffeomorphism of the cotangent bundles. Note that
SHT*M,\0)=T*M,\0.

We shall identify T*(M,x M,) and T*M,xT*M, in the canonical
way; thus a point in T, . (M,xM,) will be written (m;,my,&;,&,),
where &; € T*,,(M}), j=1,2. We also choose to identify a manifold with
the zero section of its cotangent bundle, so that in particular

M, xT*M, c T*(M,xM,) .

The line bundle of densities of order &, & € R, (cfr. Hormander [3, pp.
117-118]) on a manifold M is denoted Q,(M), the vector space of its
smooth sections by C*(M,R2,), the vector space of smooth sections with
compact support by C,*(M,L2,) and its dual space by 2'(M,2,_,). As
customary we view C°(M,Q2,) as a subspace of 2'(M,Q2,).

It is well-known how a diffeomorphism f: M, - M, between two mani-
folds M, and M, induces a line bundle equivalence

Q4f): 2,(M,) > 2,(M,;) for any xeR.
The corresponding map of sections
J: Co™ (M3, 2,) > C™(M,,2,)
induces by transposition an isomorphism, viz.
Joi= [ D' (M, 2,) >~ D'(M,,L2,) .

Let L, and L, be complex line bundles over manifolds M, and M, with
structure groups H, and H,. Let =;: M, x My, —~ M, and 7y: My x M, -
M, be the projections. The exterior tensor product of L, and L, is de-
fined by

Ly [X] Ly := m* L, Qm,* L, ,

and is a line bundle over M, x M, with structure group H,QH,.

If d,: M, -~ L, and dy: M, L, are sections we let d, [x] d, denote the
obvious section in L, [X] L,.

Let us note that we may identify the bundles Q,(M,) [x]2,(}M,) and
Q,(M,x M,) by a map I as follows:
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An element d; € 2,(M;), j=1,2, in the fiber over the point p; € M; is
a map

d;: AM(Tp, M)\ {0} > C  (n;=dim M)
with the property that

di(so) = |s|td;(c) for se R\ {0}
and o € A"(T, M;)\ {0} .
The map

defined by

I(d, [X]dy)(01A0;) = dy(0y)dy(0,) for o; € A™(T, M)\ {0}

is clearly fiber preserving and an isomorphism in each fiber, hence it is
a bundle isomorphism.

If d;, j = 1,2, denote sections in 2, (M) having function representatives
a; in the charts x;, then Io(d, [x]d,) is the section in Q,(M, x M,) that is
represented by the function (a,om,)(asom,) in the product chart s, x x,.

To avoid excessive notation we write

di @dy:= I(d [x]dy)

analogous to the case of functions.

Let us note that a (paracompact) manifold always has a nowhere
vanishing density, so that it follows that any u € Cy™(M, x M,,(2;) can
be written in the form

w = dd, ®d,,

where @ € Cy™(M, x M,) and where d; € C*(M;,£;), j=1,2, never vanish.
The tensor product A®B of A € 2'(M,,L;) and B e Z'(M,,Q2;) can
now be defined as an element of 9'(M, x M,,£,) as follows:
If w=1id,®d, € Cy™(M;x M,,Q;) where @eCy™(M;xM,) and d;e
C°°(M,-,Q*), j=1,2, then

(A®B,uy := (B,,{4,0(x,y)d;)dy) .

It is easy to see that this is independent of the way u is written.
If in particular d; € Cy*°(M;,©2;) then we find

(A®B,d,®dy) = {4,d,)(B,dy) .

That could of course also have been taken as a basis for the definition
of AQB.
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A Fourier integral distribution
Ael™Myx M, A) = D'(Myx M,,Q2),

where A is a conic, closed Lagrangean submanifold of 7*(M, x M,)\ 0
defines a continuous bilinear form on Cy™(M,,2,) x Cy®(M,,2,) and thus
defines a continuous linear map from Cy™(M,,2,) to 2'(M 142;), also
denoted by A and referred to as a Fourier integral operator.

In this paper G will always mean an n-dimensional connected Lie
group with identity element e. For g € G we let L(g): G — G (R(g9): @ - G)
denote left- (right-) translation by g, i.e.

L(g)h = gh for every he G
R(g)h = hg for every he@.

We also use these notations when working with G x @, i.e. L(g)(h,, ko) =
(ghy,gh,) ete.
Note that L(g)* maps T*,G onto T'* _,,G for every h in G.

DrriNiTION 2.1. A subset A< T*(G' x Q) is said to be left-invariant if

Lig)y*A < A forevery ge @,
right-invariant if
R(g)*A = A forevery ge@,

and bi-invariant if it is left- and right-invariant.

Finally idg: § — 8 denotes the identity map on the set S. When § is
obvious from the context we shall drop the suffix.

3. Fourier integral operators on manifolds.

In this section we collect what we will need of general facts about
Fourier integral operators on manifolds.

Let f: M, - M, be a diffeomorphism between two manifolds M, and
M. Then f; transforms the Fourier integral distributions in I,™(M,4)
to elements in 9'(M,,2;). To determine the image we note that A is a
conic, closed Lagrangean submanifold of 7* M, \ 0 if and only if (f*)-1(A4)
is a conic closed Lagrangean submanifold of 7'*M,\ 0. The very defini-
tion of Fourier integral distributions (Hérmander [3, p. 147]) then yields
the following result:
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ProrosiTiON 3.1. Let f: M, —~ M, be as above. The restriction of the map
f* : 9’(M1,Qi) -> 9'(M2,Qi)
to I,™(M,,A) is an isomorphism of I,"(M,,A) onto I,"(M,,(f*)-(A)).

Let us turn to the case of a diffeomorphism f: M — M of a single
manifold M. The class I,”(M, A) completely determines A, since

A=J{WF(4)| 4elmM,AN)}

so by Proposition 3.1 the class I,®(M, A) is invariant under f if and only
if A is invariant under f*. In the special case M =G x @ we have as a
corollary:

ProrosiTiON 3.2. The class I,™(G x G,A) is invariant under all left
translations on G if and only if A is.
Similarly for right translations.

The above result partly motivates that the next section is devoted the
study of some properties of invariant Lagrangean submanifolds of
T*G xG)\ 0.

We recall the connection between phase functions and Lagrangean
manifolds.

Let X be a fiber space over a manifold M with projection =: X' — M.
The projection is thus surjective and has surjective differential so that
the fibers n-1(p), p € M, are submanifolds of . We let d, denote the
differential along the fibers. Let finally ¢ € C*X). For ¢ in

Cyi= {s€Z| dyplc)=0}

we may without ambiguity define the horizontal component of dg(s),
denoted
l(0) e T*, o\ M
by
1(0) (7 X) := dp(o)(X) forall XeT 2.

In the case we will consider, 2 will be an open conic subset of
M x (RV\ {0}) and ¢ will be a phase function on Z. In that case I, takes
the form

l(x,0) = (x’¢z'(x>e))
which is familiar from [3].
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If ¢ is a non-degenerate phase function then C, is a submanifold of X,
and the map I,: C, - T*M is an immersion (cfr. Hérmander [3, p. 134]).
So 1, defines locally a submanifold A, of T*M. It turns out that A4, is
a Lagrangean submanifold of 7*M \ 0. We shall say that ¢ describes a
Lagrangean submanifold A of T*M \ 0 if I, is a diffeomorphism of C,
onto A. |

The following two easy lemmas will be needed later.

Lemma 3.3. Let 7y: 2y -~ M, and m,: X, — M, be cone bundles over
manifolds M, and M,. Let (F,f) be a cone bundle equivalence so that the
Jollowing diagram commutes

z, -3,

" l lnz

M, M,

Let yp, € C%(X,) be a non-degenerate phase function.
Then yy := py0F i3 also a non-degenerate phase function,

FC, =C, and 1, =f*ol, oF onC, .
If vy, describes Ay <T*M,\ 0 then vy, describes f*(A,) < T*(M,)\ 0.

LremMA 3.4. Let M, and M be manifolds, and let n: X —~ M be a fiber
space over M. Let ¢ € C*(X) and define y € C}(M, x X) by

yp(my,0) := @(o) forall (m;,0) e M, x2.

Let us finally view M, x X as a fiber space over M, x M.
Then
C,=M,xC, and I, =idxl,.

If 2 is a cone bundle and ¢ a non-degenerate phase function describing a
Lagrangean submanifold Ay T*M \ O then y i3 a non-degenerate phase
Sfunction describing

MyxAy < T*(M,x M)\O.

We next give an explicit description of the Keller-Maslov line bundle
and how it transforms under diffeomorphisms.

Let M be a manifold and let A be a conic Lagrangean submanifold
of T*M\ 0. Let @ be the set of all non-degenerate phase functions de-
scribing open conic subsets of A, and let us use the following notation:
Each ¢ € @ is defined on the open conic subset I'(p) of M x (RV®\ {0})
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and describes the subset U(g) of A. For any two elements ¢,y € ® we
let o(p,p) denote the function

o(p,p) : = H(sgnyse—N(y))ol, ™ —(sgngp— N(g)) o, 1]

which is integer-valued and defined on U(p)nU(yp).

The Keller-Maslov line bundle L on A can now be defined as follows
(cfr. Hormander [3, p. 148]):

In the disjoint union

’? ‘= Uq:erb U(‘P) xC
we identify the points

(p,4,2) and (zp,l, exp(énia(zp,tp))z)

for A€ U(p)nU(y). Then L is the identification space. If we denote the
equivalence class of the element (g,1,2) € & by [p,4,2] € L then the local
trivializations of L are given by the maps

(A4,2) > [@,4,2]
of U(p) x C into L. The structure group of L is Z,.

Let next f: M, - M, be a diffeomorphism between two manifolds M,
and M,. Assume /1, is a conic Lagrangean submanifold of 7'*M,\ 0 and
let A, := f*(A,) be the corresponding conic Lagrangean submanifold of
T*M,\0.

For any ¢,e ®,, defined on an open conic subset of M, x (RN®\ {0})
we introduce

@1:= @yo(fxid) € D, .

This establishes a bijection between @, and @,. It is easy to prove that

0(Pg,¥g) = o(@y,py)of*  for all g,,y,€ Dy,

and from there that the Keller-Maslov line bundles L, on A, and L, on A,
are equivalent as fiber bundles under the induced map fZ: L, -~ L,,
given by

fL([%’lzsz]) = [‘Plﬁf*(lz)’z] for [‘Pz’lz’z] € L2 .

LemMMA 3.5. Let M, and M, be manifolds and let A be a conic Lagrangean
submanifold of T*(M,)\ 0. Let L be the Keller—Maslov line bundle over A.

Then M, x A is a conic Lagrangean submanifold of T*(M,; x M,)\ 0, and
its Keller—Maslov line bundle Ly 4 may be identified with M, x L.

Proor. That M,xA is a conic Lagrangean submanifold of
T*(M,x M,)\ 0 is immediate by Lemma 3.4. Let ¢ and y correspond
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a8 there. Let I, be that map from M, x L to Ly, which in the local
trivializations with respect to ¢ and y is given by

(ml’ (}.,Z)) g ((mbl)’z) .

It is easy to see that the I, patch together to a bundle isomorphism.
This is the desired identification.

COROLLARY 3.6. There is a fiber bundle isomorphism
I: Qu(M; x A) ® Lyg, x4 ~ 24(M) [X] (24(4) S L),
viz. I given by
I({dy(my)®dy(2)} ® (my, U2))) = da(m,y) ® {da(ABUA)}
for d,(m,) ®dy(4) € Qy(M; x A)ym,, » and (m4,U2)) € (L, x adimy, » +

REMARK 3.7. We have already in Proposition 3.1 noted that
fi(d) e ™M,y 4,) if Ael™M,,4,).

That the principal symbol of a Fourier integral operator is an invariantly
defined object means the following:
If 0, is a principal symbol of A4 then the map oy, that makes the
diagram
B fe— L
944y @ L <28 0,4, 9 L,
94 I%(A)

A, —— 4,

commute, is a principal symbol of fi(4).

The tensor product of two Fourier integral distributions is in general
not a Fourier integral distribution. However, it is true in the following
special case:

THEOREM 3.8. Let a half-density on a manifold M, of dimension n,,
and let B e I;""”ll"(M 9, A) be a Fourier integral distribution on a manifold
M,. Let oy be a principal symbol of B.

Then a®B € D' (M, x M,,8;) s a Fourier integral distribution,

a@Bel™Myx My M,xA),
and
0.5 = 2n)"*a®op

18 a principal symbol of it.
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Here we have used the identification of Corollary 3.6.

Proor. Let n, denote the dimension of M,. Let x;: V; > U;<R™,
Jj=1,2, be charts on open subsets V; of M; and denote the coordinates of
#; by = and those of %, by y. In any of the charts »=1x,,%,, %, X %, We
shall denote the coordinate expression of a half-density » with respect
to the squareroot of Lebesgue measure by o x-1.

Let ¢ be a non-degenerate phase function in an open conic subset I"

of Uyx (RV¥\ {0}) describing an open subset of A. Let us first assume
that B is of the simple form

(B,vy = (2m) 2 (§ IOUD-2NY(y, 0)5(s-1(y) dyd
for ve Cy*(V,,0;)

with a symbol b € ST+m/t+®a=2MI4( ") (cfr. Hérmander [3, p. 147]).
It we Cg™(Vyx V3, 2,) then

(a®B,u)
— (2n)—(n1+n2+2N)/4 SSS ei(cp(y,O)—nNM) (27[)"1’4(3,'(}61"1(2:)) b(y, 0)
(2,72 X %y, y))d2edydo .

According to Lemma 3.4 the function y(z,y, 0) = ¢(y, 0) is a non-degenerate
phasefunction in U, x I" describing an open conic subset of the Lagrangean
submanifold M,x A<T*(M,x M,)\0. Since the function (z,y,0)+
(%, 7Y(x))b(y, 0) is an element of ST+™1+™=2MI4([J % I') we conclude that

a@Bel™M;xM,M;xA).

In general a Fourier integral distribution B is a locally finite sum B=3,B;
of Fourier integral distributions B; of the simple form above. Since
a®B=73,a®B; is a locally finite sum the result follows from the above.

This proves the theorem except for the claim about the principal
symbols. The verification of that is a straightforward application of the
definition of principal symbol, cfr. Hormander [3, p. 143]. Just note
that in his notation C,=U, x C,, dc,=dx®dc¢, and l,: C, > M, x A may
be written I, =x,"1x1,.

4. Properties of invariant Lagrangean submanifolds.

The existence of invariant Lagrangean submanifolds on @ x @ is en-
sured by the following example.
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ExamMPLE 4.1. The normal bundle

N(A) = {(gyg,éy—f)l EET*GG,QEG}

of the diagonal 4= G x @ is a bi-invariant conic Lagrangean submani-
fold of T*(G x G). More generally, the normal bundle of a right (respec-
tively left-) translate (R(a) x id)4 (respectively (L(a) x id)A), a€@, of the
-diagonal is a conic left- (respectively right-) invariant Lagrangean sub-
manifold of 7*(Q x G).

We shall in the sequel concentrate on left-invariant Lagrangean sub-
manifolds, but it should be mentioned that quite analogous results are
valid in the right-invariant case.

It is natural, when studying invariant objects in G'x @, to consider
the map

8:GxG->GExG
defined by
s(g,h) := (g,9h) for g,he@G.

The map ¢ lifts to a symplectomorphism S’ := (s~1)* making the fol-
lowing diagram commute:

TG x G) > T*@ x @)
lproj. lproj.

Gx@G — Gx@

We shall need the embedding
S = S’lGXT"G: G X T*G - T*(G X G)
which equivalently can be defined by
S(g,(h»ﬂ)) = (g’ gh’ _’R(h)*L(g-l)*"I’ L(g")*ﬂ)
for (g,(h,n)) € G x T*G .

Note that 8’ and hence S commutes with left-translation in the sense
that
L(g)*o8" = 8'o(L(g)xid)* forall geG.

LemmMA 4.2. Let m,: @ x T*G —~ T*Q be the projection on the second
Sactor. Then

8*(Ogxg) = m*(Og) and S*(wgxe) = m*(wg) -
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Proor. The lemma follows easily from the fact that S’ is a symplecto-
morphism.

LeEMMA 4.3. Let M be a subset of T*G'\0. Then S(Gx M) is a left-
tnvariant subset of T*(G'x G)\O0. Furthermore, M is a (closed, conic)
Lagrangean submanifold of T*G\ 0 if and only if S(G x M) is a (closed,
conic) Lagrangean submanifold of T*(G x Q) \ 0.

Proor. The left-invariance is trivial since S commutes with left-trans-
lation. Since § is an embedding and S’ an isomorphism on the fibers the
only problem is whether M and 8(G x M) are Lagrangean simultaneously.
But that follows from Lemma 4.2.

THEOREM 4.4. The map
A, 8(GxA4,)

18 a bijection of the set of closed, conic Lagrangean submanifolds of T*G\ 0
onto the set of closed, conic left-invariant Lagrangean submanifolds of
T*(G xG)\ 0.

Proor. Let A be any closed, conic left-invariant Lagrangean submani-
fold of T*(G x G)\. 0. We start by proving that

8§'-UA) € GxT*G .

Since 8’ commutes with left-translation and A is left-invariant
A = §'-1YA)

satisfies

A" = (L(g) xid)*(A’) forall ge@.

Now, A’ is a Lagrangean submanifold of T*(G x @). Since it is also conic
the canonical 1-form @, vanishes on its tangent vectors (cfr. Hérman-
der [3, p. 135]).

If ¢t - g(¢) is any C®-curve in G with g(0)=e and A=(g,,9,,&;,&;) € A’
then

t > At) 1= (9()91, 90 L(g(t)1)*E1, &)
is & curve in A’ through 1. Hence
0 = {(Ogx)1A'(0))
= &t (9(091,92))"(0)
= (5, (8~ 9(t)31)'(0))
= (L R(g)4(9'(0))
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but since ¢ — g(t) is arbitrary, £ =0. So each element of A’ has the form
(91,92,0,&,) as desired.
Using once more the left-invariance of A we conclude that S'-1(A) is
of the form
8'-YA) = Gx4,.
In fact,
A, = {AeT*G | (e,A) e 8'}(A)}.

Hence A=8(G x 4,). The theorem is then immediate by Lemma 4.3.

The following corollary shows that the standard assumption of Hor-
mander [3, Chapter 4] is satisfied.

COROLLARY 4.5. Any left-invariant conic Lagrangean submanifold of
T*(G x @)\ 0 18 contained tn (T*G\ 0)x (T*G\ 0).
Proor. By the alternative definition of S it follows that
8(G x (T*AN\0)) € (T*G\0) x (T*G\0).

ExampLE 4.6. If a € G and #n: T*@ — G denotes the projection we set
4.2 = n~Ya)\ {0} .

Then A, is a closed conic Lagrangean submanifold of 7*G'\ 0. The
corresponding left-invariant Lagrangean submanifold of T*(G x G)\ 0 is
the normal bundle of the translated diagonal

(R(e) xid)4 =« Gx G
(with the zero-section deleted). If in particular ¢ =e then A2 is the normal

bundle of the diagonal (cfr. Example 4.1).

THEOREM 4.7. Let A, be a conic Lagrangean submanifold of T*G\0
described by a non-degenerate phase function ¢: V — R, where V is an open
conic subset of G x (RV\ {0}). Let

W = {(2,9,0) € @xGx(RV\{0}) | (z-1y,6) € V}
and define y: W — R by
y(r,y,0) = p(x~1y,0) for (x,y,0)e W.

Then y is a non-degenerate phase function describing the conic Lagrangean
submanifold
A:=8G@x4,) =« THHA@xGF)\0.
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Proor. Define y,: G x V - R by
vo(®,9,0) := @(y,0) for ze@, (y,0)eV.

Then y, is by Lemma 3.4 a non-degenerate phase function which de-
scribes G x 4,.

Next let us note that yp=y,o0F, where F: W - G x V is the diffeo-
morphism given by

F(x,y,0) = (z,x'y,0) for (x,y,0)eW.

Since the diagram

w Isaxv
l |
GxG——=>G@xQ

with the obvious vertical projections commute we conclude by Lemma
3.3 that p=1y,oF describes (s~1)*(G' x A4,)=8(G x 4,).

5. Left invariant Fourier integral operators.

We shall in this section find all left invariant Fourier integral operators
on a Lie group @, corresponding to a given left-invariant, closed, conic
Lagrangean submanifold A of T*(G x G)\ 0.

In all of this section we fix G and A as above, g €14,1] and m eR.
Furthermore we fix a smooth, nowhere vanishing density of order } on
@, namely d= V(,—i‘l; where du is a left Haar measure on Q.

The map @& —u:= @d is an isomorphism of C*(G) onto C%(G, ;).
We define the “point evaluation” 4, of any continuous linear map

4: Cy*(G,92;) - C*(G,2,)
by
(4,0 := (4v)"(e) for ve C™(G,2;).

Obviously 4,€ 2'(@,92,).

Let us note that the above can be applied to elements 4 € I,™(G' x G, A):
Indeed, the assumptions of Theorem 4.1.1 of Hérmander [3] are satis-
fied according to Corollary 4.5 so that 4 induces a continuous linear map

A:C™(3,2;) ~ C*(G,2)) .
The function (4v)~ where v € Cy®(G,£2;), is determined by
§(4v)"ud = (4,u®v) forall ue Cy™(G,92;).
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DeriniTION 5.1. An element 4 € Z'(GxG,2;) is said to be left-
tnvariant if
L(g)yA = A forall ge@,
and right-invariant if
R(g)y;A =4 forallged.

An operator 4: Cy*(G,2;) -~ Z'(G,£2;) is said to be left-invariant if
AoL(g1)t = L(g)yo4 forall ge@.

It is easy to see that an element 4 € Z'(G x G,£;) is left-invariant if and
only if the corresponding operator (which will also be denoted A4) is
left-invariant. Note that the defining relation in case 4 happens to map
Cy™(G,9,) into C*(G,$2,) takes the familiar form

AoL(g)t = L(g)tod forall ge@.

The next theorem is one of the main results of this paper:

THEOREM 5.2. Let A be a closed conic, left-invariant Lagrangean sub-
manifold of T*(G x G)\ 0 and let A, be the corresponding Lagrangean sub-
manifold of T*G'\. 0. The map A 4,18 an isomorphism of the vector space
of left-invariant elements of I,™(G x G,A) onto I,™+"4((,A,), where n=
dimd.

The inverse map is A, 8(dR4,).

Proor. Let us denote the map 4 » A, by E. We will first prove that
A, eI 4@, A4,) if Ael™GxGa,A).

Since the local finiteness of a sum 4 =3 A, carries over by E, we may
as well take 4 of the simpler form

(4,u)y = (2m)-Cn+2N/4 ({§ eivia, v 0-isNI gz y 0)u (2,y) dedydd
for ue Cy™(Gx G,92,) .
Here u, is the coordinate expression of % with respect to a product chart
x=7%; X %y, and a € §,mHIn-2N/4(R2" x RN),
According to Theorem 4.7 one can describe 4 by non-degenerate phase

functions of the form (g,k,0) - ¢(g~1h,0) so we may assume that the y
above is of the form

y(z,y,0) = 9’((xl~l(x))_lx2—l(y):e) .

In particular v is a non-degenerate phase function for each fixed
x € image (x,), and y(x,(e),.,.) describes an open conic subset of A,.
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It is now a simple matter to check that
(4,,v) = const. {100y, (¢),y,0)v, (y) dydd
if ve 0y*(3,9,) in the chart x, is given by the function v,,. But that

shows A, e Im+n/4(G, A,).

The injectivity of E is clear: If 4, is given, then 4 is known every-
where by left-invariance.

To establish the surjectivity we will produce a right-inverse and hence
an inverse of E. Defining

4 = s}(d®Ao)

for 4,€ I,m+m4(@,4,) we conclude from Theorem 3.8 and Proposition
3.1 that 4 € I™(G x G,A4). Now

L(g)os = so(L(g)xid) for ge@.
Hence,

L(g);4 = L(g);5;(d®4,) = 8;(L(9);dR4,) -
Since d = Vdpu is left-invariant we get
L(g)*A = 8§(d®Ao) =4,
which shows 4 is left-invariant.

To prove EA = A, we note from above that A4, the operator sending
v to (Av)~(e), is determined by

§(4v)"ud = (4,u®v) forall u,ve 0y (G,Q2)).

Now,
(A4, u@v) = (8;(dR4,),u®v)
= (dQR4, s (u@v)) .
Since (st(u®v))(z,y) =u(x)(L(x)tv)(y) we find further
(4,u®v) = Sd(x)u(x)(Ao,L(x)*v) ’
so that

(Av)™(2) = (4o, L(z)tv) .
In particular 4,=A4,.

ExampLE 5.3. (Cfr. Example 4.6). Let A, be the J-distribution at
a € G, that is, .
(4,,u) = @(a) for u = @Vdue C™(G,92,) .
Then A, e I"%@,A4,%). The corresponding left-invariant operator 4 e
IG x @, A%) is the map
(4(a))tR(a)t: Cy>(G,2;) ~ Cg™(G,2y) ,
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where A here denotes the modular function of @, and R(a)t is defined in
Section 2. In particular we may conclude that R(a) is a left-invariant
Fourier integral operator on @ for any a € G.

The relation between the principal symbols of the two distributions 4
and 4, above may now be expressed by the following theorem

TaEOREM 5.4. Let A € 1,"(G x @, A) be a left-invariant Fourier integral
distribution and let A, € I,m+"4(@, A,) correspond to A. One can then choose
principal symbols o 4 for A and o 4, for A, such that the following diagram
commutes:

2,(A) @ L HOED, 0,6) [%] (24(4)SL,)
o4 I I(Zu)MV«'iZu,

a4« 5 GxA,

Here I denotes the line bundle isomorphism of Corollary 3.6.

Proor. Since 4 =si(VEl—;;®Ae) (by Theorem 5.2), the result is an im-
mediate consequence of Remark 3.7 and Theorem 3.8.

CoroOLLARY 5.5. If A € I™(G x G, A) 18 left-invariant then its principal
symbol o, may be chosen left-invariant in the sense that

(2HL(g)* ") @ L(g)*) oo, = 0, forevery geG.
Proor. Choose any principal symbol o4, of 4, and define o, so that
the diagram of Theorem 5.4 is commutative. Since
L(g)* = So(L(g)*xid)o S-' forevery ge@,
that diagram together with the left-invariance of dyu implies that
(2L(9)*) ® Lig)*) 0 0.4

= (2H(S-)®(s1)E) oI 1o (Q*(L(g)*-l) X id) olo(Q4S)®sL)oa,

= (QHS-)@(s7)E) o I-1o (QH(L(g)*-2) xid) o ((27)4Vdpu [] 5,) 0 S

= (QHS-Y)®(s~Y)E) o I o (2m)*4Vdp[X] 0,,) 0 S~

=04
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6. Bi-invariant Fourier integral operators.

Let G be a Lie group with left Haar measure u. Let 4 be a conie,
closed, left-invariant Lagrangean submanifold of 7*(G x @)\ 0. The fol-
lowing theorem shows that the bi-invariance of 4 € I"(G x @, A) can be
described by the properties of 4, e Im+"/4(@G, A,).

THEOREM 6.1. Let A € I™(G x G, A) be the left-invariant Fourier integral
distribution corresponding to A, € Im+*/4(Q, A,). Let A be the modular func-
tion of G.

Then A is bi-invartant if and only if
(1) Ad(g)y(4,) = VA(g1)4, forall ge@,
where Ad(g)(k) := ghg~? for all g,h € G.

Proor. By Theorem 5.2 we have
Rig)A = Rig)ys,(Vip®4,)

= (R(g)os)(Vduo4,)
(so(B(g) x Ad (g1)), (Vdu®4,)
83(R(g) 5Vd,u®Ad 4.)
VA(g)sy(Vau@Ad(g);4,)
o 4 is right-invariant, that is, R(g);4=4 if and only if

Ad(g);4, = (4(9)) %4, forall geG.

Earlier investigations have shown that in many cases the only bi-inva-
riant pseudo-differential operators on a Lie group are differential opera-
tors and integral operators with smooth kernel. See Melin [4], Preiss
Rotschild [5] and Stetkeer [6]. That is not the case for Fourier integral
operators: For example, translation by an element of the center of G
is a bi-invariant Fourier integral operator which is not a differential
operator. Here is a more interesting example:

ExampLE 6.2. Let G be the unimodular, 3-dimensional Lie group
SL(2,R), and let ¢ be a real number, c+ + 2. The trace of the matrix
g € G will be denoted tr(g).

The function ¢: G x R! - R defined by

@(g,0) := (tr(g)—c)0 for ge @, 6eR?

is a non-degenerate phase function on G because it is linear in 6 and the
map g — tr(g) is regular on

Math. Scand. 85 — 14
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M:={ge@| tr(g)=c}

as is easily seen. The corresponding Lagrangean submanifold A, of T*G
is the normal bundle of M.

M is an (imbedded) submanifold of G. It is well-known that G acts
transitively on M by inner automorphisms. The isotropy groups are
1-dimensional since dim M =2, so they are unimodular. By a general
theorem (Helgason [2, p. 369]) there is a G-invariant measure » > 0 on M,
and this measure is unique up to a constant factor.

The Fourier integral distribution 4, € I-¥(@, 4,) that we want to study,
is given by

(A,u) = SRS e‘“"”)"")"l—/u—ﬂ du(g)dd for u e Cy™(G,92;).

du(g)

It is clearly invariant under inner automorphisms, since tr is.
As is well-known we have for z € R that

(reietdt = 2md(x)

where § is Dirac measure on R. Hence

{4,,u) = 2n Saé(tr(g) —c)

G

o)
Vdu(g)

Since g — tr(g) is regular on M we see that (4,,u) is the integral of the
function wu(g)/Vdu(g) over M with respect to some measure on M. Since
A, and du are invariant under inner automorphisms the same holds for
the measure. But then it is proportional to the G-invariant measure »
on M.

Modulo a constant factor which we will disregard, we therefore have

au(g) -

u
Aoy =\ compmn Fd for we0l@.9.
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