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ON HELICES IN THE EUCLIDEAN 2-SPACE

FR. FABRICIUS-BJERRE

1. Introduction.

A heliz in a Euclidean n-space R™ is a curve for which the tangents
are inclined at a constant angle v<}x to a line m. We call m and any
line parallel to m a line of reference for the helix. The lines of reference
may be determined as lines parallel to a non-zero vector e which is
called a vector of reference for the curve.

In section 2 we show some properties of a helix y, of its projection y,
on a hyperplane perpendicular to the lines of reference, and of its in-
volutes. The properties are generalizations of well-known theorems on
helices in R3.

Section 3 contains a construction of a helix y with given angle of in-
clination and whose projection on a hyperplane is a given curve y,. We
prove that if y, itself is a helix then the constructed helix y will be si-
tuated in another hyperplane, and 9 and yp; will be affinely connected.
If y, is not a helix, the curve y does not lie in any (proper) subspace
of R™,

Finally we state in section 4 a theorem on helices in R®, for which
there exist m linearly independent vectors of reference.

2. Projections and involutes of a helix.
Let y denote a regular curve in R™ given by its parametric equation

—
OP =1(s), s € I, with the unit tangent vector r'(s)=¢, and let e denote
a non-zero vector. If the equation

(2.1) t(s)re=c,

where ¢+ 0 is a constant, is valid for any s € I, then y is a heliz with
angle of inclination v determined by ¢ = |e| cos(e,t)=|e| cosv, and with e
as a vector of reference.

Let H, denote a hyperplane through a point P, of y and perpendicular
to the vector e. The projection y, of y on H, is the intersection between
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the hyperplane and the projecting cylinder I', whose generators are lines
of reference for y. By development of I" into a plane the generators will
be developed into a pencil of parallel lines. The curves y and y, are trans-
formed into straight lines, the first one cutting the parallel lines at the
angle v, while the second one will be a normal to the pencil. Hence both
curves are geodesics on I'. Corresponding arclengths s and s, of y and y,
are obviously connected by the equation

(2.2) 8; = 8sinv.

Fig. 1.

Let y* denote the involute of y, starting at P,. To a point P € y corre-
sponds a point P, € y; and a point P* € y* (fig. 1). Since P*P, has the
length s, of P’(:P1 the equation (2.2) shows that P*P has the length s of

PO/I\’. Le. the involute of y, 18 also involute of the heliz y. This implies that
the involutes of a helix in R™ are all lying in hyperplanes orthogonal to the
lines of reference. The tangent to y* at P* is parallel to the principal
normal n to y at P and to the principal normal n, to y, at P;, and it is
perpendicular to the tangent plane to I'" along the generator through P
and P,.

In order to find a relation between the radius of curvature ¢ of y at P
and g, of y, at P, we remark, that the osculating plane of y, at P, is the
projection of the osculating plane of y at P. Since the principal normals
n and n, are parallel, the projection of the osculating circle at P on H, is
an ellipse with semiaxes a and b, where a=¢ and b=g sinv. The radius
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of curvature for the ellipse at the vertex P, is determined by b%/a, and the
wanted relation is

(2.3) 0; = o sin?v .

3. Construction of helices.

We shall show how a helix with given angle of inclination » and with
given projection 9, on a hyperplane H; may be constructed. Let P, be an
arbitrary point of y,, and let s, denote the arclength of y, measured

from P,. From a point P, = P,(s,) we draw a vector P}= s, cotve, where
e is a unit normal vector to H, (fig. 1). When P, traverses y,, the point
P traverses a curve y lying on a cylinder I" with the normals to H, as
generators. By development of I" into a plane y is transformed into a
line which intersects the developed generators at the angle v. Hence, y
is the desired helix. The vector e is a vector of reference for y.

For a closer examination of the helix y we must distinguish between
two cases according as y, is a helix in H, or not.

1°. Let y, be a heliz in H, with a vector f as vector of reference, and
let U denote an (n—2)-dimensional subspace of H, passing through the
point P, with f as normal vector. The projection of ¥, on U is called y,,
P, denotes the projection of the point P, and % is the angle of inclination

Fig. 2.
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of the helix y, (fig. 2). The formerly considered involute y* of y, issuing
from P, is now lying in the subspace U and is common involute of the
three curves y, y; and y,. Let P* be the point on »* which corresponds
to the points P, P, and P,. The four points P*, P, P, and P, are vertices
of a tetrahedron which has a right angle along the edge P*P,, since e is
a normal vector to H,, and where the angles » and » in the right tri-
angles P*P,P, and P*P,P have constant values. Consequently, tetra-
hedrons corresponding to different positions of P* are similar.

When P* traverses y*, the lines P*P, P*P, and P*P, will envelope
the evolutes y, y; and y, of y*. The edges P,P, and P,P keep their direc-
tions determined by the vectors f and e, and this implies that also the
third edge P,P has a constant direction, fixed by a vector g. Since both
e and f are normal vectors to U the vector g will be a normal vector to
U, and y is then lying in the hyperplane H, which contains the subspace
U and which in the pencil of hyperplanes with basis U is determined by
the vector g. In this hyperplane H the curve y, is the projection of y
on U.

Thus we have shown that if y, is a helix in H, then the constructed
helix y is lying in a hyperplane H. Since y, is the projection of y there
is an affine connection between the two curves. The two projecting cyl-
inders with basis y, through y or y, are congruent and may be trans-
formed into each other by rotations about the subspace U.

We can find the angle of inclination w of the helix y with respect to
the lines of reference determined by the vector g. The tetrahedron
P*PP,P, is lying in a space of three dimensions. In this space we con-
sider a sphere with center P* intersecting the faces of the tetrahedron
with common vertex P* in a right spherical triangle with legs 37w —w
and 3z —v and with hypotenuse 3= —w. Hence the angle w is determined
by the equation

sinw = sinu sinv .

2°. Now we assume that y, is not a heliz and in addition that y, does
not lie in a subspace of H,. We will show that in this case the constructed
helix y does not lie in a hyperplane.

If y did lie in a hyperplane H with normal vector e’ (linearly indepen-
dent of e) let t=1(s,) as above denote the unit tangent vector to y. Then
the equation

(3.1) t-e=0
is satisfied. Let k and &’ denote arbitrary constants. Then (2.1) and (3.1)
give

(3.2) t-(ke+k'e’) = ke.
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Now the constants £ and &’ may be chosen such that ke+k'e’ is a
vector f perpendicular to e, and we get

(3.3) tf=oc,

where ¢, is a new constant.

Since e is assumed to be a unit vector we have t-e=cosv, and we
find between the linearly dependent vectors e, ¢ and the unit tangent
vector 1, to y, (fig. 1) the relation

(3.4) t = ecosv+ti,sinv.
By means of (3.3) we now find
(3.5) tl'f = 62 ’

where ¢, is a constant. Since f is perpendicular to e it belongs to the
vector space of H,. The equation (3.5) shows that according to ¢,40 or
¢y, =0 the curve v, is a helix in H; or lying in a subspace of H,, contrary
to our assumption on y,. Hence y does not lie in a subspace of R®,

4. Helices with m linearly independent vectors of reference.

In section 3.1° we have seen that the constructed helix is lying in a
hyperplane and has two linearly independent vectors of reference e and
g. In this section we study the general case where a helix y, given as

—_—
above by OP=r(s), has m linearly independent vectors of reference
e,,e,,...,e,, corresponding to the m equations

(4.1) te,=c¢;, 0, t=12,....m.
For m =1, the curve y is called an ordinary heliz in R™.
If ky,k,,...,k, denote arbitrary constants we find

(4.2) t'z kie’i = z kic,; .

This equation shows that any vector in the vector space V=¥m
which is spanned by the vectors e;, for which Yk,c;+0, is a vector of
reference for y. The equation

(4.3) Sk, = kyey+kyeg+ ..+ ke, =0

has m —1 linearly independent solutions (k,,%,,. . .,k,,) corresponding to
m—1 linearly independent vectors e';,e’,,...,e', _; spanning a vector
space of m —1 dimensions V'< V. For any of these vectors an equation

(4.4) t(s)-e; =0
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is valid. Integration of (4.4) shows that the curve y is lying in a hyper-
plane with e’; as normal vector. Hence y is lying in the intersection of
m — 1 linearly independent hyperplanes, i.e. in a subspace R’ of n—m+1
dimensions, with V' as normal vector space.

The vector space V contains a one-dimensional vector space kv, the
vectors of which are orthogonal to ¥’ and consequently lying in the vec-
tor space that belongs to R'. Hence y is an ordinary helix in R’ with »
as a vector of reference.

Thus any heliz in R* may be regarded as an ordinary helixz in a subspace
of R®, The number of linearly independent vectors of reference deter-
mines the dimension of the subspace, in which the ordinary helix is
lying.

The helix ¢ which we have considered in section 3.1° is not an ordinary
helix in R®, but it is ordinary in some subspace R’ of n—m+1 dimen-
sions where m = 2. The helix y examined in section 3.2° does not lie in
any subspace of R* and consequently it is an ordinary helix in R®. For
this helix y we have m=1.
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