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ON THE SPACE OF MAPS OF A CLOSED SURFACE
INTO THE 2-SPHERE

VAGN LUNDSGAARD HANSEN

1. Introduction and statements of results.

In this paper we compute (up to a central extension) the fundamental
group of an arbitrary (path-) component in the space of (continuous)
maps of a given closed surface into the 2-sphere S2. As an application
we solve the homotopy problem for the countable number of compo-
nents in the space of maps of a closed, orientable surface into S2.

Let C be an arbitrary closed surface. In case C is orientable, we fix
an orientation of C. Denote by M(C,8%) the space of maps of C into S?
equipped with the compact-open topology. By the Hopf classification
theorem, M (C,S82) has a countable number of components if C is orien-
table, and exactly 2 components if C' is non-orientable. In the two cases,
C orientable, respectively non-orientable, the components in M(C,8?%)
are enumerated by the degree, respectively the degree mod 2 of maps of
C into S%2. We denote by M ,(C,S%) that component which contains the
maps of degree k, respectively degree k& mod 2.

For any non-negative integer m we denote by Z,, the cyclic group of
infinite order if m =0 and of order m if m > 0. Similarly, Z™ denotes the
trivial group if m=0 and the free abelian group of rank m if m>0.

In the orientable case we shall prove

TurorEM 1. Let T, be a closed, orientable surface of genus g2 0. For
each degree k, there exists a short exact sequence
0> Zy, —~ 7y (M, (T ,8%) - 2% - 0 .

For g=0, T,=82, and Theorem 1 states that m,(M;(S82%,8%)xZyy.
This is a theorem of Hu [6, Theorem 5.3], see also Koh [7, Lemma 3.9].
We use the theorem of Hu in the proof of theorem 1.

In the non-orientable case we shall prove
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THEOREM 2. Let P, be a closed, non-orientable surface with h crosscaps,
h>0. For each degree k mod 2 there exists a short exact sequence

00— 23 -> ﬂl(.Mk(.Ph,Sz)) -> Zh—1 -0 .

For k=0, Theorem 1 and Theorem 2 are due to Dyer [2, p.1288].
Hans J. Munkholm has observed that the extensions described by the
short exact sequences in Theorem 1 and Theorem 2 are always central
extensions. Normally, they are, however, non-trivial. We shall discuss
this in Section 5.

For any closed, orientable surface 7T, of genus g2 0 and any degree
k+0, the two components M,(T,,82) and M_,(T,,S%) are homeomorphic.
A homeomorphism can be constructed by composition with a fixed orien-
tation reversing homeomorphism on 7T',. Our original interest in Theorem
1 can then be expressed in the following

CoroLLARY. T'wo components in M(T,,S%) corresponding to degrees m
and n have the same homotopy type if and only if m= +n.

The problem behind this corollary, namely to divide the set of compo-
nents in a given space of maps into homotopy types, was solved in [3]
for the space of self-mappings on the n-sphere S for » > 1 and for various
other spaces of maps between spheres. The methods in [3], and in the
related paper [4], use extensively constructions involving a suspension
parameter in the domain. The corollary is therefore interesting, since
it deals with a situation, where the domain is not a suspension.

2. Preliminaries.

All topological spaces will be equipped with a base point. For any
pair of based spaces 4 and B, we denote by 7z(A4,B) the set of based
homotopy classes of based maps of 4 into B. If 4=.8", the n-sphere,
we use mostly the standard notation =,(B)==n(S"B). For any based
space X, 2X and XX denotes respectively the space of loops on X and
the (reduced) suspension of X. v and A between based spaces shall denote
respectively wedge product and smash product. All mapping spaces will
be equipped with the compact-open topology.

For any closed surface C we denote by F(C,S?) the space of based
maps of C into S2. The components in F(C,S2%) are enumerated by the
degree, respectively the degree mod 2 of maps of C into §?% according
to C orientable, respectively non-orientable, and a component in F(C,S?)
is denoted similarly to the corresponding component in the space of
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maps M(C,8%) with no restrictions on base points. Since S2? is simply
connected, and therefore a simple space, the Hurewich fibration p:
M,(C,8%) — 8% defined by evaluation at the base point of C has F,(C,S?%)
ag fibre.

For each closed surface C we choose now an embedded 2-disc D2,
such that the base point in C belongs to the boundary D2 of D2. Collaps-
ing D% to the base point defines amap»: ¢ - C' v 82 Let alsoV: §2v 82
S§2 denote the folding map. For any pair of based maps f: C - §2 and
g: 82 - 8% we can then define the map f+g: C — S2? as the composite
map f+g=Vo(fvg)or.

For each degree k we choose a fixed based map g,: S — 82 of degree
k. It is then easy to prove that the map 6: F((C,S82) - F,(C,S82) defined
by 6(f)=f+9; is a homotopy equivalence with an inverse y: F;(C,S8%) —
F(C,8%) defined by y(h)=h+g_,. For C non-orientable the degree is
understood to be counted mod2.

In particular we get then

ProrositioN 1. For any closed surface C, all the components in F(C,S2)
have the same homotopy type.

3. Proofs of Theorem 1 and its corollary.

Let T, be a closed, orientable surface of genus g= 0. Denote by 4,
the wedge of 2¢g circles (1-spheres) for ¢ >0 and a point for g=0. Then
m,(A4,) is isomorphic to the free group on 2g generators. To be specific,
let «y,p,...,5, 0, be the system of generators for m,(4,) represented
by the inclusion maps into 4, of the 2g circles in 4,. Denote by IT7_, [«;,8;]
the product of the commutators [«;,f;]. Let ¢: 81 - 4, be a based map
with the homotopy class TT%_, [«;8;]. Then it is well-known that T, is
homotopy equivalent to the mapping cone of ¢. Hence we get a mapping
sequence

St d T, 54, ..,
where q: T', - 82 is the map defined by collapsing 4, to the base point.
Clearly ¢ is a based map of degree 1.

For any based space X this mapping sequence induces an exact homo-
topy sequence

n(ZA,X) 5 7(82,X) — > a(T,, X) —— n(4,,X) —> 2(SLX) .



152 VAGN LUNDSGAARD HANSEN

ProrosITION 2. (Z9)* t8 always the zero map. If 7,(X) is abelian, then
@* 18 also the zero map, and we get a short exact sequence

0 - 75(X) - n(T,, X) > n(4,,X) - 0.
Here n(A,,X) = @ 1(my(X))y, the direct sum of 2g copies of my(X).

Proor. The homomorphism (Zg)*: 7(Z4,,X) - =(8% X) is equivalent
to a homomorphism 7(4,,2X) — #(8!,2X). Using this equivalence it is
clear that for any y € n(4,,2X), we get

(Z9)*(y) = Miaalyoxi,yoBil,

where yox; and yof, are the homotopy classes defined by composition.
Since 7(S1,02X)~n,(X) is abelian, (Zp)*(y)=0. This proves that (Zp)*
is the zero map.

When #,(X) is abelian, an analogous argument shows that
@*: n(4,,X) - (8%, X) is the zero map.

Since the remaining assertions are now obvious, Proposition 2 is proved.

For any degree k, the above map q: 7T, -~ 8% of degree 1 induces a
map between fibrations by composition of maps,

Flc(Sz: Sz) I Fk(Tg’SZ)

M(82,82) — L M(T,,S?)

LRI

The Hurewicz fibrations pg and p, are defined by evaluation at the
base points in respectively S2 and T',. 1gs denotes the identity map on S2.

This map between fibrations induces a map between homotopy se-
quences

o 0 (8%) — s 1, (F (82, 87)) —— ory( (82, 8)) —— 0
1
o —— 7y(8) s 7 (F (T, 87) —— muy( M (T, 82) — 0.
Consider now the homotopy equivalences

Og: Fo(S2,82) > F(82,82) and  0p: Fo(T,, 8% — Fy(T,, 8%
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defined in Section 2. To define 6, we choose the 2-cell, which goes into
the definition, such that it is contained in the 2-cell we attach to 4,
to obtain 7T',, and such that the boundaries of these 2-cells have just
the base point in 7', in common. Choosing the constant based maps as
base points in F(82%,8%) and Fy(T,, 82) and base points in F,(S2, %) and
F(T,,8?) accordingly we get then a commutative diagram

(1S, 82) ——> (St A 82,82) —c—> my(Fy(S, 8)) 222, 7y (F (2, 82))

N T l

(T, 282) —=— (St A T,, 82) —=— my(Fo(T,, 82)) 2% my(F(T,, 8%)).
All the vertical maps in this diagram are induced by the map ¢: 7', - S§2.
The unnamed horizontal isomorphisms are the obvious adjoint isomor-
phisms.

Combining the short exact sequence from Proposition 2 and the above
commutative diagram with the map between the homotopy sequences
for the fibrations pg and p;, we get an induced commutative diagram
of exact sequences

0

705(9%) 5 (82, 08%) —— guy(M,(S2, 82)) —— O

ll - l

73(82) — 2> (T, 282) —— 7y M(T,, 8%) — 0

L

n(A4,,285?%)

g’

0

A simple diagram chasing in this diagram provides us now with a short
exact sequence

0 - 7, M (82, 82)) > 7y M (T, 82)) ~ n(A,,282) > 0.

In this exact sequence ,(M,(S? 8%)xZ,,;, by the theorem of Hu [86,
Theorem 5.3], see also Koh [7, Lemma 3.9]. Since

n(d,, 28?%) = ®F (7, (282), > Z%,
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there exists therefore a short exact sequence
0~ Zy, ~ (M (T, 8%) - Z% - 0

as asserted in Theorem 1.

From this short exact sequence it follows that m,(M,(T,,S?)) for
k+0 contains an element of order 2|k|. A simple argument involving
orders of elements proves then that

n1<Mm(Ta’ Sz)) $ 77"1(1‘In(T0’ SZ))

if m+4 +n, and hence the corollary follows.

4. Proof of Theorem 2.

Let P, be a closed, non-orientable surface with s crosscaps, »> 0. Let
B, denote the wedge of % circles, and let B, be a point. Then x,(B,) is
isomorphic to the free group on % generators. Let y,, . . .,y; be the system
of generators of z,(B,) represented by the inclusion maps into B, of the
h circles in B, If y: 81 - B, denotes a based map with the homotopy
class

Iy =7t v,

then it is well-known that P, is homotopy equivalent to the mapping
cone of y. Hence we get a mapping sequence

S-—*.B— P18, 5B, — ...,

where q: P, — 82 is the map defined by collapsing B, to the base point.
Clearly ¢ is a based map of degree 1 mod 2.

For any based space X this mapping sequence induces an exact homo-
topy sequence

7(EB,, X) L% (82, X) —— a(Py, X) ——> n(By, X) — (8, X) .

ProprosrtioNn 3. In the above exact sequence, coker (Zy)* ~my(X)QZ,.
If we assume that ny(X) ts abelian and wuniquely divisible by 2, then
kery* > n(B;_;,X), and we get a short exact sequence

0 > 7(X) ® Zy > n(Py, X) > n(By 4, X) > 0.
Here n(B,_;,X)~ @21 (y(X)),, the direct sum of h—1 copies of my(X).

=1

Proor. The homomorphism (Zy)*: #(XB,,X) - n(8?% X) is equivalent
to a homomorphism #(B,,2X) - n(S,2X). Using this equivalence it is
clear that for any « € n(B;,2X) we get

(Zp)*(a) = TTy(o0ys)® = 2+ (aopy)+ ... +2+(a0ys) ,
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where we can use additive notation, since n(S!,Q2X)~n,(X) is abelian.
Therefore it is clear that the image of (Zy)* in #(S2, X)=mn,(X) must be
the subgroup 2-7(82,X)=2-7,(X). Hence
coker (Zy)* & 71y(X)[2-7y(X) = (X)) @ Z, .
Assume now that z,(X) is abelian and uniquely divisible by 2. For any
o € ne(B,, X) we have
P*(o) = TThy(ooyy)? = 2+ (xopy)+ ... +2+ (xopy) ,
where we can use additive notation since x,(X) is abelian. Since 7,(X)
is uniquely divisible by 2, the equation
2+ (xoy)+ ... +2:(x0y) = 0

determines «oy, uniquely from «oy,,...,x0y, ;. Hence keryp*x
n(Bh—-l’ X).

The remaining assertions are obvious, and hence Proposition 3 is proved.

For k=0,1, the above map ¢q: P, — 82 of degree 1 mod2 induces a
map between fibrations by composition of maps,

F,c(Sz, 82) ——— Fy(Py, S2)

M (82, 82) —L s WPy, 87)
Py Pp

192

S? S2

Proceeding exactly as in Section 4, we end up with the following commu-
tative diagram of exact sequences

7(ZB;, 28?)
(Zy)* L
my(18%) —%> 7(S2,Q8%) —— (M (82, 8%) —— 0

1 q*

(%) 7S 7Py, 282) ——— 70y (M (P, 8?)) —— 0

7t(By_y,828%)
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If we choose generators ¢, €my(S2)~Z and %€ n(82 Q282 2 n,(S?)~Z
appropriately, then we can assume that dg'(t,) = 2k-7. See Hu [6, Theo-
rem 5.3]. With such choices of generators, imdg =0 for k=0 and imdg' =
2Z-q for k=1.

From the description of (Zyp)* given in the proof of Proposition 3, it
follows that im (Zy)*=2Z-9.

Thus imdg’ <im(Zy)* for both k=0 and 1. This implies that 6p'=0
and hence that

7y (M (P, 8%)) = 7(Py, 28?%)

for both k=0 and 1. Therefore we get for all degrees ¥ mod2 a short
exact sequence.

0 — coker (Zy)* - my(M (P, 82)) ~ n(By_1,28%) - 0 .

Since coker (Zy)* ~ Z, and n(B,_,,£282) ~ Z*-1 this sequence is equivalent
to a short exact sequence

0— 22 - nl(Mk(Ph’ S2)) -~ Zh-1 5 0.

This proves Theorem 2.

5. Centrality of the extensions in Theorem 1 and Theorem 2. Two pro-
blems.

Hans J. Munkholm has observed that the extensions described by
the short exact sequences in Theorem 1 and Theorem 2 are always cen-
tral extensions. I am indepted to him for a conversation, which led to
the following proof of this fact for the exact sequence in Theorem 1.
Using the terminology from Section 3 it is clearly sufficient to prove the

ASSERTION. The extension described by the short exact sequence
0 —— 7(82,0282) AR a(T,, 282) —— 7(4,,28% —— 0

18 central.

Proor. Consider an arbitrary pair of homotopy classes « € (T, 28%)
and g € n(82%,028?%). Choose an embedded 2-cell D2 in T', contained in the
interior of the 2-cell we attach to 4, to obtain 7',. Since the pair (7', D?)
has the homotopy extension property, we can represent « by a based
map f: T, ~ 282, which restricts to the constant loop on D2 Since
¢(T,\ intD?) is an embedded 2-cell in 8?2, it is clear, that we can repre-
sent # by a based map %: 8% > Q8?, such that hog: T, > Q282 restricts
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to the constant loop on 7',\ intD2. After a change by a homotopy we
can assume, that the loop multiplication

i Q8% x 082 > 082

has the constant loop as a strict unit element. This is possible, since the
pair (282% x 282,282 v 282) has the homotopy extension property. With
such a choice of u it is clear, that the diagram

T, 2% 082 % 08e
(hog) XIl J|fl‘
082 x Q82— 082

is commutative. Since the group structures in the various groups in the
exact sequence are all induced by u, this shows, that the homotopy
classes « and ¢*(8) commute in #(T,,£S82). This proves the assertion.

A similar argument will show, that the extension described by the
short exact sequence in Theorem 2 is central.

Consider now an arbitrary closed surface C and let k& be an arbitrary
degree if C is orientable, and degree mod?2 if C is non-orientable. Since
it is central, it is clear, that the extension described by the short exact
sequence in Theorem 1, respectively Theorem 2, is trivial if and only
if 7y (M,(C,8?) is abelian. Normally, 7,(M,(C,8?)) is, however, non-
abelian, in which case the corresponding extension is non-trivial. To
mention a concrete example it is shown in Barratt [2, p. 95] and Federer
[8, p. 358], that z,( M(C, §2)) is non-abelian for C =T, the 2-dimensional
torus.

The above discussion raises the following

ProBrEM 1. Determine the extensions in Theorem 1 and Theorem 2.
In particular: a) What is the characteristic class of such an extension?
b) Is the fundamental group m,(M,(C,8?)) abelian, or equivalently, is
the corresponding extension trivial, in other cases than C'=8%g=0) or
C=RP?, the projective plane (h=1)?

In [5, Theorem 2] we computed the fundamental group of an arbitrary
space of maps of a finite CW-complex into an Eilenberg-MacLane space
of type (m,1). Taking this together with Theorem 1 and Theorem 2 we
find, that we have computed (at least up to an extension) the funda-
mental group of any space of maps between closed surfaces, except
when the target is the projective plane RP2. Hence
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ProBLEM 2. Compute the fundamental group of the various compo-
nents in M(C, RP?) for an arbitrary closed surface C.
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