ON THE SPACE OF MAPS OF A CLOSED SURFACE INTO THE 2-SPHERE

VAGN LUNDSGAARD HANSEN

1. Introduction and statements of results.

In this paper we compute (up to a central extension) the fundamental group of an arbitrary (path-) component in the space of (continuous) maps of a given closed surface into the 2-sphere S^2 . As an application we solve the homotopy problem for the countable number of components in the space of maps of a closed, orientable surface into S^2 .

Let C be an arbitrary closed surface. In case C is orientable, we fix an orientation of C. Denote by $M(C,S^2)$ the space of maps of C into S^2 equipped with the compact-open topology. By the Hopf classification theorem, $M(C,S^2)$ has a countable number of components if C is orientable, and exactly 2 components if C is non-orientable. In the two cases, C orientable, respectively non-orientable, the components in $M(C,S^2)$ are enumerated by the degree, respectively the degree mod 2 of maps of C into S^2 . We denote by $M_k(C,S^2)$ that component which contains the maps of degree k, respectively degree k mod 2.

For any non-negative integer m we denote by Z_m the cyclic group of infinite order if m=0 and of order m if m>0. Similarly, Z^m denotes the trivial group if m=0 and the free abelian group of rank m if m>0. In the orientable case we shall prove

THEOREM 1. Let T_g be a closed, orientable surface of genus $g \ge 0$. For each degree k, there exists a short exact sequence

$$0 \to \mathsf{Z}_{2|k|} \to \pi_1(M_k(T_g, S^2)) \to \mathsf{Z}^{2g} \to 0$$
 .

For g=0, $T_g=S^2$, and Theorem 1 states that $\pi_1(M_k(S^2,S^2)) \cong \mathbb{Z}_{2|k|}$. This is a theorem of Hu [6, Theorem 5.3], see also Koh [7, Lemma 3.9]. We use the theorem of Hu in the proof of theorem 1.

In the non-orientable case we shall prove

Received August 19, 1974.

THEOREM 2. Let P_h be a closed, non-orientable surface with h crosscaps, h > 0. For each degree $k \mod 2$ there exists a short exact sequence

$$0 o \mathsf{Z}_2 o \pi_1 \big(M_k(P_h, S^2) \big) o \mathsf{Z}^{h-1} o 0$$
 .

For k=0, Theorem 1 and Theorem 2 are due to Dyer [2, p.1288]. Hans J. Munkholm has observed that the extensions described by the short exact sequences in Theorem 1 and Theorem 2 are always central extensions. Normally, they are, however, non-trivial. We shall discuss this in Section 5.

For any closed, orientable surface T_g of genus $g \ge 0$ and any degree $k \ne 0$, the two components $M_k(T_g,S^2)$ and $M_{-k}(T_g,S^2)$ are homeomorphic. A homeomorphism can be constructed by composition with a fixed orientation reversing homeomorphism on T_g . Our original interest in Theorem 1 can then be expressed in the following

COROLLARY. Two components in $M(T_q, S^2)$ corresponding to degrees m and n have the same homotopy type if and only if $m = \pm n$.

The problem behind this corollary, namely to divide the set of components in a given space of maps into homotopy types, was solved in [3] for the space of self-mappings on the n-sphere S^n for $n \ge 1$ and for various other spaces of maps between spheres. The methods in [3], and in the related paper [4], use extensively constructions involving a suspension parameter in the domain. The corollary is therefore interesting, since it deals with a situation, where the domain is not a suspension.

2. Preliminaries.

All topological spaces will be equipped with a base point. For any pair of based spaces A and B, we denote by $\pi(A,B)$ the set of based homotopy classes of based maps of A into B. If $A = S^n$, the n-sphere, we use mostly the standard notation $\pi_n(B) = \pi(S^n,B)$. For any based space X, ΩX and ΣX denotes respectively the space of loops on X and the (reduced) suspension of X. v and x between based spaces shall denote respectively wedge product and smash product. All mapping spaces will be equipped with the compact-open topology.

For any closed surface C we denote by $F(C,S^2)$ the space of based maps of C into S^2 . The components in $F(C,S^2)$ are enumerated by the degree, respectively the degree mod 2 of maps of C into S^2 according to C orientable, respectively non-orientable, and a component in $F(C,S^2)$ is denoted similarly to the corresponding component in the space of

maps $M(C,S^2)$ with no restrictions on base points. Since S^2 is simply connected, and therefore a simple space, the Hurewich fibration p: $M_k(C,S^2) \to S^2$ defined by evaluation at the base point of C has $F_k(C,S^2)$ as fibre.

For each closed surface C we choose now an embedded 2-disc D^2 , such that the base point in C belongs to the boundary ∂D^2 of D^2 . Collapsing ∂D^2 to the base point defines a map $v: C \to C \vee S^2$. Let also $\nabla: S^2 \vee S^2 \to S^2$ denote the folding map. For any pair of based maps $f: C \to S^2$ and $g: S^2 \to S^2$ we can then define the map $f+g: C \to S^2$ as the composite map $f+g=\nabla \circ (f \vee g) \circ v$.

For each degree k we choose a fixed based map $g_k \colon S^2 \to S^2$ of degree k. It is then easy to prove that the map $\theta \colon F_0(C,S^2) \to F_k(C,S^2)$ defined by $\theta(f) = f + g_k$ is a homotopy equivalence with an inverse $\psi \colon F_k(C,S^2) \to F_0(C,S^2)$ defined by $\psi(h) = h + g_{-k}$. For C non-orientable the degree is understood to be counted mod 2.

In particular we get then

PROPOSITION 1. For any closed surface C, all the components in $F(C,S^2)$ have the same homotopy type.

3. Proofs of Theorem 1 and its corollary.

Let T_g be a closed, orientable surface of genus $g \ge 0$. Denote by A_g the wedge of 2g circles (1-spheres) for g>0 and a point for g=0. Then $\pi_1(A_g)$ is isomorphic to the free group on 2g generators. To be specific, let $\alpha_1,\beta_1,\ldots,\alpha_g,\beta_g$ be the system of generators for $\pi_1(A_g)$ represented by the inclusion maps into A_g of the 2g circles in A_g . Denote by $\prod_{i=1}^g [\alpha_i,\beta_i]$ the product of the commutators $[\alpha_i,\beta_i]$. Let $\varphi\colon S^1\to A_g$ be a based map with the homotopy class $\prod_{i=1}^g [\alpha_i,\beta_i]$. Then it is well-known that T_g is homotopy equivalent to the mapping cone of φ . Hence we get a mapping sequence

$$S^1 \xrightarrow{\varphi} A_q \longrightarrow T_q \xrightarrow{q} S^2 \xrightarrow{\Sigma_{\varphi}} \Sigma A_q \rightarrow \dots$$

where $q: T_g \to S^2$ is the map defined by collapsing A_g to the base point. Clearly q is a based map of degree 1.

For any based space X this mapping sequence induces an exact homotopy sequence

$$\pi(\varSigma A_g,X) \xrightarrow{(\varSigma \varphi)^{\bullet}} \pi(S^2,X) \longrightarrow \pi(T_g,X) \longrightarrow \pi(A_g,X) \xrightarrow{\varphi^{\bullet}} \pi(S^1,X) \; .$$

PROPOSITION 2. $(\Sigma \varphi)^*$ is always the zero map. If $\pi_1(X)$ is abelian, then φ^* is also the zero map, and we get a short exact sequence

$$0 \to \pi_2(X) \to \pi(T_q, X) \to \pi(A_q, X) \to 0$$
.

Here $\pi(A_g, X) \cong \bigoplus_{i=1}^{2g} (\pi_1(X))_i$, the direct sum of 2g copies of $\pi_1(X)$.

PROOF. The homomorphism $(\Sigma \varphi)^* : \pi(\Sigma A_g, X) \to \pi(S^2, X)$ is equivalent to a homomorphism $\pi(A_g, \Omega X) \to \pi(S^1, \Omega X)$. Using this equivalence it is clear that for any $\gamma \in \pi(A_g, \Omega X)$, we get

$$(\Sigma \varphi)^*(\gamma) = \prod_{i=1}^g [\gamma \circ \alpha_i, \gamma \circ \beta_i],$$

where $\gamma \circ \alpha_i$ and $\gamma \circ \beta_i$ are the homotopy classes defined by composition. Since $\pi(S^1, \Omega X) \cong \pi_2(X)$ is abelian, $(\Sigma \varphi)^*(\gamma) = 0$. This proves that $(\Sigma \varphi)^*$ is the zero map.

When $\pi_1(X)$ is abelian, an analogous argument shows that $\varphi^* : \pi(A_q, X) \to \pi(S^1, X)$ is the zero map.

Since the remaining assertions are now obvious, Proposition 2 is proved.

For any degree k, the above map $q: T_g \to S^2$ of degree 1 induces a map between fibrations by composition of maps,

$$F_k(S^2, S^2) \longrightarrow F_k(T_g, S^2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $M_k(S^2, S^2) \stackrel{q^*}{\longrightarrow} M_k(T_g, S^2)$
 \downarrow^{p_T}
 $S^2 \stackrel{1_{S^2}}{\longrightarrow} S^2$

The Hurewicz fibrations p_S and p_T are defined by evaluation at the base points in respectively S^2 and T_g . 1_{S^2} denotes the identity map on S^2 .

This map between fibrations induces a map between homotopy sequences

Consider now the homotopy equivalences

$$\theta_S \colon F_0(S^2, S^2) \to F_k(S^2, S^2) \quad \text{ and } \quad \theta_T \colon F_0(T_g, S^2) \to F_k(T_g, S^2)$$

defined in Section 2. To define θ_T we choose the 2-cell, which goes into the definition, such that it is contained in the 2-cell we attach to A_g to obtain T_g , and such that the boundaries of these 2-cells have just the base point in T_g in common. Choosing the constant based maps as base points in $F_0(S^2, S^2)$ and $F_0(T_g, S^2)$ and base points in $F_k(S^2, S^2)$ and $F_k(T_g, S^2)$ accordingly we get then a commutative diagram

All the vertical maps in this diagram are induced by the map $q: T_g \to S^2$. The unnamed horizontal isomorphisms are the obvious adjoint isomorphisms.

Combining the short exact sequence from Proposition 2 and the above commutative diagram with the map between the homotopy sequences for the fibrations p_S and p_T , we get an induced commutative diagram of exact sequences

A simple diagram chasing in this diagram provides us now with a short exact sequence

$$0 \rightarrow \pi_1\big(M_k(S^2,S^2)\big) \rightarrow \pi_1\big(M_k(T_g,S^2)\big) \rightarrow \pi(A_g,\Omega S^2) \rightarrow 0 \ .$$

In this exact sequence $\pi_1(M_k(S^2, S^2)) \cong \mathbb{Z}_{2|k|}$ by the theorem of Hu [6, Theorem 5.3], see also Koh [7, Lemma 3.9]. Since

$$\pi(A_g, \Omega S^2) \cong \bigoplus_{i=1}^{2g} (\pi_1(\Omega S^2))_i \cong \mathsf{Z}^{2g}$$
,

there exists therefore a short exact sequence

$$0 \to \mathsf{Z}_{2|k|} \to \pi_1 \big(\boldsymbol{M}_k(\boldsymbol{T}_g, S^2) \big) \to \mathsf{Z}^{2g} \to 0$$

as asserted in Theorem 1.

From this short exact sequence it follows that $\pi_1(M_k(T_g, S^2))$ for $k \neq 0$ contains an element of order 2|k|. A simple argument involving orders of elements proves then that

$$\pi_1(M_m(T_g, S^2)) \cong \pi_1(M_n(T_g, S^2))$$

if $m \neq \pm n$, and hence the corollary follows.

4. Proof of Theorem 2.

Let P_h be a closed, non-orientable surface with h crosscaps, h > 0. Let B_h denote the wedge of h circles, and let B_0 be a point. Then $\pi_1(B_h)$ is isomorphic to the free group on h generators. Let $\gamma_1, \ldots, \gamma_h$ be the system of generators of $\pi_1(B_h)$ represented by the inclusion maps into B_h of the h circles in B_h . If $\psi \colon S^1 \to B_h$ denotes a based map with the homotopy class

$$\prod_{i=1}^h \gamma_i^2 = \gamma_1^2 \dots \gamma_h^2,$$

then it is well-known that P_h is homotopy equivalent to the mapping cone of ψ . Hence we get a mapping sequence

$$S^1 \xrightarrow{\psi} B_h \xrightarrow{} P_h \xrightarrow{q} S^2 \xrightarrow{\Sigma_{\psi}} \Sigma B_h \xrightarrow{} \dots$$

where $q: P_h \to S^2$ is the map defined by collapsing B_h to the base point. Clearly q is a based map of degree 1 mod 2.

For any based space X this mapping sequence induces an exact homotopy sequence

$$\pi(\Sigma B_h,X) \xrightarrow{(\Sigma \psi)^{\bullet}} \pi(S^2,X) \longrightarrow \pi(P_h,X) \longrightarrow \pi(B_h,X) \xrightarrow{\psi^{\bullet}} \pi(S^1,X) \; .$$

PROPOSITION 3. In the above exact sequence, coker $(\Sigma \psi)^* \cong \pi_2(X) \otimes \mathbb{Z}_2$. If we assume that $\pi_1(X)$ is abelian and uniquely divisible by 2, then $\ker \psi^* \cong \pi(B_{h-1}, X)$, and we get a short exact sequence

$$0 \to \pi_2(X) \otimes \mathsf{Z_2} \to \pi(P_h,X) \to \pi(B_{h-1},X) \to 0 \ .$$

Here $\pi(B_{h-1},X) \cong \bigoplus_{i=1}^{h-1} (\pi_1(X))_i$, the direct sum of h-1 copies of $\pi_1(X)$.

PROOF. The homomorphism $(\Sigma \psi)^*$: $\pi(\Sigma B_h, X) \to \pi(S^2, X)$ is equivalent to a homomorphism $\pi(B_h, \Omega X) \to \pi(S^1, \Omega X)$. Using this equivalence it is clear that for any $\alpha \in \pi(B_h, \Omega X)$ we get

$$(\Sigma \psi)^*(\alpha) = \prod_{i=1}^h (\alpha \circ \gamma_i)^2 = 2 \cdot (\alpha \circ \gamma_1) + \ldots + 2 \cdot (\alpha \circ \gamma_h) ,$$

where we can use additive notation, since $\pi(S^1, \Omega X) \cong \pi_2(X)$ is abelian. Therefore it is clear that the image of $(\Sigma \psi)^*$ in $\pi(S^2, X) = \pi_2(X)$ must be the subgroup $2 \cdot \pi(S^2, X) = 2 \cdot \pi_2(X)$. Hence

$$\operatorname{coker}(\Sigma \psi)^* \cong \pi_2(X)/2 \cdot \pi_2(X) \cong \pi_2(X) \otimes \mathsf{Z}_2$$
.

Assume now that $\pi_1(X)$ is abelian and uniquely divisible by 2. For any $\alpha \in \pi(B_h, X)$ we have

$$\psi^*(\alpha) = \prod_{i=1}^h (\alpha \circ \gamma_i)^2 = 2 \cdot (\alpha \circ \gamma_1) + \ldots + 2 \cdot (\alpha \circ \gamma_h) ,$$

where we can use additive notation since $\pi_1(X)$ is abelian. Since $\pi_1(X)$ is uniquely divisible by 2, the equation

$$2 \cdot (\alpha \circ \gamma_1) + \ldots + 2 \cdot (\alpha \circ \gamma_h) = 0$$

determines $\alpha \circ \gamma_h$ uniquely from $\alpha \circ \gamma_1, \ldots, \alpha \circ \gamma_{h-1}$. Hence $\ker \psi^* \cong \pi(B_{h-1}, X)$.

The remaining assertions are obvious, and hence Proposition 3 is proved.

For k=0,1, the above map $q: P_h \to S^2$ of degree 1 mod 2 induces a map between fibrations by composition of maps,

$$\begin{array}{cccc} F_k(S^2,S^2) & \longrightarrow & F_k(P_h,S^2) \\ & & & \downarrow & & \downarrow \\ M_k(S^2,S^2) & \stackrel{q^*}{\longrightarrow} & M_k(P_h,S^2) \\ & & & \downarrow^{p_P} & & \downarrow^{p_P} \\ & & & & S^2 & \stackrel{1_{S^2}}{\longrightarrow} & S^2 \end{array}$$

Proceeding exactly as in Section 4, we end up with the following commutative diagram of exact sequences

$$\begin{array}{c} \pi(\Sigma B_h, \Omega S^2) \\ \downarrow \\ \pi_2(S^2) \xrightarrow{\partial' S} \pi(S^2, \Omega S^2) & \longrightarrow \pi_1(M_k(S^2, S^2)) & \longrightarrow 0 \\ \downarrow \\ \downarrow \\ \pi_2(S^2) \xrightarrow{\partial' P} \pi(P_h, \Omega S^2) & \longrightarrow \pi_1(M_k(P_h, S^2)) & \longrightarrow 0 \\ \downarrow \\ \pi(B_{h-1}, \Omega S^2) & \downarrow \\ 0 & . \end{array}$$

If we choose generators $\iota_2 \in \pi_2(S^2) \cong \mathbb{Z}$ and $\eta \in \pi(S^2, \Omega S^2) \cong \pi_3(S^2) \cong \mathbb{Z}$ appropriately, then we can assume that $\partial_{S'}(\iota_2) = 2k \cdot \eta$. See Hu [6, Theorem 5.3]. With such choices of generators, im $\partial_{S'} = 0$ for k = 0 and im $\partial_{S'} = 2\mathbb{Z} \cdot \eta$ for k = 1.

From the description of $(\Sigma \psi)^*$ given in the proof of Proposition 3, it follows that im $(\Sigma \psi)^* = 2Z \cdot \eta$.

Thus im $\partial_S' \subseteq \operatorname{im}(\Sigma \psi)^*$ for both k=0 and 1. This implies that $\partial_P' = 0$ and hence that

$$\pi_1(M_k(P_h, S^2)) \cong \pi(P_h, \Omega S^2)$$

for both k=0 and 1. Therefore we get for all degrees $k \mod 2$ a short exact sequence.

$$0 \to \operatorname{coker}(\varSigma \psi)^* \to \pi_1(M_k(P_h, S^2)) \to \pi(B_{h-1}, \varOmega S^2) \to 0 \ .$$

Since $\operatorname{coker}(\Sigma \psi)^* \cong \mathbb{Z}_2$ and $\pi(B_{h-1}, \Omega S^2) \cong \mathbb{Z}^{h-1}$ this sequence is equivalent to a short exact sequence

$$0 \to \mathsf{Z}_2 \to \pi_1\big(M_k(P_h,S^2)\big) \to \mathsf{Z}^{h-1} \to 0 \ .$$

This proves Theorem 2.

5. Centrality of the extensions in Theorem 1 and Theorem 2. Two problems.

Hans J. Munkholm has observed that the extensions described by the short exact sequences in Theorem 1 and Theorem 2 are always central extensions. I am indepted to him for a conversation, which led to the following proof of this fact for the exact sequence in Theorem 1. Using the terminology from Section 3 it is clearly sufficient to prove the

Assertion. The extension described by the short exact sequence

$$0 \longrightarrow \pi(S^2, \Omega S^2) \xrightarrow{q^*} \pi(T_g, \Omega S^2) \longrightarrow \pi(A_g, \Omega S^2) \longrightarrow 0$$

is central.

PROOF. Consider an arbitrary pair of homotopy classes $\alpha \in \pi(T_g, \Omega S^2)$ and $\beta \in \pi(S^2, \Omega S^2)$. Choose an embedded 2-cell \overline{D}^2 in T_g contained in the interior of the 2-cell we attach to A_g to obtain T_g . Since the pair (T_g, \overline{D}^2) has the homotopy extension property, we can represent α by a based map $f \colon T_g \to \Omega S^2$, which restricts to the constant loop on \overline{D}^2 . Since $q(T_g \setminus \operatorname{int} \overline{D}^2)$ is an embedded 2-cell in S^2 , it is clear, that we can represent β by a based map $h \colon S^2 \to \Omega S^2$, such that $h \circ q \colon T_g \to \Omega S^2$ restricts

to the constant loop on $T_g \setminus \operatorname{int} \overline{D}^2$. After a change by a homotopy we can assume, that the loop multiplication

$$\mu: \Omega S^2 \times \Omega S^2 \to \Omega S^2$$

has the constant loop as a strict unit element. This is possible, since the pair $(\Omega S^2 \times \Omega S^2, \Omega S^2 \vee \Omega S^2)$ has the homotopy extension property. With such a choice of μ it is clear, that the diagram

$$T_{g} \xrightarrow{f \times (h \circ g)} \Omega S^{2} \times \Omega S^{2}$$

$$\downarrow^{\mu}$$

$$\Omega S^{2} \times \Omega S^{2} \xrightarrow{\mu} \Omega S^{2}$$

is commutative. Since the group structures in the various groups in the exact sequence are all induced by μ , this shows, that the homotopy classes α and $q^*(\beta)$ commute in $\pi(T_q, \Omega S^2)$. This proves the assertion.

A similar argument will show, that the extension described by the short exact sequence in Theorem 2 is central.

Consider now an arbitrary closed surface C and let k be an arbitrary degree if C is orientable, and degree mod 2 if C is non-orientable. Since it is central, it is clear, that the extension described by the short exact sequence in Theorem 1, respectively Theorem 2, is trivial if and only if $\pi_1(M_k(C,S^2))$ is abelian. Normally, $\pi_1(M_k(C,S^2))$ is, however, non-abelian, in which case the corresponding extension is non-trivial. To mention a concrete example it is shown in Barratt [2, p. 95] and Federer [8, p. 358], that $\pi_1(M_0(C,S^2))$ is non-abelian for $C=T_1$, the 2-dimensional torus.

The above discussion raises the following

PROBLEM 1. Determine the extensions in Theorem 1 and Theorem 2. In particular: a) What is the characteristic class of such an extension? b) Is the fundamental group $\pi_1(M_k(C, S^2))$ abelian, or equivalently, is the corresponding extension trivial, in other cases than $C = S^2(g = 0)$ or $C = \mathbb{RP}^2$, the projective plane (h = 1)?

In [5, Theorem 2] we computed the fundamental group of an arbitrary space of maps of a finite CW-complex into an Eilenberg-MacLane space of type $(\pi,1)$. Taking this together with Theorem 1 and Theorem 2 we find, that we have computed (at least up to an extension) the fundamental group of any space of maps between closed surfaces, except when the target is the projective plane RP². Hence

PROBLEM 2. Compute the fundamental group of the various components in $M(C, \mathbb{RP}^2)$ for an arbitrary closed surface C.

REFERENCES

- 1. M. G. Barratt, Track groups I. Proc. London. Math. Soc. 5 (1955), 71-106.
- 2. M. Dyer, Two term conditions in π exact couples, Canad. J. Math. 19 (1967), 1263-1288.
- 3. V. L. Hansen, The homotopy problem for the components in the space of maps on the n-sphere. Quart. J. Math. Oxford Ser. (2), 25 (1974), 313-21.
- 4. V. L. Hansen, Equivalence of evaluation fibrations, Invent. Math. 23 (1974), 163-171.
- V. L. Hansen, Spaces of maps into Eilenberg-MacLane spaces, Københavns Universitet, Matematisk Institut, Preprint Series 1974, No. 2.
- S. T. Hu, Concerning the homotopy groups of the components of the mapping space Y^{SP}, Indagationes Math. 8 (1946). 623-629.
- S. S. Koh, Note on the properties of the components of the mapping spaces X^{SP}, Proc. Amer. Math. Soc. 11 (1960), 896-904.
- H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956), 340-361.

MATEMATISK INSTITUT KØBENHAVNS UNIVERSITET KØBENHAVN DANMARK