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GENERAL TAUBERIAN REMAINDER THEOREMS
SONJA LYTTKENS

1. Introduction.
Let @ be real-valued, bounded and measurable on the real axis and
F € L! (— o0,00). We introduce the Fourier transform, F, of F
) = {*, e F(z)dx
and the convolution
(1.1) DxF(x) = \° D(x—y)F(y)dy .

These notations are used throughout the sequel.

In 1932 N. Wiener [13] proved a general Tauberian theorem. This
theorem included most earlier Tauberian theorems, which were stated
for special kernels, F. In a form, convenient for our purposes, it can be
stated as follows (cf. Achieser [1], p. 393).

WIENER'S THEOREM. Let @ be bounded on (— o0,00) and F € L} — oo, 00)
and swppose that

(1.2) D+F(x) >0, z—>o0.

If

(1.3) PE)+0, —wo<t<oo

and if @ satisfies the Tauberian condition

(1.4) lim,_, Jim,_,  supy.,<x{@®)—P(x+y)} < 0
then

D(x) >0, x—>o00.

Wiener’s theorem applies to a large class of kernels. Such Tauberian
theorems are called general and a Tauberian theorem which applies to a
specified kernel is called special.

Wiener’s theorem is a pure Tauberian theorem since it yields the esti-
mate P(x) - 0,2 — oo and nothing more.
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A Tauberian remainder theorem on the other hand investigates the
order of magnitude of @(x) as # - o provided that the order of magni-
tude of @ x F(x) as z — oo is known. Thus we suppose that

(1.5) D+ F(z) = O(p(x)), *—> o0

where o(z)\ 0, — oo, and we look for a more refined estimate of @ than
&(x) > 0,z - oo. In order to obtain such a result it is necessary to streng-
then the Tauberian condition and also to restrict the class of kernels
considered.

The classical Tauberian condition used in this connection is the follo-
wing
(1.6) D(x)+ Kz /, x>z, for some constant K .

As regards the kernels considered, the Wiener condition (1.3) is mostly
strengthened to the analyticity of 1/F in a strip around the real axis,
together with a restriction of the order of magnitude of 1/F in this strip.

The first general Tauberian remainder theorem was stated by Beurling
[2] in 1938. In this theorem 1/F is dominated by a polynomial in a
strip around the real axis. The theorem can be restated as follows.

BEURLING’S THEOREM. A. Let FeLl(—oo,00) and g(&)=1/F(&),
—oco<E<oo, Let E=E+1in and let a,y and S be positive constants. Suppose
that

(1.7) g(&) 18 analytic in —d<n<y
and
(1.8) |g(0)] < const(1+1&[)e, —d<n<y.

Let @ be bounded and satisfy the Tauberian condition (1.8). If (1.5) holds
true with o(x)=e~>* for some x,0<x <y, then

(1.9) B(x) = Oo@)), -0
where A=2/(2a + 3).

B. Impose the conditions of part A and suppose further that
lg'(C)l < comst(l+[£)*1, —d<n<y.
If a >} then (1.9) holds true with A=1[(a+1).
The conditions on the kernel F' can be weakened in the following way.

In part B the strip —6 <7 <y can be replaced by 0 <% <y if we interpret
1/F(&)=g(8),—o<é< oo a8

1) = lim,_,,, g(E+in), —oco<f<oo.
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Also the condition a >} can be replaced by a >0 (Lyttkens [8, Theorem
3, p. 681], cf. Ganelius [5, Theorem 1, p. 6]).

The class of kernels to which Beurling’s theorem applies is very re-
stricted compared to Wiener’s theorem. Yet the conditions on the ker-
nel are relevant in the following sense. If F' satisfies a slight additional
condition namely 2’F(z) € L1( — o0, 00) for some §> } then the analyticity
of 1/F in a strip above the real axis is necessary in Beurling’s theorem
(Lyttkens [9, Theorem 6, p. 347]). It was also proved by example that
the estimate (1.9) in part B is best possible in the sense that it cannot
be replaced by

D(x) = O(8(z)o(z)}), x> oo,

for any function 8 such that é(z) > 0,2 - co (see [9, p. 348]). Later,
Ganelius presented an example which proved that the value 2/(2a + 3) of
the constant 4 in part A cannot be improved (see [7, Example 3, p. 45]).

The ‘remainder’ g in Beurling’s theorem is of the form p(z) = e~%,
o« <. This can be replaced by the weaker condition that g(x) = e**,x <y
and o =1/r where r is submultiplicative, i.e.

(1.10) o) = Ur(z), riz+y) S r(@)r(y), —oco<w<oo, —co<y<oo

(Liyttkens [9, Theorem 1 p. 317], cf. Frennemo [3]).

Ganelius studied the corresponding Tauberian remainder problem when
1/F is dominated by an exponential instead of a polynomial. He proved
that if the condition (1.8) in part A of Beurling’s theorem is replaced by

lg(0)] < const e, —s<n<y,
then @ * F(x) = O(e~>%),x - oo, for some « > 0 implies that
(L.11) P@x) = O@x-!), x—>oo.

In [4] Ganelius proved this theorem by using a special Tauberian
remainder theorem for the Laplace transform and in [5] he proved it by
using a general method for Tauberian remainder theorems. Again the result
is best possible in the sense that (1.11) cannot be replaced by ®(x)=
O(é(z)x1),2 - oo for any function 6 such that é(x) - 0,2 - oo (see [7,
Example 1, p. 39]).

Later Frennemo [3] used Ganelius’ method to investigate the case
when (1.8) is replaced by

(1.12) g0 = M(l&)), —d<nm<y

and M(£),£20 is a submultiplicative increasing function. He also stu-
died the case when it also holds true that |g'()| £ M,(|¢]) in the strip
and M,(&),&= 0, is submultiplicative and increasing.



64 SONJA LYTTKENS

In his lecture notes of 1971 Ganelius [7] further developed his methods,
-generalized his results and proved the corresponding theorem when
(1.12) is valid and &-2logM(£),£=1, is bounded. He also proved that
‘the estimates obtained were best possible in many cases.

In her thesis Strube [10] proved a Tauberian remainder theorem with
conditions on 1/F and its first and second derivatives on the real axis
-only.

Apart from the last mentioned paper of Strube the methods hitherto
used lean heavily on the theory of analytic functions and the possibility
-of moving lines of integration in the plane. The method presented in
this paper is quite different and uses no theory of analytic functions
but is a pure Fourier method. It is a general method which partly brid-
ges the gap between the Wiener condition (1.3) and the above-mentioned
analyticity conditions on 1/F. Thus the theorems obtained can be applied
when 1/F and its derivative are locally in L2 on the real line as well
:as when 1/F is analytic in a strip —y < <y.

In spite of their generality the theorems yield sharp results when
.applied to the above-mentioned theorems of Beurling and Ganelius.
‘They also include the case when (1.12) is valid and &-2log M (£) — oo,

I impose conditions on F on the real axis only of the following type.
Let g(&)= I/F(f), — o0 < & < 0o, and suppose

(L13)  |g™(@)] S P,M(E]), —oo<f<oo,n=0,12,...

o0

where M(£), £20, is an arbitrary increasing function and P=(P,);
is a logarithmically convex sequence, Py=1, such that n!/P, is submul-
tiplicative. If (1.13) holds true with P,=n!y~", then g is analytic in
—y<n<yand, in every closed strip inside —y < <7, |g({)| £ const M(|&]).

In Beurling’s theorem the constant 4 in (1.9) depends on the majorant
«of 1/F in the strip, and the class R, of functions g for which (1.5) implies
(1.9), depends on how large the strip is. The class R, is, apart from
some regularity condition of type (1.10), determined by the condition
o(x) = e~%= for some < 1.

Under the condition (1.13) the situation is similar. Let @ satisfy the
‘'Tauberian condition (1.6). It will be proved below that it then follows
from (1.13) that there exists a function m, depending only on the majo-
rant M in (1.13), and a class Rp, depending on the sequence (P,) such
‘that (1.5) implies

(1.14) D(x) = O(m(g(x))), z > o0

for every g € Rp. The function
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(1.15) hp(x) = 35 o 2"/ P,

will play the same role as 7 in Beurling’s theorem, i.e. the result (1.14)
is, in the general case, valid only if g(x)= 1/hp(62) for some 6<1. (In
certain special cases it is in fact possible to obtain the result (1.14)
for some 0> 1, see Example 5 in Section 5.)

It should be mentioned that the condition (1.13), imposed here for
the sake of simplicity, can be considerably weakened (see 2.6).

I use a slightly more general regularity condition on the remainder g
introduced in (1.5) than the condition (1.10). Thus I suppose that o\
and that, for some constants 6 and b, 0<6<1, b1,

(1.16) o(x—y) £ bo(x)hp(Oy), y20,—c0<x<o0.

If hp(x)=e® the use of the condition (1.16) instead of (1.10) has the ad-
vantage of including remainders o of the form g(x)=k(x)e—** where
O<x<y, k(x) /oo, x > oo and x-1logk(x) > 0,2 - oo, and yields sharper
results for such remainders in case the function M in (1.13) does not
increase too fast, for instance when M is of polynomial type. A function
¢ of the form po(z)=k(x)e~>* cannot satisfy (1.10), since for a submulti-
plicative r the condition r(x)=o(e**), x - co is equivalent to r(x)=
0(eP*), x — oo for some B < .

It should be mentioned that if the function kp, introduced in (1.15),
increases very slowly then the condition (1.16) is not quite sufficient
but must be replaced by

ox—y) < o(x)v(y), Y20,—co<w<O00

where v(y)/hp(0y) is a bounded function in L?(0, ).
I use the following Tauberian condition

(1.17) D) - Bla+y) S o), O<y<ia),z27,,

where o\, 020 and t\,t>0. Such a condition is quite natural with
the methods used below since ¢ and ¢ will appear in different connections
in the estimates. It can easily be adopted to different conditions on .
If @ satisfies the Tauberian condition (1.6) then (1.17) holds true with
o=Kt for any positive function ¢. If @ 7 then (1.17) holds true with
o=0 and t={, for any positive constant f,.

The methods used below are a refinement of the following standard
procedure. Let H be an auxiliary function in L!(—oo,0) such that a
has compact support and let

H(x) = t-*H(xt"1), O<t=l.

Math. Scand. 85 — 5
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If F(£)+0,— oo < &< oo, then A7 is the Fourier transform of a function
Uje L} —o0,00). Let y=PxF. Then ®xH,=yx U, the inversion being
justified by absolute convergence. From [p(x)| <p(z) and the condition
(1.13) I estimate y » U (x). This is straightforward if (P,) is non-quasi-ana-
lytic, i.e. 3,_, P, 1" converges, and H is appropriately chosen. When
(P,) is quasi-analytic, however, complications arise. It is then impossible
to get an estimate of the type

p*xUfz) = O((hp(67))%), - oo

if O ; has compact support and ¢ is fixed. I therefore introduce a variable
support on the Fourier transform of the auxiliary function H, in the
following way. Let #(x)\, and choose t=¢(x) in y+* U,(x). The support
of Ay, and hence of 0 o then increases as z increases. I impose a con-
dition on #(z) of the type

(1.18) i(z) = O(1/p(x)), @ - oo,

where ¢ is a function determined by the sequence (P,) such that ¢ 7
and @(z) =o((logz)'*%),z - oo for every > 0. It is then possible to derive
an estimate of wx Uy,(x) which yields sharp results in the Tauberian
theorems. In fact, if M does not increase too fast and y(x) =O0(1/hp(62)),
x> oo, then ¢ may be choosen so that

pxUyy(x) = 0((hP(0x))“), X —> 0o

for every 4, 0<i<1.
In Section 2 the method described above is used to estimate y * U, ().
Let

(1.19) I(z) = \®, D(x—ut(x))H(u)dw .

By choosing the function H in (1.19) appropriately I then, in Section
3, derive an estimate of @(x) as - oo from the order of magnitude of
I(z) as x - oo and the Tauberian condition (1.17).

The Tauberian theorems are obtained by using the identity

I(2) = p*Uyy@)

and the results in Sections 2 and 3. They are collected in Section 4 and
in 4.2 they are stated for the Tauberian condition (1.17). In 4.3 they
are specialized for the classical Tauberian condition (1.6). The restric-
tion (1.18) on #(z), introduced when (P,) is quasi-analytic, then trans-
forms to a condition on g. It turns out, however, that this restriction
is not a serious one, since it disappears if some slight regularizing con-
ditions are imposed on the sequence (P,) and the functions M and g.
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In Section 5 some applications are given. From Theorem 3 in Section
4, earlier results under analyticity conditions on 1/F in a strip —y <n<y
can be deduced and even extended to any order of magnitude of 1/F
in the strip (cf. 5.3). Also, results can be derived when l/ﬁ is analytic
not in a strip but in a domain which tapers off at infinity (see 5.4).
Theorem 3, yields a sharper form of Strube’s Tauberian theorem as a
special case (cf. 5.2).

For the sake of formal simplicity I use a convolution of the form (1.1)
and suppose @ real. It is easy to see that the same results are valid if
F(y)dy is replaced by du, where p is of bounded variation, or if @ is
complex-valued and the Tauberian condition is imposed on the real and
imaginary part of @.

A mimeographed version in Swedish of this paper has been in cir-
culation since 1967.

2. Estimation of I(x).
2.1. Preliminaries.

All functions are assumed to be measurable. I use the notations

M, {f;a,b) = (52 |f(@) da)s

Iflls = M {f;— 00,00} .

C denotes a constant, not necessarily the same one each time it appears.

Let P=(P,); be a logarithmically convex sequence, Py=1. I do not
exclude the case P,=oco,n>m, but always suppose P; to be finite.
Let n!/P, be submultiplicative, i.e.

and

(2.1.1) MP;P, ;< P, j=012..n n=12....

Note that if (P,/n!)V» /,n21, then (2.1.1) is satisfied, and that (2.1.1)
implies that P,1/?2ne 'Py,n = 2. Let

(2.1.2) p(x) = sup,z*/P,, %20
and
(2.1.3) hp(@) = 3= 02"|P,, 220.

If r 7, I introduce the function

xD+r(x)
(2.1.4) 2.(2) = r(a:)_— .
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The following results are well-known or easily derived from the above
definitions. logp(z) is a convex function of logx and y, 7, x,(x) =O0(x),
2 — oco. Furthermore,

(2.1.5) P, = sup,o2"/p(x), n=0,1,2,....

Let 0y=0, &, =P,[P, ;,n=1,2,.... Then «, 7,

(2.1.6) p@) = a*[P,; oa,SxSo,,
and
(2.1.7) (X)) =N, 6, ST<a,y .

If P,=oc0,n>m, then y, is bounded and Ap is a polynomial of degree
<m. If P, is finite for all n, then p(x) grows more rapidly than every
power of x and y,(x) > oo, — oo.

Furthermore,

(2.1.8) hp(x) e, 0=2x=«.

By a well-known formula (see [12, Theorem 11, p. 32]),
(2.1.9) hp(x) £ p(@)[1+21,(x+2/2,(®))], =20,
and it follows that 4
(2.1.10) hp(x) < C(P)(1+x)p(x), =x==0.

If y, is bounded, then %p(x) < C(P)p(x),x 2 0, and if y,(x) - oco,2 - oo,
it follows from (2.1.9) that for every 6> 0

(2.1.11) hp(x) = o(p((1+0)x)), x->oo.
Hence for every 6 > 0 we have
(2.1.12) hp(x) £ C(P,8)p((1+d)x), =x20.

When (P,) is quasi-analytic, I need a non-quasi-analytic sequence
(@,), majorizing (P,). First, I introduce the function ¢(z), =0, as
follows. If (P,) is non-quasi-analytic, let ¢ =1. If (P,) is quasi-analytic,
let us choose ¢ such that

p(x) = 1,0sz=<1, ¢/, «loge(x) is convex,

CL)  {5% om)1P,n < co, [, ., 1) loges].

Note that these conditions imply that for every 4 >0
(2.1.14) @(x) = o((logz)'*+?), =z -> oo
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and for every 6> 0, a>1 and m = 0 there exists z; such that
(2.1.15) BUD,, 41591+ PYVY™ < a(l+0)p(x), 222, .

As an example of a function ¢ satisfying the above conditions for all
sequences (P,) introduced above, let z,=exp (¢) and let us choose

(2.1.16) @(x) = eY(log(z+x,—1))(loglog (x+xy—1))2, z21.
I introduce the sequence @ =(Q,); in the following way.
(2.1.17) Q. = Py(p(n)*, n=0,1,2,....

Then @,2P,,n=0,1,2,...,(Q,) is non-quasi-analytic and logarithmi-
cally convex, and n!/Q, is submultiplicative. I introduce ¢ and kg, in
the same way as p and hp, i.e. I put

q(x) = sup,2™/Q,, x=0
(2.1.18)
0

ho(z) = 25 @ [@n,  ®2

Then
(2.1.19) Q, = sup,.,x"/q(x) .
The following results are easily verified.
(2.1.20) p(2) < q(zp(xp(2), =20.
If x,(x) > oo,& — oo, then for every >0
(2.1.21) hp(x) = o(q((1+e)ap(x))), -0,
and for every a2 0, and every «,0<ax <1,
(2.1.22) xc;h(’; %“) e L%(0,0) .

Let us further suppose that
(2.1.23) log(P,4+1/P,) = o(n), n-—> oo,

which is equivalent to x,(x)/logz —~ oo,z — co. Then for every a2 0 and
0< 6, <0, it holds true that

ah,
(2.1.24) 2he(0:) 190, 00) .
P(05%)
8,(X),X20,n=0,1,2,... are monotonically increasing functions

such that, for some positive integer u,

(2.1.25) 8,(X) < 3XS(X), XzXpj=12...4.
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Introduce the functions

(2.1.26) Sk = SUP,n<k Spy Sy = SUP2pm Sy
and
(2.1.27) 8 = (SySy)t -

Let f be a function defined on the real axis and let X 21. We shall
study a condition of the type

(2.1.28) My{f™;,—X,X} < P,S,(X), n=0,1,2,....
If (2.1.28) is valid for n=0,1,2,...,k, only we define P, =00, n>k and
S"=Sk, n>k.
Let
t= X1,

These notations are used throughout the rest of the work.

2.2. A lemma concerning U,.

Let us choose the auxiliary function H such that ¢(2|x|)H(z) e
LY —o0,0) and A(£)=0,|£| 2 1. Let, for 0<t< 1, H(x)=¢-1H(zt-1). Then
A &) =A(t&). Let f satisfy (2.1.28) and let

(2.2.1) U,=1f.

Then 0, is the Fourier transform of a function U, e L} — oo,00). First,
we shall derive some estimates of U, and its derivatives.
By Leibniz’s rule

(2.2.2) Om(E) = 37 (MA@t fo-E), n=0,1,2,....

If we use Minkowski’s inequality and observe that A9(t£) vanishes for
|&|= X =t-! and ||A9| < |a/H(x)|, we obtain from (2.2.2) and (2.1.28)
that

10Ny s 370 (oilla? H@)l| Py Sn-i(X) -

Hence, by using (2.1.25) and the notations introduced in (2.1.26),
(2.2.3) 10y £ 8y XYz H (@) + 3720 (W I/ H (@) Pa-y),

j=0

n=1.
By (2.1.19) sup,|z|*/q(2|2|)=2""Q,, n=0,1,2,..., and it follows that
(2.2.4) ! H(z)ll; £ 277Qllg(2lx))H ()], .

Let
(2.2.5) M = |lg(2lz))H(z)]l; -
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By inserting (2.2.4) in (2.2.3) and using (2.2.5) we get, if n2> 1,

(2.2.6) Uy s M 8, o(X)[3Qutr-22-m+ 3720 (M2 P,;tQ;] .

If n=1, we find, since P, =@, and ¢ <1, that

(2.2.7) 10/, £ M2P,8,(X).

By the Carlson-Beurling’s inequality || U}||; < (/|0 |0/ |l,)* and (2.2.7) yields
(2.2.8) 1Udl, = M(2P,)}S(X) .

In order to estimate the sum in (2.2.6), when n > 1, we now introduce
a condition on ¢, for the case in which (P,) is quasi-analytic. We shall
prove the following result.

Let x4 be the number introduced in (2.1.25) and let us suppose that
for some integer n > u

(2.2.9) t < g(n)-mn-m
Then
(2.2.10) ||ﬁt(n)“2 < 3MP, gm(X) .

The proof will be given for u=1. Condition (2.2.9) implies that
t»-1Q, < P, and #Q, =P, j=0,1,2,...,n—-1.
Therefore (2.2.6) yields
(2.2.11) |0, = M8, ,(X)[3P, 2"+ 37120 (N2 P,_; Pyl

This inequality is derived without Condition (2.1.1). If we use this con-
dition (2.2.10) follows from (2.2.11).

We shall now prove the following lemma, which will be used repeatedly
in the rest of the section. It should be noted that the condition (2.2.12)
of this lemma is a consequence of ¢t <1, if (P,) is non-quasi-analytic.

Lemma 1. Let f for a fizxed X 21 satisfy (2.1.28). Let us introduce (P,,),
D, ¢, q and «,, as in 2.1. Let t=X-1 and let us suppose that
(2.2.12) t < gp(n)/@-Dd  p=23 .. N.

Let a> 0 be fixed and p,=a'x,, n=1,2,.... Let r(z)20, 220 and B=
SUP< <5, 7(2). Then

(2.2.13) §°|U@Idy+ Pr@pay)|Ufy)ldy < max(B,1)M(2P,S(X) .
If B S 2, S %y < Bn41, Where K 21, then

(2.2.14) s:: r(y)p(ay)| Uyy)|dy < 3(2n) M (SN x a®) M,{r;2,, 25} Slw(x) .
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Let us further suppose that (2.1.25) is satisfied with u>1 and
(2.2.15) t < pn)-2o-», pn=p+1lu+2,...,N.
If K > p then (2.2.14) holds true with S, y replaced by S, y.

Proor. The inequality (2.2.13) is a direct consequence of (2.2.8) since
play)=1, 0=y =< f;. In order to prove (2.2.14) let us choose n,1<n=<N.
By (2.1.6)

T ir(y)play)| Uy) dy = a Pt (G r(y)y™ U ly)|dy -

By using Schwarz’s inequality, Parseval’s relation and (2.2.10), we find
after a summation with respect to n, that

N r(y)play)| Uy dy < 3(2m) M (ZY. g a® Myfr; B, Bnsa})S1, (X)) -

If we apply Schwarz’s inequality to the sum in the right-hand member
of this inequality, we shall have proved (2.2.14) with z; =g, %y=fx11-
The general result follows in the same way.

In some cases when f®™(£)=o0(1), |£] > oo,mn 21, it is better to use
L*-estimates instead of L?-estimates. In this way the following result is
obtained (cf. [8, Theorem 3, p. 582]).

ReEMARK To LEMMA 1. Let 1<8<2, 1/s+1/s'=1. Replace condition
(2.1.28) in Lemma 1 by
(2.2.16) M{f~;,-X,X} £ P, 8, *X), n=0,12,...,

where S,* 7, »=0,1,2,..., and S§y*(X)=<3X8,*X). Then (2.2.13)
holds true with (2P;)}S(X) replaced by

C(s)(X V2 8*(X) + XV P, 8, *(X)) .

2.3. Estimation of p* U (x).

Let v(z),2= 0, be a function such that
(2.3.1) v/, vzl v(x) > 00, T —>o00,
and introduce the class R[v] of functions p(z), — o <z < oo, defined as
follows.

DEFINITION. g € R[v], if 0>0, o\, o(z) > 0,z — o0, and
(2.3.2) oz—y)Se(r)(y), Y20,—c0o<z<00.
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Let (), — co <& < 0o, be bounded and
(2.3.3) lp(@)| = olx), z2z,,

where g € R[v]. Define v(x)=1,x<0. Then (2.3.2) is valid for all y. We
shall estimate y « U, (x) when x — c. Let

(2.3.4) Zo Y@=y Uly)dy = {2350+, = Li(x) + Io(@) .

From (2.3.2) it follows that o(z,) < o(x)v(x — z,). Remembering that v 7,
we find that

(2.3.5) Ha(@)] = [plloe(@e) (@) §oae v @I Uy)l dy -
Using (2.3.2) and (2.3.3) we get
(2.3.6) y(@)] < o(@) 223 v(y)|U(y)ldy .

Let v(y)=bw(y),y=0, where b=1 is a constant. Let 6 be constant,
0<6<1, and let us assume that

w(y) < ho(0y), y20,
(2.3.7)
Mo{w(y)[hg(0y);0,00} = By<oo.

We shall show that this condition implies
(2.3.8)  |p*Uy=)| = M(e(2P1)iS(X)+COB,S\(X))be(x), x2&y,

where C=0(Q,0), &=£,(Q,0, |/l 0(x,)), X =t-1 and M is defined by
(2.2.5).

Let us choose a= 6t and let 7(y)=bw(y)/q(ay). By (2.1.8) and (2.1.12),.
applied with p replaced by ¢,

ho(Oy) < e, O0sys6-1l«,
and
ho(y) < Oglay), yz0.

Hence r(y)<be, 0sy=<a-lx,, and M,{r;0,00} <CbB,. Since Q,=P,,
n=0,1,2,... the function f satisfies (2.1.28) with P, replaced by @,.
We may apply Lemma 1 with p replaced by g, in which case Condition
(2.2.12) is trivially satisfied. If we choose x,=x—x, and let x, > oo in
(2.2.14), we then find from (2.3.5) that

(2.3.9) (@) s MB, 8y(X)bo(z), z2é,,

where &, =£,(Q,0,|ly|l.0(%,)). Lemma 1 and (2.3.6) furthermore yield
(2.3.10) [1(z)] £ M[e(2P,) S(X)+C(Q, 0)B, 8y(X)]be(2)

and (2.3.8) ia proved.
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We shall now study the case in which (2.3.7) is satisfied with & replaced
by kp. We first make the following observation, which will be used in other
contexts later on. Let k7, v/ and let v~! denote the inverse function
of v. Suppose that s(x) =v-1(k(x)) > o0,z — oo. If x,> s(x), we find

(2.3.11) Sty (U dy < ()7 §32) v (@) U (y)ldy

Let us suppose further that v(y)/q(6,y) € L*(0, o) for some §,, 0 < 0,< 1.
As above, we may apply Lemma 1 with p replaced by ¢ and with r(y)=
v(¥)/q(0,y) to the integral in the right-hand member of (2.3.11). We
then find that for every &> 0 there is &, =£,(0,,8,Q, 1) such that

(2.3.12) (%, IU@)ldy < eM(k(z) §,(X)Myfr;s(x) 0}, 226,

where M is defined by (2.2.5) and 7(y) =v(y)/q(0oy).
We will now prove

LeMwMmA 2. (1) Let us introduce (P,),hp,p,q and (8S,) as in 2.1 and let f
satisfy (2.1.28) for some X =t-1> 1. Introduce H, as in 2.2 and let U,=
A, f. Let y be bounded on (— oo, 00) and

(2.3.13) lp(x)] < o(x), x=24.
Let 6,6 and b denote positive constants, b= 1. Let
(2.3.14) 0 € R[bw] .

(2) Suppose further

{2.3.15) 0<0<1,

{(2.3.16) w(y) = hp(by), y20.
(3) Let

(2.3.17) w(y)/hp(0y) € L0, 00) .

Then we have the following result:
There is a number & =E,(P,®,0, |[9!le:0> To, 0) such that if for some = &,

{2.3.18) 0<ts infzsysxwﬂ @(y)—v/v-D
then
(2.3.19) lp*Uy)| < M[C,8(X)+028,(X)1be(x)

where M 18 defined by (2.2.5), Cy=C,(P) and Cy=C,(P,0,w) .
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CoroLLARY. Let Conditions (1) and (2) in Lemma 2 hold true and sup-
pose further

(2.3.20) log(P,.1/P,) = o(n), n—>oo.
Then the same result holds true with Cy=C,(P,0).

Proor. If (P,) is non-quasi-analytic, then hp=hy. Thus (2.3.7) is
satisfied and the result follows from (2.3.8). Let us suppose that (P,) is
quasi-analytic. Then y,(x) - oo, - o, and by (2.1.22),

(2.3.21) hp(x*)[q(3x) € L*(0,00), O<a<l.
Let n=46/2 and o =(1+7%)-1. Let us write
(2.3.22) (X p@—y)Uy)dy = 20+ 0 +(n = (@) +JT () + K(x) .

From g € R[bw] and (2.3.16) it follows that ¢ € R[bhp(6x)]. According
to (2.3.21) we may apply (2.3.12) with k(z)=hp(z), v(x)=hp(x*), s(x)=
2+, u=1 and 6,=1%. Since o(0)<bk(x)p(x), 20, we thus find that for
every £>0 there is z;=x,(P, 9,9, |[v|..0(0),&) such that

(2.3.23) |K(z)| < eMS,(X)bo(z), x=z,.

This inequality is derived without the use of Condition (2.3.18). In
the rest of the proof I suppose this condition satisfied for every choice
of z below.

Using w7 and g(x,) < bo(z)w(x —x,), we get

(2.3.24) (@) = [plle(@o) (@) §727% w@) Uy)ldy -

Let a=0t Then hp(0y) < C(P,0)p(ay), y =0, according to (2.1.12). The
assumption (2.3.17) thus implies that r(y)=w(y)/p(ay) € L*(0,). Fur-
thermore,

rplaxt*n) < 2140, x 2 x, = 3y(P,9),

since y,(x)=0(x), £ - oo and n=4/2. Let us choose z, z 2 x,. It then fol-
lows from (2.3.18) that Condition (2.2.12) in Lemma 1 is satisfied with
N =y, (ax'*7). Thus 21+ < By, =a"lay,,, according to (2.1.7). We may
apply (2.2.14) in Lemma 1 to the integral in the right hand member of
(2.3.24) and find that there is z;=x4(P, 0,9, |y|l., 0(%,)) such that

(2.3.25) |J(x)] £ MB, 8;(X)bo(z), z2z,,

where B,=M,{w(y)/hp(0y);0,oc}. Finally, the integral I,(x) may be es-
timated similarly from (2.3.6) and Lemma 1. Combining the result
thus obtained with (2.3.22), (2.3.23) and (2.3.25) we have proved (2.3.19).
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To prove the corollary we observe that (2.3.20) implies (2.1.24) and
hence hp(0z)/hp(0,2) € L?(0,00) if 6 < 6,. The result then follows by ap-
plying Lemma 2 with 6 replaced by 6, = 6%.

When (2.3.20) is satisfied we may also derive corresponding results
for 6=1 and for some 0> 1. This is the content of the following lemma.

LemMma 3. (1) Let Condition (1) tn Lemma 2 hold true and let (2.3.20)
be satisfied.

(2) Let 0= 1. Let u denote the integer introduced in (2.1.25) and let ¢
and B be constants, ¢ 20, and

(2.3.26) B > lim,,, x,(y)y~" .
(3) Let
(2.3.27) w(y) = (14 06y)° hp(by), y20.

Then there 18 a number & =E&,(P,9,0,|9llw:0s%q, 0, 1,¢,B) such that if, for
some x = &,

(2.3.28) 0 <t S inf,, oo ply) v @
then
(2.3.29) |pxUfa) =
< M[C,8(X) + CySy(X) + Cya°+? exp (62 log )8, (X)1be(x)
where M 13 defined by (2.2.5), C;=Cy(P,c),Cy=Cy(P,c,u,0) and Cy=C4y(P).

Proor. Proceeding as in the proof of Lemma 2, let
k(x) = (14 0x)hp(6z), x20.
Then ¢ € R[bk(x)]. Let =4/2 and split up y* U, (x) as in (2.3.22).
In order to estimate K(z) let a«=(1+#%)! and choose v(z)==k(x*).
Then v(x)/q(3x) € L*0, ) according to (2.1.22). Using (2.3.12) we find
that for every &> 0 there is z, =x,(P, 9,9, |ly|l, 0(0), #,€) such that

|K(z)| < eMS (X)bo(x), z2x,.

Let 0,0 <0 <1, be a number to be fixed later and let us write

J@) = 7 p@-y)Ufy)dy = 17+ (007 = Jy@)+T4(2) .

% — 20 x—xo 6(1+ o)x
To estimate J,(x) we choose v(x)=kx0-1(1+0)-). Applying (2.3.11)
we get

o [ Ui®)ldy < (k@) o7 o(y)| U )l dy .
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Let a=(1+0)-t. Then v(y)/p(ay) belongs to L?(0, cc) according to (2.1.24).
Choosing z so large that y,(ax'+7) <2+’ we find from Lemma 1 that
for every &> 0 there is x,=x,(P, 0,9, |||, 0(0), o, , ¢) such that

|Jo(2)| < eMS (X)bo(z), z2z,.
To estimate J,(x) let r(y)=Fk(y)/p(0y). Then r(y) < C(P)(1+ y)°+* accor-
ding to (2.1.10). Let N =y, (6%(1+ 0)x).
If 6=1 we find from Lemma 1 that for x> x;=1x,4(P,xy,0,u)
Veoa” k(y)|Uy)|dy < otC(P,0)M Ntac+32 §,(X)
< tO(P,c) M x*+2 S (X) .
The last inequality holds since y,(x)=O(x),x - co. Now choose ¢> 0 and
o = C(P,c))? min(l,(g(xo)/||y)]|°°)2) .
It then follows that for 2 xy" =x5'(P,%g,0(%)), ¥l 1, €5 €)
|Jy(x)] < eMac+? S, (X)bo(x) .
If 6>1 we find from Lemma 1 that for x 2 x,=x,(P, 0,2y, 0,1)
(2.3.30) U1 k(y)|Uy)ldy < MC(P,0,c)6¥ Ntac+32 (X)) .
Now we choose ¢,0< o<1, such that
im,, , 2%y < B(1+0)2.

Then N=y,(0%(1+0)x)<xp6%(1+0)t,x Zx5=24P,B,0) and it follows
from (2.3.30) that for & 2 x5 =a4(P, 0, ¢, %, 0(o), ¥l B)

|Jy(x)| < M exp(xf62 log0)S (X)bo() .

The integral I,(x) can be estimated in an analogous way by using Lemma
1. If we combine the inequalities thus obtained, we have proved Lemma 3.

2.4. Estimation of y* Uy (x).

Let 0<t(x)<1l,z2x, We shall study the function y#*Uy,(xr) when
x — oo, To this end we will apply Lemma 2 or Lemma 3 with {={(x)
and let = tend to infinity.

Let us consider Lemma 2. Let the conditions of this lemma hold true
and suppose further that (2.1.28) is satisfied for all X belonging to the
range of 1/t(x). If (P,) is non-quasi-analytic then ¢ =1 and (2.3.18) holds
true for every 6>0 with ¢ replaced by ¢(x) and for x>z, Applying
Lemma 2 with ¢ =¢(x) we find that for = &, =&,(P, @, 9|l €, To, 0)

(2.4.1) lp* Un(@)] = M[Cy8(1/t(x)) + Co8, (1/t())1be() -
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To extend this result to quasi-analytic sequences (P,) we impose the
following condition on ¢(z). Let for some B> 1

(2.4.2) tx)p(x) =B, zz=ux,.
Put B*=1+4. By applying (2.1.15) with m=1 and a=1+38 we get
(2.4.3) (@)™ = (14+9)%infy 110 p(y) VYD, 2z =2,=2,(9,B).
By combining (2.4.2) and (2.4.3) we find

t(x) < infy_ p1i0 @(y) VD, x 2 2, = max(xy,2,) .

Therefore (2.3.18) holds true with t=t(x) if x>z, and we may apply
Lemma 2 with t=¢(x). Thus we obtain that there is &=¢&(P,9, ¥/ 0,
%y, 0, B) such that (2.4.1) holds true for > £ and for all ¢ satisfying (2.4.2).

It is obvious that Lemma 3 can be extended in the same way to hold
for t=t(x) if f satisfies (2.1.28) for all X belonging to the range of 1/t(x),
x = x,, and (2.4.2) is satisfied.

2.5. Estimation of I(x).

We shall now apply the above results to the Tauberian problem. Let
@ be bounded on (— oo, ), let F € L(—o00,0) and =@« F. Introduce
f, H and U,=H,f as in 2.2 and let 1/F(£)=f(£), — oo <& < co. Then, for
every fixed ¢,

(2.5.1) p*xUyx) = @xH|(x), —oo<x<oo,

the inversion being justified by absolute convergence. Furthermore,
(2.5.2) D« Hyx) = (T, Dle—ut)H(u)du, —oco<z<o0.

Let 0<i(x) <1, —oo<a < oo, and introduce the function I(x) as follows
(2.5.3) I(z) = (T D(x —ut(x))H(w)du .

By choosing t=#(z) in (2.5.1) and (2.5.2) we obtain the identity

(2.5.4) I(x) = pxUyy(x), —oco<x<o00,

According to (2.5.4) the estimate of y* Uy,(r) obtained in 2.4 can be
used to estimate I(z) when x — co. In this way the two lemmas below
are obtained. They are stated here for the sake of reference and will
be used later in the proof of the Tauberian theorems.

The sequence P =(P,) and the functions ¢,kp,hy,S and S, are intro-
duced in 2.1 and the function H in 2.2.



GENERAL TAUBERIAN REMAINDER THEOREMS 79

Lemma 4. (1) Let @ be bounded on (—oo0,00), let F € LY~ o00,00) and
(2.6.5) |P*F(x)| < o(x), x==x,.
Let g € R[bw] for some b= 1. Let 0<t(x)< XY, 222, and let I(x) be de-
fined by (2.5.3).

(2) Let 1)/ F(E)=f(&), — 0o < & < o0, where f satisfies (2.1.28) for X = Xy> 1.

(3) Let 0 be constant, 0<0< 1.

(4) Let us suppose either that (2.3.16), (2.3.17) and (2.4.2) hold true for

some B> 1 or that (2.3.16) and (2.3.17) hold true with hp replaced by hg.
Then there is & independent of t such that

2.5.6)  |I@) < M[OIS(R;—))+02§1<R—:~S~))] bol@), © 2 &,

where M is defined by (2.2.5), C;=C,(P) and Cy=Cy(P,p,0,w) .

CoroLLARY. Let Conditions (1), (2) and (3) in Lemma 4 hold true and let
(2.8.20) be satisfied. Suppose either that (2.3.16) and (2.4.2) hold true or
that (2.3.16) holds true with hp replaced by hy. Then (2.5.6) holds true
with Cy=Cy(P,q,0).

Lemma 5. (1) Let Condition (1) in Lemma 4 hold true and suppose
further that (2.3.20) is satisfied.

(2) Let Condition (2) in Lemma 4 hold true.

(8) Let 0 be constant, 621, and introduce u,c and B as in Lemma 3.

(4) Let us suppose either that (2.3.27) and (2.4.2) are satisfied for some
B>1 or that (2.3.27) is satisfied with hp replaced by h,.

Then there is & independent of t such that

@sn) el s M[os(p)+aS() -

- 1
+ C32°+2 exp (z40% log 0) S“(Rx_)ﬂ bo(x), =z=¢&,
where M is defined by (2.2.5), C,=Cy(P,c), Cy=Cy(P,p,c,u,0) and
Cy=Cy(P,p).

Proor. The results in Lemma 4 and Lemma 5 are immediate conse-
quences of the results in 2.4 and the identity (2.5.4) in case the conditions
(2.3.16) and (2.3.17) or the condition (2.3.27) are satisfied. The con-
stants C,, or C, and C, respectively are then, in fact, independent of ¢.
To prove the result when these conditions are satisfied with hp replaced
by hy we need only observe that (2.1.28) holds true with (P,) replaced
by (@,) and apply the above result with (P,) replaced by (¢,).
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2.6. Extenston of the class of kernels.

The class of kernels considered in 2.5, namely those functions F e L!
(— 00, 00) such that I/F(g) =f(£), — oo < &< o0, where f satisfies (2.1.28) for
X = X, is chosen for the sake of simplicity. It is, however, unsatisfactory
since it yields a ‘symmetric’ condition, i.e. a condition of the same strength
whether we consider @ x F(x) and @(x) as x — o or as £ - —oo. For in-
stance, if P,=n!y—" then the assumptions imply that 1 /f" is analytic
in —y<n<y, a condition which is far from necessary since the same
results may be obtained in the Tauberian theorems if l/F is supposed
to be analytic in —d <% <y for some > 0. In this section we will show
how the conditions on F in Lemma 4 and Lemma 5 can be weakened.
It will then follow that the conditions in the Tauberian theorems can
be weakened in the same way.

The sequence (P,), the sequence of functions (S,), and the function
8 are introduced as in 2.1 and the function H as in 2.2.

Let is untroduce the classes #, =%,((P,),(S,)) and #,=%,((P,),(S,))
of functions g(£), — oo < & < o0, as follows.

DEFINITION. g € &, if for every X = X, there exist functions f=fy and
k=kx such that
(2.6.1) g(&) = f(&)+k(&), -X=é(2X,

where f satisfies (2.1.28) and k is the Fourier transform of a function
K =K y such that K(z)=0,2> 0,

(2.6.2) Ko = X8(X),
and
(2.6.3) K], = S(X).

%, denotes the class of functions g which satisfy the above conditions
but for the fact that k is the Fourier transform in the L2-sense of K and
(2.6.3) is replaced by

(2.6.4) IKlly = S(X) .

Introduce the notations
M, = ||(1+|2|)2q2lx)H (@), My = |[(1+0|z|)*2q(260])H ()|, .

Let y=®* F and
ex(2) = {§Z lv(y)Pdy}t .
If y ¢ L2(0,00) let gy = oo.

We will prove the following generalization of Lemma 4 and Lemma 5.
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Lrmma 4'. Let Conditions (1), (3) and (4) of Lemma 4 hold true and let
1/F € B,((P,),(8,)). Then (2.5.6) holds true with M replaced by M,.

Lemma 5'. Let conditions (1),(3) and (4) of Lemma 5 hold true and let
1/F € B,((P,), (S,))- Then (2.5.7) holds true with M replaced by M,.

REMARK. If the condition 1/F € #,((P,),(8,)) in Lemma 4’ or Lemma
5’ is replaced by the condition that 1/F € #4(P,),(S,)) and F+0on
(— o0,00), then (2.5.6) or (2.5.7) respectively hold true if M is exchanged as
above and a term ||H|,S(1/¢(x))o,(x) is added to the right hand side of
these inequalities.

Let us first prove the following generalization of Lemma 2.

LeMMA 2'. Replace the definition U,= HA,f in Lemma 2 by
(2.6.5) U, = A8(f+k)

where f and k satisfy the conditions in the definition of &, for some fixed
X =t-1. Then the same result holds true but for the fact that M should be
replaced by M,.

Proor. Let 7,=H,f and W,:I?tk. The conditions imply that 0,7,
and W, are Fourier transforms of U, V, and W,=H;xK respectively.
Therefore

(2.6.6) pxU, = pxV,+yp=xW,.

The function V, now satisfies the same conditions as U, did in Lemma
2 and hence px V,(x) can be estimated by use of Lemma 2. It remains
to consider y* W, (x). We shall actually estimate ypx W,(x) under the
weaker condition that g € R[bkp] and when X =¢-1 satisfies

(2.6.7) plx) £ X.
Since K(y)=0,y> 0, we find
(2.6.8) Wiy) = 5 K(y—w) H(u)du, —oco<y<oo.

Let o(y)=(1+9)24(29),y20, v(y)=1,y<0. Then v and [vH|;<M,.
Hence

(2.6.9)  § Hw)ldu = § [ Hw)ldu < (o(yX)™ S o) Hw)] du

< Myfv(yX), yz0.

Math. Scand. 35 — 6
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From (2.6.8) and (2.6.9) it follows that
(2.6.10) Wiy = M|IK|o[v(yX), yz0.

We now observe that it follows from (2.1.12), (2.1.15) and (2.1.20)
that we can find @, =z,(P,p) = 0 such that if (2.6.7) is satisfied for some
x> x,, then

(2.6.11) hp(y) = C(P)q(2yX), Osy<w=.

In the sequel we suppose (2.6.7) satisfied for every choice of z below.
By combining (2.6.10) and (2.6.11) and using the definition of » we

obtain, if x>,

O(P)M; 1K,

(2.6.12) [Wiy) = mﬁ&p(y), Y=z
and
C(P)M,| K]
(2.6.13) [Wy)| = m, =
Let

(2.6.14) (T ow@—y)Wy)dy = ° o+ 5"+ o, = Li@) + 1)+ Iy(=) .

We may choose x,20. If x2z,=x,+2, it follows from (2.6.12) and
o € R[bhp] that

Ha(@)] < bo() §57hp(y)| Wy)ldy < bo(x)C(P)M,||K|l,, §5~*(1+yX)-2dy.
Hence, if x> 2,

(2.6.15) ()| = C(P)M XKl bo() -

To estimate I3(x) we use (2.6.13). If x 2z, we get

¥l C(P) My || K|l S°° dy
hp(x— ) o-zo (1+yX)?

The assumption ¢ € R[bhp] implies that 1/hp(x—x,) < bo(x)/e(x,). There-
fore we can find 3 =3P, @, [¢]l0,0(%o), Zo) = x5 such that if 2>z,

(2.6.16) Ha(x)| = M, XY K| bo() .

@] S vl (Wila)ldy

It remains to consider I,(x). Since |y(x)| Zo(x), =2, and W,=K xH,
we find

(2.6.17) (@) = e@)IWilly = e@H[ Kl @22,
From (2.6.14)-(2.6.17) it follows that if >z, then
(2.6.18)  |pxW ()| = (IH|||IK]l +C(P) My X K|l b)e(z) -
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According to the assumptions (2.6.2) and (2.6.3) we thus have proved
that if x>z, and (2.6.7) is satisfied, then

(2.6.19) lp* Wie)| < C(P)M,S(X)bo(x) .

If we combine (2.6.19) with the estimate of yx V,(x) obtained from
Lemma 2, and use (2.6.6) we have proved Lemma, 2.

The same generalization of Lemma 3 holds true but for the fact that
M should be replaced by M, in (2.3.29). This follows by choosing

v(y) = (1+0y)°+2q(20y), y=20,
and repeating the argument.

Let us now suppose that & satisfies the conditions in the definition
of %, instead of &, for some X =¢-1, If U, and W, denote the Fourier
transforms in the L?-sense of U, and W,=H,* K respectively, then the
above argument is still valid but for the estimation of I,(x). Using
Schwarz’ inequality we now obtain

(2.6.20) (@) = eo(@)IWilla < o) H Il 1K]l,
and (2.6.4) yields
(2.6.21) y(x) = [H]ly S(X)ex() -

Proor or LEmMMA 4'. Let us choose X=¢-1>X, and let ﬁ,:ﬁ,/ﬁ.
Since H,(£)=0,|£|2 X, we find from (2.6.1) that U,=HA(f+k), where f
and k satisfy the conditions in the definition of #,. The assumption
1/F € #, implies further that =0 on (—co,00) and therefore U, is the
Fourier transform of U, € L}(—o0,0). Let y=®xF. Then @+ H,=ypxU,,
the inversion being justified by absolute convergence. If we use Lemma
2" instead of Lemma 2 for the estimate of yx Ujx), then the result
follows in the same way as in 2.4 and 2.5.

Lemma 5’ is proved in the same way. In case 1/F ¢ &, instead of
%, and F+0 on (—oo,) the estimate (2.6.21) of I,(x) yields the term
to be added in the inequalities obtained, and thus the result in the re-
mark follows.

3. Estimation of @ from the Tauberian condition and I(x).
3.1. Preliminaries.
Introduce the class & of functions #(x), — oo <z < oo, as follows

DerFinrTiON. t€ & if $\,t>0, and for every ¢ > 0 there exist z, and
6,> 0 such that

(3.1.1) Hr—y) £ (1+e)i(x), zzx,05y=<d,.
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I shall use the following Tauberian condition. For some 4> 0
(3.1.2) B(z) - B +y) < olw), 0Sy<MU(@), z2%,,

where t € & and 0<t<1.

The condition (3.1.2) can be modified in the following way. Let
4y P(x) denote the n-th difference of @ and let J be a function such
that é(x) > 0,z - oo. It is easy to see that if (3.1.2) is replaced by the
condition that for some n>1

(3.1.3) (=143 D) £ o(x)+6(x)|D(x)|, O0=y=a(x), x22,,

then the same results will be obtained in Lemma 6 below and in the
Tauberian theorems, but for the fact that the constants will depend
also on =n.

In this section other properties of the auxiliary function H are requi-
red than in the preceeding one. Let us suppose that

(3.1.4) Hz0, ( H(u)du =1.

Let 0 < 7(x) <1, —o0 <2< oo. Introduce the notation
(3.1.5) L(x) = %, D(x—ur(x))H(u)dw .

Let v(x), — 00 < & < o0, satisfy

(3.1.6) v/, vx)=12x<0, v@)—>o00, 2> 00.

The class R[v] is defined in 2.3.

3.2. Estimation of D(x).
The main result in this section is contained in the following two lemmas.

Lemma 6,

(1) Let @ be bounded and satisfy (3.1.2), where t € &. Let H satisfy (3.1.4)
and v (3.1.6) Let I, be defined by (3.1.5) and suppose that for some »> 1
and every v, xS TS xl,

(3.2.1) IL(x)] £ pm(x), z2x, and o(x) £ am(x), z2, .

(2) Let t(x) -~ 0,2 - oo and vH € LY — oo, c0).
(3) Let m € R[v].
Then

- |D()| 1
(3.2.2) s s S Co(f l>a+O',B,

where Cy=Cy(v,H) and C=C(v(0+)).
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Remark. If Condition (2) is replaced by
(2) tx) < 1, 2>xy, v(|z)o(x)H(x) € L(— 00,00) ,

then (3.2.2) still holds true, with C =C(v, H).

The condition m € R[v] implies that (3.2.2) cannot yield a better
estimate than @(x)=0(1/v(x)),x — . I shall apply the lemma with an
auxiliary function H such that A has compact support. The assumption
vH e LY(0,0) then implies that v is of the convergence type, i.e.

(@z-2logo(x)dz < o .

In order to be able to get an estimate @(x)=0(1/ky(x)),% - oo, Where
k, is not of the convergence type, I also give the following formulation
of the lemma, in which the condition m € R[v] is replaced by m € R[k],
together with an additional condition for the function ¢.

If we choose k=v in Lemma 6 below, Condition (3.2.3) follows from
the assumption ¢ < 1,2 > x,. Thus Lemma 6, is a special case of Lemma 6.

LemMMA 6. Let Conditions (1) and (2) of Lemma 6, hold true. Let k7,
220,k21, and let k= and v denote the inverse functions of k and v re-
spectively. Let m € R[k] and let us suppose that for some uy,=0

(3.2.3) tx) £ kY v(u))w, wySusv? (m:x)) , T2Zg .

Then (3.2.2) holds true with Cy=Cy(v,H,k(0+),u,) and C=C(k(0+)).
If we further suppose that m belongs to & then for every e > 0

(3.2.4 i, o 2 < (14 o)(OpA 1+ D 6,
m(x)

where Cy=Cy(v, H,u,¢).

For the sake of clearness, I formulate a detail of the proof as a sepa-
rate lemma, in which I derive from the Tauberian condition (3.1.2)
corresponding results for larger intervals.

Lemma 7. Let @ be bounded and satisfy (3.1.2). Let o\,t\,0=0,t>0
and let for some constants a, b and B
(3.2.5) o(x—y) £ Bo(x), O0=y=2ai(x), x=x,
and
(3.2.6) t(z) < bt(x+y), O=Sy=<2at(x), x=2,.
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Then

2ab
(3.2.7)  O@)—B@+y) < (T+ 1) o(®), 0Sys2a(x), 22,
and

(3.2.7)* d(x—y)—D(x) = B (2—:+ 1) a(x), 0=y=2at(x), ® =+ 2at(x,).

Proor. Let us choose z=x,2x, and y=1y,,0 <y, < 2at(z,). Let z, ;=
z,+M(z,),n=1,2,.... Let N be an integer and zy <z, + ¥, <2y,,. From
(3.2.6) it follows that

< by, 41 2ab+1
M) T 2 )

If we add the inequalities obtained from (3.1.2) by choosing z=uz,,
y=72M(=x,),n=1,2,.. . N—1and x=ay, y=2,+y, — 2y < M(zy), we find
O(z,) - D(2,+¥;) £ Ja-10(2,) S No(,) .

Combining this inequality with the above estimate of N we have proved
(3.2.7). The inequality (3.2.7)* is proved in an analogous way.

Proor or LEMmA 6. I prove the result on the assumption that m and
g belong to &. I choose %,0<%n< % and a=a(v,H,n,u,) such that a > u,
and

(3.2.8) Sjui>a?(@)H(u)du < 37 .
Since #(z) - 0,2 — oo and ¢t € & there is &, such that
x71(8) < HE+ab(x)) S HE—at(x)) < w(E), Ezé, 2.

Let s(x)=v-1(1/m(z)). Then s(z) - 0,2 - oo. Let us choose §,0<d=<1.
Let us also choose z,’ =2 max (x,,%y,&,), such that m(z —at(z)) < (1 + d)m(x),
x =z, , such that

(3.2.9) Siulsom V@ H @) du < 8f||0],, 22,

and such that Conditions (3.2.5) and (3.2.6) of Lemma 7 are satisfied
with b=B=(1+40)}, if x==z,’. From Lemma 7 and the Tauberian con-
dition (38.1.2), it follows that (3.2.7) is satisfied. Hence

(3.2.10) D(x)—D(x+y) £ (1+06)ca(x), 0sy<2al(x), x22, ,
where

(3.2.11) ¢ =2aA1+1.
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Let z;=x," + 2at(x;'). Let us choose z,x=x; and let t=¢(x). Putting
y=tla—tu in (3.2.10), we have

D(x) = DP(x+ta—tu)+(14+6)co(x), —azusza.

Let 7, =454 H(w)du. Then 7, <7 according to (3.2.8). Multiplying the
above inequality by H(u) and integrating over the interval —a<u=<a
we find

(3.2.12)  (L—n)P(x) = (*,D(x+ta—tw)H(u)du+ (1+d)co() .
In an analogous way we obtain, by using (3.2.7)*
(8.2.13) (1—n)P(x) 2 (2, D(x—ta—tu)H(u)du—(1+6)co() .
Let, for n=0,1,
() = HE—(—Drad(z)), &z2&.
Then »~%(&) < 7, (&) S #4(£), £ = &, by our choice of &;. Furthermore
I (x+(-1rat) = (7 D(x+ (—1)"at —ut)H(uw)du
= 2ot Sactu <o+ St o -
Since v/ and v(s(x)) = 1/m(x) it follows that

[P loo
—1)nat— <

. S|u|>s<x> O+ (— 1)vat —ut)H(w) du l e Slubm) o(w)H () du < ém(z)
the last inequality by using (3.2.9).

Let

J‘n(x) = l Sa<|u|<a(m)¢(x + ( - l)”at(x) - ut(x))H(u) du[
and
J = max(J,,J,) .

Then
(3.2.14) 1§2 . P(x+ (—1)"at —wt)H (u)du| <

< | (x+(—1)rat)| + J () + om() .

Combining the inequalities (3.2.12), (3.2.13) and (3.2.14) and using the
assumption (3.2.1) and the choice of z; we have proved

(3.215)  (1-n)d@)| < m@(1+0)(ca+p)+0]+J(2), z2z,.

I shall use this inequality for the estimation of Iim,_, . (|D(x)|/m(z)).
To this end, I introduce a monotonous majorant u of |@| in the follo-
wing way. Let

v(x) = supyZa:IQ(y)L :u(x) = m(a:) supysz(v(y)/m(y)) .
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It is easy to verify that = |®| and

(3.2.16) BN

(3.2.17) ufm,/

and that either u/m is bounded or

(3.2.18) 0, o0 (|P(@)) () = 1.

Now, by (3.2.16) and (3.2.17),

u(® + at(x) —ub(z))m(z) < {M(x)m(w —at(x) —ut(x)), 20,

wl(xym(x — at(x)) , =0,
Using m € R[k] and the choice of z,, we find that, if x> =,,
(1+Ou@)k(utx) , =0,

(1+d)u(x) , #=0.

By the assumption (3.2.3), k(ut(r)) < v(u), @ < =< s(x). Hence

(3.219)  J(@) S w(@)(140) Sacpuicom?@WH@)du < qulz), z23,,
the last inequality by the choice of a. Combining (3.2.15) and (3.2.19)
we get

(3.2.20) (1—=n)|D(x)] = [(14+0)(ca+B)+Im(x) +nu(x), z=z,.

If (3.2.18) holds true we find, by dividing both sides of the above
inequality by u(x) and taking the upper limit when x — oo, that

e+ atfe) ~ i) < |

m(x) S 1-29
T (@) T (L+0)(cx+p)+6

Since § was an arbitrary positive number, we have proved

(3.2.21) lim,  H®) @FF
— "7 m(z) T 1-29

lim,

Now u/m is non-decreasing according to (3.2.17). Therefore (3.2.21)
implies that lim,_, (u(x)/m(x)) exists and is < (ca+ B)(1— 2x)~. Since u
was a majorant of |®|, we have proved that

f 1@ catp

O m(z) T 1-2n

(3.2.22)

By (3.2.11), ¢=2aA~1 + 1. The result (3.2.4) therefore follows from (3.2.22),
through the choice (1 —27)1=1+e.
If u/m is bounded then Iim, ,  ®P(x)/m(z)=K <oo. It is easy to see
that this implies that
T, ., (#)/m() < 7K .
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The result then follows directly from (3.2.15).
The other results in Lemma 6, and Lemma 6 follow in an analogous
way. I omit the details.

4. Tauberian theorems.
4.1. Preliminaries.

I introduce the sequence (P,), the functions %, and h, and the se-
quence of functions (S,), the integer 4 and the functions S and S,, as
in 2.1. Thus 8= (8y8,)}, §,,=sup,,, S, and
(4.1.1) 8;4(X) £ 3X8,(X), j=L2,...pu.

The class R[v] is defined in 2.3 and the class & in 3.1.

For the sake of reference the theorems are stated for the condition

that 1/F € #,((P,),(S,)), where &, denotes the class introduced in 2.6.

In the applications in this paper, however, I shall only use the fact
that the theorems hold true when 1 /F(g) =f(£), — 00 < £ < 0o, where

(4.1.2)  M,{f™; —X,X} < P,S(X), n=012,..., X=X,

In 4.2 T use the Tauberian condition introduced in 3.1. Thus I suppose
that for some positive constant 4,

(4.1.3) D(x)—Px+y) = o(x), O0SysM(z), z=x,,

where t € & and 0<#< 1. In 4.3 I specialize the results for the Tauberian
condition, which corresponds to the ‘classical’ condition (1.6). Finally,
in 4.4, I state the results obtained when 1/F € &,.

4.2. Tauberian theorems with a general Tauberian condition.
I shall prove the following theorems.

TaeorEM 1. (1) Let F e LY(—o0,00) and 1/F(E) € B((P,),(S,)). Let
8, <8. Let ® be bounded on (— oo,0) and

(4.2.1) |DxF(x)| < o(x), x=2.

(2) Let @ satisfy (4.1.3) wheret e &.
(3) Let o and m belong to R[bw] for some b= 1.
(4) Let a and « be constants, and

(4.2.2) o(x)S(1/t(x)) £ am(x), o(®) < am(z), z2z,.
(5) Let 0 be constant, 0< 0 < 1. Let os suppose either that
(4.2.3) w(x) < hp(fz), 220,
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(4.2.4) w(x)[hp(0x) € L*0, )
and
(4.2.5) lim,_,  #(x)p(x) < 1

or that (4.2.3) and (4.2.4) hold true with hp replaced by hy.
Then

(4.2.8) Hﬁx_,wm <
m(x)

where Cy=Cy(P,p,b) and C=C(P,p,b,0,w).

Co(A '+ 1) +Ca,

CorOLLARY. (1) Let Conditions (1)-(4) of Theorem 1 hold true and sup-
pose further

(4.2.7) log(P,1/P,) = o(n), n—>oo.

(2) Let us suppose either that (4.2.3) and (4.2.5) hold true or that (4.2.3)
holds true with hp replaced by hy.
Then (4.2.6) is valid with C=C(P,¢,b,0).

THEOREM 2. (1) Let Conditions (1)-(4) of Theorem 1 hold true.

(2) Let (4.2.7) be satisfied. Let u denote the integer introduced in (4.1.1)
and let ¢, B and 0 be constants, c20,8>lim,_ x-1y,(z) and 62 1.

(3) Let

— 1 1

(4.2.8) S,, (t(—xj) =< 2 exp(—x$62log6)S (E(.’;))’ r2z,.

(4) Let
(4.2.9) w(x) £ (1+0x)°hp(0x), = 20.

Then (4.2.8) is valid with Cy=Cy(P,b,c) and C=C(P,b,c,u,0).

If lim, ,  #(x)=t,>0 it is sufficient to impose the conditions in the
definition of &, for X < X <t,-L If {(z) >0, x> o0, and S,(X) =0(S(X)),
X — oo, then C is independent of 6, u and w. If ¢{(x) > 0, x - oo and

25(X) = 00,X — oo, we may choose C =0 in Theorem 1 and its Corollary.
If t(x)p(x) > 0,2 > o0, x5/, and for some ¢=0

1
(4.2.10) 2Ls (m) z logz, zzx,,

then Condition (2) of the Corollary can be replaced by w(z) < (1 +x)°hp(),
20, and (4.2.6) is valid with Cy=Cy(P,p,b,c) and C=0.
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Theorem 2 can be applied only if ¢(x) is sufficiently small. In fact,
the condition (4.2.8) implies, according to (4.1.1), that

(4.2.11) tx)*t £ C(u)x—c-2exp(—2xp02logh), z=z,,
where C(u)=3#-t2-#+,

Proor or THEOREM 1. The theorem will be proved on the assumption
that t(x) - 0,2 - co. Let H denote a function such that

(1+ [|?)hq(2]2))H (2) € L} — o0, ) ,

A(£)=0,)£|21, and such that H >0 and {®wH(u)du=1. Such a function
certainly exists since
(@22 loghg(x)dr < o .

Choose x,1<x =<2, such that im,_, _ #(«)¢p(x) <x»~2 Let I_ be defined by
(3.1.5). From Lemma 4’ and the assumption (4.2.2) it follows that there
is & such that for every 7, t < v < x%,

(4.2.12) [ (x)] £ Cyabm(z), x=§&,

where Cy=C4(P,p,0,w,H). Let us now apply Lemma 6 with ¢ replaced
by t,=2xt and A replaced by 4,=2x»"1. The condition (3.2.1) of Lemma
6, is satisfied with g=Cgab according to (4.2.12). If (P,) is non-quasi-
analytic, (4.2.6) follows from Lemma 6, applied with v(x)=bhp(x),x=0.
If (P,) is quasi-analytic let v(x)=>bhgy(2x), =0, and k(x) =bhp(x), 2=0.
Using (2.1.15), (2.1.21) and the assumption (4.2.5) it is easy to see that
Condition (3.2.3) of Lemma 6 is satisfied with uy=wuy(P,p). The result
(4.2.6) then follows from Lemma 6.

The corollary follows in the same way as the corollary of Lemma 2
by applying Theorem 1 with 6 replaced by 6* The remaining results of
Theorems 1 and 2 are proved similarly by an appropriate choice of the
functions v and k in Lemma 6 and by using the remark following Lemma
6o. Theorem 2 may be proved by using the function ¢ defined in (2.1.16)
since (4.2.11) implies that (4.2.5) is satisfied.

The above remarks are obvious consequences of the corresponding
results in Lemma 4’ and Lemma 5’, except for the statements involving
%s> Which I shall now prove.

Let us suppose that yg(&) - o0,& - co. Choose 4,0 <4 < 1, such that

[, o t@)p(@) < (1+3)1.

Let v(x)=(1+d){(z). From the assumption o(x)S(1/t(x))=0(m(x)),x - oo
and yg(&) - o0,& - oo, it follows that
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o(x)8(1/z(x)) = o(m(x)), x> oo.

If we apply Theorem 1 with ¢ replaced by v and A replaced by 4/(1+4),
we find that (4.2.6) is valid with C=0.

The result under assumption (4.2.10) is proved similarly by an ap-
plication of Lemma 5 and Lemma 6 with ¢ replaced by 2et%, and A
replaced by 2-1le—¢-24.

4.3. Tauberian theorems with the classical Tauberian condition.

I shall now derive the results obtained for the Tauberian condition
(1.6). Let

(4.3.1) T(X) = X8(X)

and let 7-! denote the inverse function of 7'. Introduce the function
7=1g , as follows

1
(4.3.2) Tu)=i:aﬁaj.

Then ™\, t(x) >0, © - oo, and

(43.3) 0@)S(1/x(x)) = o(@)r(@)T(1fx(x) = (z) .

It is easy to see that ¢ € & implies that v € & and that ¢ € R[k] implies
that v € R[k]. We further observe that if, for some 6> 0,

(4.3.4) T, o, 0()T((1+ O)p()) < 1

then (4.2.5) is satisfied with t=1.
Let @ satisfy the following Tauberian condition. Let for some positive
constants K and A

(4.3.5) D(x)—-DPx+y) < Kit(x), O0=y=it(x), x=2,.

From (4.3.5) it follows that the Tauberian condition (4.1.3) of Theorem
1 is satisfied with ¢= 7 and ¢ =KAz. If we apply Theorem 1 with {=7r=m
and ¢=KAr and observe that the first inequality in (4.2.2) is satisfied
with a =1 according to (4.3.3) and the second one is satisfied with o« = K24
we thus get the following result.

THEOREM 3,. (1) Let Condition (1) of Theorem 1 hold true and let o € &.
Let © defined by (4.3.2) and let (4.3.5) be satisfied.

(2) Let 6 be constant, 0<0<1, and let o € R[bw] for some b= 1.

(3) Let us suppose either that (4.2.3), (4.2.4) and (4.3.4) are satisfied or
that (4.2.3) and (4.2.4) are satisfied with hp replaced by hg.

Then
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(4.3.6) lim, _, 2@l <
(%)

where Cy=Cy(P,p,b) and C=C(P,p,b,0,w).

s CoK(1+4)+0,

CoroLLARY. Impose the conditions of Theorem 3, except those imvol-
ving (4.2.4). Let (4.2.7) hold true. Then (4.3.6) is valid with C =C(P,¢,b,0).

We shall now prove that the condition (4.3.4) in Theorem 3, and its
corollary can be omitted if (P,), ¢ and S are sufficiently regular. For
the sake of simplicity we introduce the following conditions. It is easy
to see that they may be considerably weakened.

Let us call (P,), ¢ and 8 regular if the following conditions are satis-
fied.

logn

(4.3.7) lim, — =,
IOg n+1/P

Let r=1/p and

. log x,(x)
4.3.8 lim - —
(4.3.9) lim 15(®) =% < oo

7% (log 8(x))(log log S(x))

Condition (4.3.7) implies that p is of regular growth and of order v,
i.e.
log log p(x) _

1
o logx

Condition (4.3.8) implies that r is of regular growth and of order w.
By using these assumptions Theorems 3, and its corollary may be
modified as follows.

THEOREM 3'. Let (P,), o and S be regular. Let Conditions (1) and (2)
of Theorem 3, hold true and let (4.2.3) and (4.2.4) be satisfied. Then
(4.3.6) is valid with Cy=Cy(P,b) and C=C(P,b,0,w).

TreEOREM 3. (1) Let (P,), ¢ and S be regular, let Condition (1) of
Theorem 3, hold true and let (4.2.7) be satisfied.

(2) Let 6 be constant, 0< 6 <1, and g € R[bhp(0x)] for some b= 1.

Then (4.3.6) is valid with Cy=Cy(P,b,) and C=C(P,b,0).

Proor. If (P,) is non-quasi-analytic then ¢ =1 and the results follow
from Theorem 3, If (P,) is quasi-analytic then »=1 in (4.3.7) and
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(4.2.7) is satisfied. Thus it suffices to prove Theorem 3 and suppose
(P,) quasi-analytic. Let ¢ be defined by (2.1.16). Then for every n<1,
hg(x) exp(—a") - oo, x - o0,

Introduce w as in (4.3.8) and x» as in (4.3.9). The proof will be diffe-
rent for different values of w and » and we consider the cases a), b) and ¢)
below. It should be observed that in a) and b) the result (4.3.6) is derived
without use of Condition (2).

a) w=13.

Let v(z)=exp(x!). Then v(z)<bhy(3x),x20, for some b=>b(P) and
v(x)[ho(3x) € L*(0,00). Since w =} there exists x, such that x.() < 3t
z=x,. Let o(x)=p(x,),x < x,. The function g, thus redefined, belongs to
R[v]. It then follows from Theorem 3,, applied with 6 =4, w=v/b, that
(4.3.6) holds true with Cy=Cy(P) and C=C(P).

b) w>3 xz21.

Let gy(x) =exp(—at) and let 7, be defined by (4.3.2) with g replaced
by 0. Then p(x) < go(%), 22z, and 7(x) < 74(x),# = ;. Therefore, by the
argument used in Lemma 7, Condition (1) is satisfied with ¢ replaced
by g, and K replaced by 3K. By using (4.3.9) and x>1 it is easy to
see that

Hlx—)ooro(x)/r(x) é 2.

From the result proved in a) it follows that (4.3.6) holds true with =
replaced by 7, Thus (4.3.6) holds true with Cy=Cy(P) and C=C(P).

c) w>% x<l.

From w >} it follows that g(x)=o(exp(—xt)),# - oo, and from x <1
it follows that
T(X)exp(—eX®) >0, X o0

for every «, x<ax<1. By combining these relations with (2.1.14) we
find that (4.3.4) is satisfied for every d > 0. The result (4.3.6) then follows
from the corollary of Theorem 3,.

The remarks following Theorem 2 are valid for the above theorems
as well. Thus, if yg(X)—> oo as X - oo then (4.3.6) holds true with
C=0.1If x5/,

7(x) = o((logz)(loglogz)'+), =z - oo

for some §>0 and (4.2.10) is satisfied with ¢{=1t then Condition (2) of
Theorem 3 can be replaced by ¢ € R[b(1+z)°hp(x)] and (4.3.6) is valid
with Cy=C(P,b,c,d) and C=0.
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The restriction 6 <1 imposed in the above theorems has no real im-
portance if § increases fast enough. This is a consequence of the following
result which we shall now prove.

Let for some 4 >0

(4.3.10) logS(X) < Agg(X), XzX,.

Then the condition 0 < 6 <1 in Theorems 3, 3’ and 3 can be replaced by
6=1 and the same result holds true but for the fact that ¢ will depend
also on 0 and 4.

Let n be a positive integer, n>26>n—1. Let us first observe that
¢ € R[v(x)] implies that ¢'/» € R[v(x/n)] and that (4.3.10) implies that,
for every 6 >0,

T-Yy) = n4¥T-Yym), yzy,.

The result then follows in the same way as in b) by applying the
theorems with ¢ replaced by o'/».

The following theorem is derived from Theorem 2 in the same way as
Theorem 3, was derived from Theorem 1.

THEOREM 4. Let Condition (1) of Theorem 3, and Condition (2) of Theo-
rem 2 hold true and suppose further

— 1 1
(4.3.11) 8, (T—(—x—)) < x—<-2exp(—xp62log6)S (;(—;)), 22 .

Let o € R[b(1+ 0x)¢hp(0x)] for some b=1. Then (4.3.6) is valid with
Cy=Cy(P,b,c) and C=C(P,b,c,u,0).

Theorem 4 can be applied only if § and o are sufficiently small. In
fact, if (4.3.11) is satisfied for some 6 > 1 then S is dominated by a poly-
nomial and g is exponentially decreasing. If (4.3.11) is satisfied with
6=1 then

loglog S(X) = O(logX), X - o,
and
im, _, (logz)*logg(z) < 0.

To see this we observe that (4.3.11) implies that (4.2.11) is satisfied
with ¢ = 7. Therefore, by the definition of z,

(4.3.12) ac+2exp(xf0%logh) = C(u) [T—l (E(}x—))]p—*’ x2x,.
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Since 7'(X)=XS(X) the result stated follows from (4.3.12) and the ine-
quality 1/o(x) < €%,z 2w,.

Let us finally note the following concerning the theorems in 4.3. If
2s5(X) = 00,X — oo then the condition ¢ € & can be omitted. If S,(X)=
0(8(X)),X - oo then C is independent of 0, u and w. If yg(X) — oo,
X — oo, and (4.2.8) holds true for 7=<#< Br for some B>1 then (=0
in Theorem 4.

4.4. Tauberian theorems when 1 /F belongs to %,.

The result below is stated here for the sake of reference. If is easily
proved by using the remark to Lemma 4’ and Lemma 5’ in 2.6.

REMARK. Impose the conditions of any of the theorems in 4.2 or 4.3
but for the fact that the condition 1 /f € %, is replaced by the condition
that 1/F € B, and F+0 on (—oo,0). Let y=®+F and suppose further

(4.4.1) M,{p;z,00} < o(x), x=(.
2% 0 0

Then the same result is valid.

5. Examples and applications.
5.1. Assumptions.
Let F € LY(— o0,00) and

(6.1.1) 1F(E) = g(&), —oo<f<oo.
Let @ be bounded on (— oo, o) and
(5.1.2) |DxF(x)| < o(x), xZ%,,

where g € & and ¢ is regular in the sense of (4.3.8). These assumptions
are maintained throughout this section.
For the sake of brevity I use the following Tauberian condition

(5.1.3) D(x)+Kx/', x=z, forsome K20.

It may, of course, always be relaxed in the sense of (4.3.5).

5.2. Conditions on l/ﬁ on the real axis.

Two examples will be considered in which conditions are imposed on
the first m derivatives of g.
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ExampLE 1. Let a be a positive number and m a positive integer. Let
g™ exists on the real axis and g'(&) = 0(|¢|2-1), |&| - co. If m>1 we also
suppose that

g™(E) = O(§]*}), & > o0, n=2,3,...,m.
Let @ satisfy (5.1.3) and let g € R[(1+x)]. If 0<c<m—1+b, where
b=min (},a), then
(5.2.1) D(x) = O(p(x)/@+D), g > oo,

Proor. Let v(x) =(1+x). Since hp=h, is a polynomial of degree m
the function v(x)/hgy(4x), x20, is bounded and belongs to L*0,c0). If
a > %, b=} the result follows directly from Theorem 3, by choosing, apart
from constant factors, Sy(X)=Xa+, §,(X)=Xe4, §,(X)=X* S(X)=
Xe,T(X)=Xo+l and z(x)=p(x)"@+D. If 0<a<} the result follows
similarly by using the L#-estimate in the remark to Lemma 1 and choos-
ing l<s<(l—a).

It follows from a theorem of Ganelius [7, Theorem 4.2.1, p. 34] that
the estimate (5.2.1) is best possible in the sense that it cannot be replaced

by
D(x) = O((x)o(x)V/@+V), x> o0,

for any function é such that é(x) > 0,2 — oco.
Another application of Theorem 3, yields the following result.

ExampLE 2. Let m be a positive integer. Let g™ exist on the real axis
and

(6.2.2)  g(E) = O(My(ED), |£l >0, n=0,1,2,...,m,

where My(&),6=0. Let T(X)=X%M0(X) and let T-! denote the in-
verse function of 7. Let @ satisfy (5.1.3). If g € R[(1+«)°] for some ¢,
0<c<m~—1%, then

(5.2.3) ®(x) = 0(1/T1fo(x))), «->oo.

If (5.2.2) is valid with M (&)= &2 for some a >0 we thus get
(5.2.4) D(z) = O(p(x)2/@+3), 2 > oo
and if M(&)=exp (&%) for some a >0, and g(x) =e"V® we get
(5.2.5) &(z) = O(V(x)~V9), x—>oo.

By using the above-mentioned theorem of Ganelius it is easy to see
that if

Math. Scand. 35 — 7
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(5.2.6) lim, ,,&-21logT(§) < oo
and
(5.2.7) lim, , o x7(€)(logé) > 0

then the estimate (5.2.3) is best possible in the sense that it cannot be
replaced by
D(x) = 0(6(x)/T*1(1/g(x))), X — oo

for any function é such that é(x) - 0,2 - oo.

5.3. The function 1/F analytic in a strip.

Let us now consider the case in which g is analytic in a strip around
the real axis in the {-plane, { =&+ 1.

Let M(£)./',£20, and let M, be regular in the sense of (4.3.9). Intro-
duce the condition

(5.3.1)

{g is analytic in the strip —y<n<y,
lg(&+in)| = Mo(lE), —y<n<y.

From (5.3.1) it follows, by Cauchy’s formula, that

lg™(&)| = My(|él+y)y™n!, n=0,1,2,....
Hence, for X >0,
(5.3.2) Myfgm™;—X,X} £ P,8y(X), »=0,1,2,...,

where Sy(X)=2v2X12M (X +y) and P,=n!y~" The theorems in Sec-
tion 4 can be applied with 2p(x) =e* and 8, =8,,7=0,1,2,.... Applying
Theorem 3 we get the following result.

ExampLE 3. Let ¢ satisfy (5.3.1) and @ (5.1.3). Introduce the function
T-1 ag in Example 2. If g € R[e**] for some 0, 0< 0 <1, then (5.2.3) is
valid.

This result was proved by Frennemo [3, Theorem 1, p. 80] in the case
when M, is submultiplicative and thus of at most exponential growth
and 1/g is submultiplicative.

Let M,(£),£20, be regular in the sense of (4.3.9), M,<M, and
&-°M (&) for some 6> 0. Let g be analytic in —y <<y and

(5.3.3) g’ +im)| = My(IE), —v<m<y.

From (5.3.3) it follows, by Cauchy’s formula that for X >0
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Myg™;—-X,X} < P,8y(X), n=L2,...,

where P, =(n—1)!y~"+! and 8(X)=2t Xt M, (X +9).

If (5.3.1) and (5.3.3) both hold true then the theorems of section 4
can be applied with S;(X)=28,(X) and hp(x) =1+ zer.

An application of Theorem 3 yields the following result.

Examrrr 4. Let (5.3.1), (5.3.3) and (5.1.3) be satisfied. Let T'(X)=
X32(M(X)M, (X))t and let T-! denote the inverse function of 7'. If
o € R[e#=] for some 0, 0< 6 <1, then

(5.3.4) D(x) = O(1/T1fo(x))), x->oco.

This result was proved by Frennemo [3, Theorem 2, p. 84] in the case
when My, M, and 1/p are submultiplicative and M, .

In the same way as before it follows that the estimate in Example 3
is best possible in the sense described above if (5.2.6) and (5.2.7) are
satisfied and that the estimate in Example 4 is best possible in the same
sense if (5.2.6) is satisfied and either (5.2.7) is satisfied or XM,(X)=
O(M (X)), X — oo.

The following example has been chosen to show that, with appropriate
conditions on ¢’ in the relevant strip, results can be derived for g(x)=
e~% for some 6> 1. To this end I impose the following condition on o

(5.3.5) lim, , z1logo(x) = —«.

ExampLE 5. Let a be a positive constant and b=min (},a). Let (5.3.3)
hold true with M,(&)=const(l+|&|)*-1. Let @ satisfy (5.1.3) and let
o € R[e®*]. Let us suppose either that § <1 or that

(5.3.6) 0 < 6logh < b/(a+1)
and that (5.3.5) holds true with &= 6y. Then (5.2.1) is valid.

Proor. The conditions imply that (5.3.1) holds true with M (&)=
C(1+|&|)e. If a> % and 6 <1 the result thus is a special case of Example 4.
Let us consider the case a >} and 6 2 1. We may choose S,,8,;,8,7 and 7
as in Example 1 and let 8;=8,=CX%+% and hp(x)=er*. Since (5.3.5)
holds true with « =60y we find that for every 6 >0

Oy

7(z) < exp(—&—;{l+5a¢>, 2.

By using lim,_,  2-1y,(x)=y and 8,(X)<OX-*8(X) it is easy to see
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that we can find a number §>y such that (4.3.11) holds true with p=1
and ¢=0. The result then follows from Theorem 4. If 0 <a <} the result
is derived in the same way by using the Ls-estimate in the remark to
Lemma 1.

The result in Example 5 for 0> 1 is of interest in connection with the
question of the necessity of the conditions. Earlier a theorem was proved
(see [9, Theorem 6, p. 347]), which can be restated as follows.

Let (14 |z|0+})F(x) € L}(— oo, 00) for some d >0 and let a and ¢ be posi-
tive constants. If F has the property that @ F(x)=0(e—*%), x — oo,
implies @D(x)=0(e~>*/@+D) g > oo, for every bounded function @
satisfying (5.1.3) and every «, 0 <« <c¢, then there exists a function g¢(¢),
¢ =&+, analytic in the strip 0 <% <c/(a+ 1) such that

1/P(£) = lim, o, g(E+in), —oco<E<oco.

It follows from Example 5 that it is impossible to extend this result
to the strip 0<#<c. Conversely, it follows from the theorem quoted
above that the result in Example 5 cannot be extended to values of 6
such that 6 >a+1.

The following example illustrates how other Tauberian conditions
than (5.1.3) influence the result.

ExampLE 6. Let g satisfy (5.3.1) with M (&)= constet, &> 0, for some
b>0 and let g(x) = O(e~*%),x - oo, where 0 <« <y. Let us suppose that

(5.3.7) D(x)—Dx+y) S ox), 0=y=szl, z2x,,
where o € R[e*] and o(x) = e~#%, 2 > x,,, for some §,0< < «. Then
|D(x)| = Cko(x), w22,

where C'=C(y) and k=max(1,b/(x—p)).
The choice o(x)=K/x thus yields a well-known result of Ganelius
(see [5, Theorem 2, p. 9]).

Proor. Choose ¢, b<c<2b. Condition (1) of Theorem 1 is satisfied
with S(X)=eX, g(x)=conste—*=. Let ¢ be defined by (2.1.16), 4= (2k)-},
t(x) =2kx~! and m =0. Then ¢t and ¢ belong to & and

o(x)S(1/t(x)) = o(m(x)), x> oo.

The result thus follows from the corollary of Theorem 1 applied with
w(x) =hp(x) =€, m(x)=0(x), since ¥(z)p(x) > 0,2 > o and (4.2.10) is
obviously satisfied.
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It should be mentioned that the conditions for g introduced in 5.3
may be considerably weakened. Let us replace (5.1.1) by

(6.3.8) 1/F(§) = lim, o, g(E+in), —oco<é<oo,

and let £ 40 on (—oo,00). In Examples 4, 5 and 6 it is then sufficient to
impose the conditions for g in the strip 0 <<y only. The conditions of
Example 3 can be weakened in the same way provided that (4.4.1) is
satisfied. These results will be derived from the results in Section 4 in
a subsequent paper.

5.4. The function 1/F analytic in a domain which tapers off at infinity.

Let us consider the case in which ¢ is analytic in a domain 2 of the
following type. Let p(&)\, 20, y(€) - 0, & - 0o, p<1 and p(&)=y(—§),
—ow<E<oo, Let {=&+14n and let

(5.4.1) Q={; <y}
Let M (&), £20. Introduce the condition

g is analytic in Q2 ,

(5.4.2) lg(&+in)| < Mo(1&), E+inef.

Then, by Cauchy’s formula

n! Mo(|§[+1)
(vl + 1)’

If we put R(X)=2tX¥ M (X +1),G(X)=1/y(X +1),X >0, we thus have

lg™(€)| =

—oo<é<oo .

Mg™; —X,X} < nl(GX)R(X), n=0,12,....

Now let us choose a positive sequence (K,);” such that Ko=1, K,1/» 7,
nx1, K,l" > 00, n - oo and the sequence (n!K,)y is logarithmically
convex. Let
(5.4.3) k(z) = sup,2"/K,, x20.
Then

(X)) =K, kG(X)), X=z0,7n=01.2...,
and hence

(5.4.4) Mgm; —X,X} < 0K k(GX)RX), n=0,1,2,....

Thus (5.3.2) is satisfied with P,=n!K,, 8y(X)=kG(X))R(X), and the
theorems in Section 4 can be applied.
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Exampre 7. Let {=&+14n and let a, b and B denote positive con-
stants. Let g be analytic in the domain

Q={¢; Inl < a/(1+]&)}

and
19(¢)| < conste’l, (eQ

Let @ satisfy (5.1.3). Let o(x)=¢=7®@ and

(5.4.5) o € Rlexp (Bx)t] .
Then
(6.4.6) D(x) = O(V(x)™), z->o0.

Proor. The result is obtained by choosing K, =n"e-"B-2* n 2> 1. Then
k(x) < exp(B%z). If P,=n"e-*B-2"n! we find that

hp(x) > z~t exp(2Bzxt), z>uw;.

From (5.4.5) it follows that ¢ € R[Chp(3x)] for some constant C. The result
then follows from Theorem 3 applied with S(X)=exp(B,X), where
B, >b+ B2a1.

The estimate (5.4.6) is best possible in the sense that it cannot be
replaced by
O(z) = 0(0(x)V(x)), = —>oco

for any function ¢ such that d(x) - 0, £ - oo. This follows in the same
way as the corresponding result for Example 2.

Finally, T shall consider an example connected with Lambert summa-
bility. Let

—t
(5.4.7) alt) = % (T%t) F(z) = e-=a(e®).
Then
F(§) = Q1 +46)(1+i€) .

where { denotes the Riemann zetafunction.
Let s =0+ 1t. It is well-known that there is a region

1—A(logt)~¥(loglogt)t < 0 < 2, t>t,,
where uniformly
1/¢(s) = O((logt)¥(loglog?)t), t— oo,

(see [11, 6.15, p. 114]). It follows that g({) = I/F(C) is analytic in a domain
£ defined by (5.4.1), where y(£)=const, 0 < |&| =&,
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(&) = A(log|¢))*(loglog €))%,  |£]> &,

and
19(0)] < e¥ll|g)-1,  CeQ |EzE,.
Hence
Myfg™; —X,X} < constn!eX(G(X)), X=X,,
where

G(X) = A-'(log X)}(loglog X )} ,

Choose «,0<x<4/3 and K, =(log(n+e))™* and let k be defined by
(6.4.3). Then k(x) <expexpa* and k(G(X)) <eX,X > X,. We thus have

Myfg™; -X,X} < P,SX), XzX,,
where 8(X)=exp((1+4n)X) and P,=n!K,. Let a=«"1. Then
p(x) > exp(z(logz)—?), z>uz,.

The following result thus follows from Theorem 3.

ExampLE 8. Let F be defined by (5.4.7), let @ satisfy (5.1.3) and
| * F(x)| So(x), x 2%y If o € R[v] where v(x) =exp(z(logz)-2), x =z, for
some a > £ and g(z) =e~V®@, then

D(x) = O(V(x)'l), x — oo,

The conditions for g introduced in 5.4 can be weakened in the same
way ag in 5.3. For example, if F+0 on (—oco,) and (5.3.8) and (4.4.1)
are satisfied, then it is sufficient to impose the conditions for g in Example
7 in that part of the domain £ which is situated in the upper half-
plane. These results will be derived from the above theorems in a sub-
sequent paper.
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