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METRIZATION OF QUASI-METRIC SPACES

JAN GUSTAVSSON

0. Introduction.

Let d be a quasi-hemi-metric on a space X. (See Section 2 for defini-
tions!) In this note we prove (Theorem 2.1) that d? for sufficiently small
p is equivalent to a hemi-metric. This gives a kind of generalization of a
theorem of Aoki [1] and Rolewicz [10]. (We note that the latter theorem
has recently found applications in the theory of interpolation spaces,
see Peetre—Sparr [9], Sagher [11].) As an application we give a simpli-
fied proof of a metrization theorem of Chittenden [5]. The proof has
earlier been simplified by Frink [6] and Aronszajn [2]. Our proof of
Theorem 2.1 is based on a more general result (Theorem 1.1) formulated
for halfgroupoids. We also give a simple application to capacities.

1. The halfgroupoid case.

DrrinrTION 1.1. By a halfgroupoid we mean a set G with a partially
defined multiplication which is associative in the following sense: xz(yz)
is defined iff (xy)z is defined and we have a(yz)=(zy)z. By induction
IT;.,z; can then unambiguously be defined. (See Bruck [4].)

THEOREM 1.1. Let f be a realvalued function on a halfgroupoid G and
such that
flxy) £ k(f(x)+f(y)), =y,2y€@, kconstant>$.

For 0<px}log,,2 there is a function f p Such that

(1.1) Fo@y) £ Fo@+fo®), =y2yed
and
(1.2) fol@) S fP(2) < 2f (@), z€@.

For the proof we need a lemma.

Lemma 1.1. Let f be a function on a halfgroupoid Q and such that

(1.3) flxy) = C max(f(x),f(y)), =xy,2yc@ and 1=C =Ly2.
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If 2=TI;_12;, 27-127% <1 and ;2 0, we have
(1.4) fle) £ max,_;_,(2f(z;)), xe@ x,€G.
Proor. The proof is by induction on n. (1.4) is trivially valid for n = 1.
Assume now that (1.4) is valid for n <m. Then we want to prove that
jlwy =2 IMNI2TV S
imply
fl@) = max ;g (29f(xy)) -
There is an integer » (1 <v<m+1) such that
Siieis i and IR 2 s 4.
Using (1.3) and the induction hypothesis we get
(1.5) fATj-1 %)) = € max(f(IT;21 #;).f(=,))
C max(maxlgé,ﬂ(2’7‘1f(x,-)),f(x,)) .
Using the induction hypothesis again we have
(1.6) SATSE ) S max, qgiomn (297 f(z))) .
From (1.3), (1.5) and (1.6) we obtain, since C2< 2,
f@) = € max(f(ITj-y 2;).fTT720%1 )
¢ max (€ max (maxlg,.g,_l(zﬁ fa) f(@)

max, 1<jsm+1 ( 2t~ lf(xy))>

IA 1IA

IIA

IA

max1§j§m+1(2ijf(xj)) .

The proof is complete.
ReMARK 1.1. If the multiplication on G is commutative we can prove

the lemma for C such that 1<C<2. Indeed, in the commutative case

we can find a » (possibly after a denumeration) such that 2},12—"’§§
and ;’f_j}r ,27% < 4. (See Peetre—Sparr [9].)

We can now give the proof, which is substantially the one given by
Peetre—Sparr [9].

Proor or THEOREM 1.1. We have

fr(zy) £ kP(f@) +f@))P < (2k)P max(f7(x).f7(y)) -
(2k)» will satisfy the restriction on C' in Lemma 1.1, if 0 <p <} logy,2.
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For such p, f7 will thus fulfil (1.3). As f, we take

fale) = it (37, f2(@;) : 2 =TT} 2} -
It is clear that f p satisfies inequality (1.1). Moreover, the left inequality
in (1.2) is obvious. For the proof of f?(x) <2f,(x) we choose 4;= 0 such
that

-4 () ;s
1.7 27 g L "9 < 9-igHl,
7 Z}'=1 SP(x) J

Using (1.7) and Lemma 1.1 we get

fP(x) = maxlgjgn(2ijfp(xj)) s 22?—1fp(xj) .

It only remains to take infimum of the right hand side and the proof is
complete.

2. The “metric” case.

The purpose of this section is to prove a generalization of a theorem
-of Aoki[1] and Rolewicz [10]. In the present formulation see also Peetre—
Sparr [9].

A function d: X x X — R, satisfying d(x,x)=0, is called quasi-hemi-
‘metric if 0 <d(z,y)=< o0, x+y, and

(i) d(z,2) £ k(d(z,y)+d(y,2)), forsomek21,

and it is called quasi-metric if, moreover, d(z,y)=d(y,z) < c. If we can
-choose k=1, in (i), a quasi-hemi-metric d is called hemi-metric, and a
-quasi-metric d is called metric.

THEOREM 2.1. Let X be a set equipped with a quasi-hemi-metric d. For
0 <p = }logy,2 there is a hemi-metric d, such that

dy(®,2) S dP(x,2) S 2d,(x,2) .

Proor. Put G=X x X. For (z,y) € G and (y,z) € G we put (z,y)o(y,2)=
{®,z). With this partial multiplication Theorem 2.1 follows from Theorem
1.1

Remark 2.1. If d is a quasi-metric, then Jp will be a metric.

REMARK 2.2, Since the topology of a locally bounded, topological
vector space can be given by a quasi-norm (See Kéthe [8, p. 159]), we
see that Theorem 2.1 is a generalization of the theorem of Aoki [1] and
Rolewicz [10].
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2. Application to the metrization theorem.

In this section we give a simplified proof of a metrization theorem of
Chittenden [5]. (Cf. Frinck [6], Aronszajn [2], Bourbaki [3, pp. 15-17, 35],
Kelley [7, p. 186], Kothe [8, pp. 29-30, 45-47], Weil [12].)

THEOREM 3.1. 4 uniform space X is metrizable iff it is Hausdorff and
the vicinity filter F of X has a countable base.

Proor. The necessary part is trivial.

For the proof of the sufficient part we take a countable base (V,)%,

of #. We construct a countable, symmetric base (U,)2, of & such that
(3.1) U?*_lc U‘, 'i=1,2,..., U‘t+lcUi? i=l,2,... and UIC‘N]."

In fact, let us choose U; =N;nN,~%. Since X is a uniform space there are
M, e & such that M2cU,_,, ©=2,3,... (see Kothe [8, p. 29]). Choose
inductively

Ui=MinMi"1ﬂN¢ﬂNi”lﬂ U'i—l’ 'I:=2,3,....

Then (3.1) is fulfilled and (U,){2, is a countable, symmetric base of X.
Put

d(z,y) = inf(m)E U,~2—i
and

dz,y) =1 if (zy) ¢ U2, Us-

Then d will be a quasi-metric on X and d(z,2) <2 max(d(z,y),d(y,2)).
Indeed, if say, d(z,y)=2"* and d(y,2) =2 with k£ £, then (z,y) e U, < U,
and (y,z) € U;. Thus (z,2) e U2< U,_,. Consequently

d(z,z) < 271 £ 2-2% < 2 max(d(z,y),d(y,2)) .

It is clear that the sets d-(0,), ¢>0 give the same uniform structure
as the U,. Nothing will be changed if d is replaced by d?. But by Theorem
2.1 dP is equivalent to a metric.

4. Application to capacities.
The following application may be of some interest.

DEeFINITION 4.1. A set function f defined on a set U and such that
f(4u B) < k(f(4)+f(B))

is called an (outer) quasi-capacity if > 1 and an (outer) capacity if k< 1.
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THEOREM 4.1. Let f be an (outer) quasi-capacity on U. For 0<ps<
logyy 2 there 1s an (outer) capacity f, on U such that

fold) < f2(4) < 2f (A).

Proor. We define a multiplication o on U by AoB=A4UB. Then the
assertion follows from Theorem 1.1 and Remark 1.1.
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