METRIZATION OF QUASI-METRIC SPACES

JAN GUSTAVSSON

0. Introduction.

Let d be a quasi-hemi-metric on a space X. (See Section 2 for definitions!) In this note we prove (Theorem 2.1) that d^p for sufficiently small p is equivalent to a hemi-metric. This gives a kind of generalization of a theorem of Aoki [1] and Rolewicz [10]. (We note that the latter theorem has recently found applications in the theory of interpolation spaces, see Peetre-Sparr [9], Sagher [11].) As an application we give a simplified proof of a metrization theorem of Chittenden [5]. The proof has earlier been simplified by Frink [6] and Aronszajn [2]. Our proof of Theorem 2.1 is based on a more general result (Theorem 1.1) formulated for halfgroupoids. We also give a simple application to capacities.

1. The halfgroupoid case.

DEFINITION 1.1. By a halfgroupoid we mean a set G with a partially defined multiplication which is associative in the following sense: x(yz) is defined iff (xy)z is defined and we have x(yz) = (xy)z. By induction $\prod_{i=1}^n x_i$ can then unambiguously be defined. (See Bruck [4].)

THEOREM 1.1. Let f be a realvalued function on a halfgroupoid G and such that

$$f(xy) \le k(f(x)+f(y)), \quad x,y,xy \in G, \ k \text{ constant} > \frac{1}{2}.$$

For $0 there is a function <math>\tilde{f}_p$ such that

(1.1)
$$\tilde{f}_{p}(xy) \leq \tilde{f}_{p}(x) + \tilde{f}_{p}(y), \quad x, y, xy \in G$$

and

$$(1.2) \tilde{f}_p(x) \leq f^p(x) \leq 2\tilde{f}_p(x), \quad x \in G.$$

For the proof we need a lemma.

LEMMA 1.1. Let f be a function on a halfgroupoid G and such that

(1.3)
$$f(xy) \leq C \max(f(x), f(y)), \quad x, y, xy \in G \quad and \quad 1 \leq C \leq \sqrt{2}$$
.

Received February 20, 1974.

If
$$x = \prod_{j=1}^n x_j$$
, $\sum_{j=1}^n 2^{-i} j \leq 1$ and $i_j \geq 0$, we have

$$(1.4) f(x) \leq \max_{1 \leq j \leq n} (2^{ij} f(x_j)), \quad x \in G, \ x_j \in G.$$

PROOF. The proof is by induction on n. (1.4) is trivially valid for n = 1. Assume now that (1.4) is valid for $n \le m$. Then we want to prove that

$$\prod_{j=1}^{m+1} x_j = x \quad \sum_{j=1}^{m+1} 2^{-i_j} \le 1$$

imply

$$f(x) \leq \max_{1 \leq i \leq m+1} \left(2^{ij} f(x_i) \right).$$

There is an integer ν $(1 \le \nu \le m+1)$ such that

$$\sum_{j=1}^{\nu-1} 2^{-i_j} \leq \frac{1}{2} \quad \text{and} \quad \sum_{j=\nu+1}^{m+1} 2^{-i}j \leq \frac{1}{2}.$$

Using (1.3) and the induction hypothesis we get

(1.5)
$$f(\prod_{j=1}^{r} x_{j}) \leq C \max (f(\prod_{j=1}^{r-1} x_{j}), f(x_{r}))$$

$$\leq C \max (\max_{1 \leq j \leq r-1} (2^{i_{j}-1} f(x_{j})), f(x_{r})) .$$

Using the induction hypothesis again we have

$$(1.6) f(\prod_{j=r+1}^{m+1} x_j) \leq \max_{r+1 \leq j \leq m+1} (2^{i_j-1} f(x_j)).$$

From (1.3), (1.5) and (1.6) we obtain, since $C^2 \le 2$,

$$f(x) \leq C \max \left(f(\prod_{j=1}^{r} x_{j}), f(\prod_{j=r+1}^{m+1} x_{j}) \right)$$

$$\leq C \max \left(C \max \left(\max_{1 \leq j \leq r-1} \left(2^{i_{j}-1} f(x_{j}) \right), f(x_{r}) \right), \max_{r+1 \leq j \leq m+1} \left(2^{i_{j}-1} f(x_{j}) \right) \right)$$

$$\leq \max_{1 \leq j \leq m+1} \left(2^{i_{j}} f(x_{j}) \right).$$

The proof is complete.

REMARK 1.1. If the multiplication on G is commutative we can prove the lemma for C such that $1 \le C \le 2$. Indeed, in the commutative case we can find a ν (possibly after a denumeration) such that $\sum_{j=1}^{r} 2^{-ij} \le \frac{1}{2}$ and $\sum_{j=r+1}^{m+1} 2^{-ij} \le \frac{1}{2}$. (See Peetre–Sparr [9].)

We can now give the proof, which is substantially the one given by Peetre-Sparr [9].

PROOF OF THEOREM 1.1. We have

$$f^{p}(xy) \leq k^{p}(f(x)+f(y))^{p} \leq (2k)^{p} \max(f^{p}(x),f^{p}(y))$$
.

 $(2k)^p$ will satisfy the restriction on C in Lemma 1.1, if 0 .

For such p, f^p will thus fulfil (1.3). As \tilde{f}_p we take

$$\tilde{f}_{p}(x) = \inf \{ \sum_{j=1}^{n} f^{p}(x_{j}) : x = \prod_{j=1}^{n} x_{j} \}.$$

It is clear that \tilde{f}_p satisfies inequality (1.1). Moreover, the left inequality in (1.2) is obvious. For the proof of $f^p(x) \leq 2\tilde{f}_p(x)$ we choose $i_j \geq 0$ such that

(1.7)
$$2^{-i_j} \le \frac{f^p(x_j)}{\sum_{j=1}^n f^p(x_j)} \le 2^{-i}j^{+1}.$$

Using (1.7) and Lemma 1.1 we get

$$f^{p}(x) \leq \max_{1 \leq j \leq n} \left(2^{ij} f^{p}(x_j) \right) \leq 2 \sum_{i=1}^{n} f^{p}(x_i).$$

It only remains to take infimum of the right hand side and the proof is complete.

2. The "metric" case.

The purpose of this section is to prove a generalization of a theorem of Aoki [1] and Rolewicz [10]. In the present formulation see also Peetre-Sparr [9].

A function $d: X \times X \to \overline{\mathbb{R}}$, satisfying d(x,x) = 0, is called *quasi-hemi-metric* if $0 < d(x,y) \le \infty$, $x \ne y$, and

(i)
$$d(x,z) \leq k(d(x,y)+d(y,z))$$
, for some $k \geq 1$,

and it is called *quasi-metric* if, moreover, $d(x,y) = d(y,x) < \infty$. If we can choose k=1, in (i), a quasi-hemi-metric d is called *hemi-metric*, and a quasi-metric d is called *metric*.

Theorem 2.1. Let X be a set equipped with a quasi-hemi-metric d. For $0 there is a hemi-metric <math>\tilde{d}_{p}$ such that

$$\tilde{d}_p(x,z) \leq d^p(x,z) \leq 2\tilde{d}_p(x,z)$$
.

PROOF. Put $G = X \times X$. For $(x,y) \in G$ and $(y,z) \in G$ we put $(x,y) \circ (y,z) = (x,z)$. With this partial multiplication Theorem 2.1 follows from Theorem 1.1.

Remark 2.1. If d is a quasi-metric, then \tilde{d}_n will be a metric.

REMARK 2.2. Since the topology of a locally bounded, topological vector space can be given by a quasi-norm (See Köthe [8, p. 159]), we see that Theorem 2.1 is a generalization of the theorem of Aoki [1] and Rolewicz [10].

2. Application to the metrization theorem.

In this section we give a simplified proof of a metrization theorem of Chittenden [5]. (Cf. Frinck [6], Aronszajn [2], Bourbaki [3, pp. 15–17, 35], Kelley [7, p. 186], Köthe [8, pp. 29–30, 45–47], Weil [12].)

THEOREM 3.1. A uniform space X is metrizable iff it is Hausdorff and the vicinity filter \mathscr{F} of X has a countable base.

PROOF. The necessary part is trivial.

For the proof of the sufficient part we take a countable base $(N_i)_{i=1}^{\infty}$ of \mathscr{F} . We construct a countable, symmetric base $(U_i)_{i=1}^{\infty}$ of \mathscr{F} such that

(3.1)
$$U_{i+1}^2 \subset U_i$$
, $i=1,2,\ldots$, $U_{i+1} \subset U_i$, $i=1,2,\ldots$ and $U_1 \subset N_1$.

In fact, let us choose $U_1 = N_1 \cap N_1^{-1}$. Since X is a uniform space there are $M_i \in \mathscr{F}$ such that $M_i^2 \subset U_{i-1}$, $i = 2, 3, \ldots$ (see Köthe [8, p. 29]). Choose inductively

$$U_i = M_i \cap M_i^{-1} \cap N_i \cap N_i^{-1} \cap U_{i-1}, \quad i = 2, 3, \dots$$

Then (3.1) is fulfilled and $(U_i)_{i=1}^{\infty}$ is a countable, symmetric base of X. Put

$$d(x,y) = \inf_{(x,y)\in U_i} 2^{-i}$$

and

$$d(x,y) = 1$$
 if $(x,y) \notin \bigcup_{i=1}^{\infty} U_i$.

Then d will be a quasi-metric on X and $d(x,z) \leq 2 \max (d(x,y), d(y,z))$. Indeed, if say, $d(x,y) = 2^{-k}$ and $d(y,z) = 2^{-l}$ with $k \leq l$, then $(x,y) \in U_k \subset U_l$ and $(y,z) \in U_l$. Thus $(x,z) \in U_l^2 \subset U_{l-1}$. Consequently

$$d(x,z) \leq 2^{-l+1} \leq 2 \cdot 2^{-k} \leq 2 \max(d(x,y),d(y,z))$$
.

It is clear that the sets $d^{-1}(0,t)$, t>0 give the same uniform structure as the U_i . Nothing will be changed if d is replaced by d^p . But by Theorem 2.1 d^p is equivalent to a metric.

4. Application to capacities.

The following application may be of some interest.

Definition 4.1. A set function f defined on a set U and such that

$$f(A \cup B) \leq k(f(A) + f(B))$$

is called an (outer) quasi-capacity if k > 1 and an (outer) capacity if $k \le 1$.

Theorem 4.1. Let f be an (outer) quasi-capacity on U. For $0 there is an (outer) capacity <math>\tilde{f}_p$ on U such that

$$\tilde{f}_p(A) \leq f^p(A) \leq 2\tilde{f}_p(A)$$
.

PROOF. We define a multiplication \circ on U by $A \circ B = A \cup B$. Then the assertion follows from Theorem 1.1 and Remark 1.1.

REFERENCES

- 1. T. Aoki, Locally bounded topological spaces, Proc. Japan Acad. 18 (1942), 588-594.
- N. Aronszajn, Quelques remarques sur les relation entre les notions d'écart régulier et de distance, Bull. Amer. Math. Soc. 44 (1938), 653-657.
- N. Bourbaki, Topologie générale, Chapitre 9, Utilisation des nombres réels en topologie générale (Act. Sci. Ind. 1045), Hermann, Paris, 1958.
- R. H. Bruck, A survey of binary systems (Ergebnisse der Mathematik N. F. 20), Springer-Verlag, Berlin, Göttingen, Heidelberg, 1958.
- 5. E. W. Chittenden, On the metrization problem and related problems in the theory of abstract sets, Bull. Amer. Math. Soc. 33 (1927), 13-34.
- A. H. Frinck, Distance functions and the metrization problem, Bull. Amer. Soc. 43 (1937), 133-142.
- 7. J. L. Kelley, General Topology, van Nostrand, Toronto, New York, London, 1955.
- G. Köthe, Topological Vector Spaces I, (Grundlehren math. Wissensch. 159), Springer-Verlag, Berlin, Heidelberg, New York, 1969.
- J. Peetre and G. Sparr, Interpolation of normed Abelian groups, Ann. Mat. Pura Appl. 92 (1972), 217-262.
- S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 5 (1957), 471-473.
- 11. Y. Sagher, Interpolation of r-Banach spaces, Studia Math. 41 (1972), 45-70.
- A. Weil, Sur les espaces a structure uniforme et sur la topologie générale (Act. Sci. Ind. 551), Paris, 1937.

LUND UNIVERSITY, SWEDEN