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ON THE INTEGRABILITY OF THE DERIVATIVE OF
A QUASIREGULAR MAPPING

0. MARTIO

1. Introduction.

In [3] F. Gehring showed that the derivative of a quasiconformal
mapping f: G - R", n 2 2, is integrable to a power « =«(K(f),n)>n over
each compact subset of G. Here we prove using the terminology of [4]

.- 1.1. THEOREM. Let f: @ — R*, n22, be quasiregular. Then over each
compact subset C of G the derivative of f is Lf-integrable with

B = B(K(f),n, N(f,C)) > n.
Here N(f,C’):supxeCi(x,f).

The above theorem follows for n=2 directly from Gehring’s result, or
originally from [1], since if f: G — R? is quasiregular then f=goh where
h is quasiconformal and g analytic.

The proof of Theorem 1.1 is based on Gehring’s method, especially
Lemma 3 of [3], and a new linear dilatation for quasiregular mappings.

N. Meyers has reported to the author that he has proved a correspond-
ing result. However, his method is different and based on the theory of
elliptic partial differential equations.

2. Capacity estimates for quasiregular mappings.

Suppose that f: G@ — R® is a non-constant quasiregular mapping. We
shall use the following capacity inequalities, see [4],

(2.1) capfE < K,(f)capE
where E is any condenser in G and
(2.2) capE < K,(f)N(f,4) capfE

if E=(4,C) is a normal condenser in G.
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Let E,(t) denote the Teichmiiller condenser

(RPN I(—o0,~¢],1[0,1]) ,
t>0, in R7,
Ifa,b] = {xeR™: x=te;, a<t<b}.
It is well-known, see e.g. [2], that x,(t) =cap E ,(t) is continuous, strictly
decreasing, and
limt—+0+xn(t) = +o00, limt—»oo”n(t) =0.
The following lemma contains the important symmetrization method in

R” for obtaining significant lower bounds for the capacities of condensers,
see [2], [5].

2.3. LEMMA. Suppose that E=(A,C) is a condenser tn R™ such that (1)
[4 is connected and meets S*Y(x,r) for some x and r> 0 and (2) C is con-
nected, z € C, and C meets S"~Y(z,r'), ' >0. Then

capl 2 x,(r[r') > 0.

3. A new dilatation for quasiregular mappings. ) o
Suppose that f: @ — R™ is non-constant and quasn‘egul&r Let r.e@.

For r € (0,d(x,0G)) set
L(x’f’r) = BUP|g—y|=r 1f(?/) ”f(x)

I, f,r) = sup{s>0: U(a,f,s)<B™(z,r)},
and for »>0

L*(a:,f,r) = supyeaU(x,f,r)ly—xl .
We recall that U(x,f,r) denotes the z-component of f-1B"(f(x),r), see
[4, p. 9]. Define H(=.f,r) = L(@.f,")[x.f,r) .
3.1. REMARK. In the theory of qua,siconformal and quasiregular map-
pings the linear stretching

H(x!f) = limsup,_,OH(a:,f,r)

L(z.f,r)
f|u~z[=r|f y) ‘f .’t)l

is much used. It can be easily shown that

H(z,f) = limsup,_, ,H(x,f,7) .

= lim SUp, 0 3
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However, we are interested in the global properties of H(x,f,r) which
are better than those of H(a,f,r).

The following lemma is a élightly modified version of [4, Lemma 4.8].

3.2. LEmMmA. Suppose that U(x,f,r), 0<r<r,, 18 a normal domain of f.
Then the mapping r - L*(x,f,r) is stricily increasing and continuous from
the left for 0<r<r,.

3.3. Lemma. If BMx,r) <@, then U(x,f,l(z,f,r)) < B"(,r).

Proor. Let /= Z(x,f, ryand/>e>0. Clearly U(x,f,l-— ¢) < B™(x,r), hence
by [4, Lemma 2.5], U(x,f,Z—— €) is a normal domain of f and by Lemma 3.2,

L*x,f,l) = lim, ,,L*(x,f,l—¢) < r.

3.4. In the following discussion we fix z, € @ and pick r,> 0 so that for
re(0,4r)]

(8) U(#,.f,r) is a normal neighborhood of ,,
(b) [U(z,,f,7) is connected.

This is possible by [4, pp. 9-11]. Let Uy=U(x,f,r,) and dy=
d(0U (xo.f,2ry), Ug) > 0.

3.5. Lemma. H(z,f,r)<C for all x€ U, and r € (0,d,]. Here C depends
only on K(f), n, and i(x,,f).

Proor. Fix ze U, and re(0,d,]. Let L=L(x,f,r) and [=I(a,f,r).
Denote U=U(x,f,L). Then U< U(z,,f,4r,). Suppose that L>/ and let
0<e< L—I. Now U(z,f,l+¢) meets S*-1(z,r). The condenser

E = (U’ ﬁ(x’f’l+e))=(U:0)

is a normal condenser. On the other hand [U is connected, for if there
exists a bounded component F of (U, then by (b), F < U(z,,f,4r,). Now
JoF <foU =9fU = 8"-Y(f(x),L), hence there exists ze F such that
f(z) € 8*(f(x),L). Pick a line T' passing through f(x,) and f(z) and let
T’ be the f(z)-component of T n (B*(f(z,),4r,) \ B*(f(x),L)).

Now f-11" <(U, thus the z-component of f-1", say T, is contained
in F. Because U(z,,f,4r,) is a normal domain, 7', meets 9U(z,,f,4r,)
which is impossible since F < U(z,,f,4r,). Since C is connected and both
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(U and C meet S*-(z,r), Lemma 2.3 yields cap E = 6,, > 0. The inequality
(2.2) implies
6, < capZ < Ky(f)N(f,U) capfE
< K(f)i(@o.f ) In (L[4 &)-n .

Thus
Lfl+¢) S C = C(n, K(f),i(zo.f)) -

Letting ¢ - 0 we deduce the result.

4. Proof of Theorem 1.1.

We may assume that f is non-constant. By [3, Lemma 3] it suffices
to show that each z, € G has a neighborhood U such that

(4.1) ma(@)7 Solf'I*dm, = b(m, (@) (olf’|dm,)

for each cube @Q<U parallel to the coordinate axis with
b=>b(n,K(f),t(xy.f)). Fix z,€ @ and let 7,>0, U,, and d, be as in 3.4.
Set U= UynB™z,,d,).

Let @< U. We may assume that

Q ={xehRm: |x]<s1ZiZn}
and f(0)=0. Now s)/n <d,. At first we shall show that
(4.2) l(0,f,syn) < C'l(0,f,s)

where C’'=C"(n,K(f),(2o.f))

Let L=L(0,f,syn) and U’'=U(0,f,L). The condenser E=(U",B0,s))
is a normal condenser in U(z,,f,4r,). Clearly [U’ meets S*-1(syn). As in
the proof of Lemma 3.5 it can be shown that [U’ is connected. Lemma, 2.3
and (2.2) applied to the condenser E give

(V) = %,(sY/nfs) < capB = Ko(f)N(f,U’) capfE

L O, ; 1-n
K(f)i(xg,f)wn—1 (ln“%(f)%b—)) '

This implies L(0,f,s)/n) £ C"'L(0,f,s) which, by Lemma 3.5, yields
L(0,f,syn) < C"CI0,f,8) = C'I(0,f,s) .

IIA

Since (0,f,sy/n) < L(0,f,syn), (4.2) follows.
Let r € (0,8/yn) and

zeR?: |z,|<r, 1150
7
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Then E =(Q,Q’) is a condenser in G and

8 1-n
(4.3) capl = wn_l(ln%) .

Define ' =sup,.,o|f(@)], L=L(0,f,syn), and [=](0,f,s)
cap(f@.fQ") = cap(fB(syn).fQ’)
cap(B™(L),fQ") 2 xn(L[r')

where Lemma 2.3 is used in the last step. Combining (4.3), (4.4), and
(2.1) we get

(4.4) capfE

v

1-n
(48)  w(Ljr) S oapfE S Kiif) capE S K(foyo(In —"ﬁ) :
Let a=w(n,K(f),i(x,.f))=max(C,C’) where C is given by Lemma 3.5
and C’ by (4.2). Choose r so that the right hand side of (4.5) is=x,(2x2).
Then s=yr where y =y(n, K(f),i(x,.f)). Since »,, is decreasing, (4.5) gives
Ljaxz 2r'« and so
1(0,f,syn) = 2r'a = 2r'C" .
Now (4.2) yields
(4.8) , Iz 2.

Let P:R™ > R” be the projection P(x)=x—2x,¢,. For y e PQ’ let J,
be the closed upper segment of (@ \ Q')NnP-Yy). By Fubini’s theorem
Solf'ldmn 2 SPQ’dmn—l(y) SJ,,lf'idml ,

hence there exists ¥ € PQ’ such that

(7)) (5| ldmy £ my_(PQ) Solf'|dm, = (2r)=0 ol f'|dm,,

and f is absolutely continuous on J,,. Let [(fJ,) denote the length of the
path f|J,. Observe that f|J, need not be injective. We claim that

(4.8) I-r 2 UST,)

If not, then I(fJ,) )<i—1" and so fJ,< B (). By [4, Lemma 2.6] the com-
ponents of f-1J,nT(0,f,]) are in U(0,f,]) and each of them is mapped
onto fJ,. Now J, is a part of such a component since U(0,f,!) 5)>Q by
(4.6). On the other hand, by Lemma 3.3, U(0,f,/)< B*(s). This implies
J, <B"(s), a contradiction.

The inequalities (4.6) and (4.8) give

I=2-I<20-r)s2(,) s 2 §,f1dn, £ 22r)-®D (olf'|dm,, ,
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where (4.7) is used in the last step. Lemma 3.5, (4.2), and the relation
s=yr now Yyield

m,(fQ) £ Q,L" < 2 CZ(O,f,sVn)” < 0,000,f,s)"
< Quoamttln < QoY 2(2r)~- g | f'|dm,,)

q
= S—— d .
K i) @ (@ @) Jolf1dm )

Here g =g(n, K(f),i(«,,f)). The integration formula [4, 2.15] and the fact
Ny, f,Q) Si(xy,f) for y e fQ with the above inequality imply

Solf [*dm p— Q) SQJ dm,(x) < ,.(Q) SmN<y f,Q)dm,(y)
K (f)i(zo.f) 1 , »
= @ m,(fQ) = q(m,.(Q) Solf |dmn) .

This is (4.1). The theorem follows.
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