ON THE INTEGRABILITY OF THE DERIVATIVE OF A QUASIREGULAR MAPPING

O. MARTIO

1. Introduction.

In [3] F. Gehring showed that the derivative of a quasiconformal mapping $f: G \to \mathbb{R}^n$, $n \ge 2$, is integrable to a power $\alpha = \alpha(K(f), n) > n$ over each compact subset of G. Here we prove using the terminology of [4]

1.1. THEOREM. Let $f: G \to \mathbb{R}^n$, $n \ge 2$, be quasiregular. Then over each compact subset C of G the derivative of f is L^{β} -integrable with

$$\beta = \beta(K(f), n, \tilde{N}(f, C)) > n.$$

Here $\tilde{N}(f,C) = \sup_{x \in C} i(x,f)$.

The above theorem follows for n=2 directly from Gehring's result, or originally from [1], since if $f: G \to \mathbb{R}^2$ is quasiregular then $f=g \circ h$ where h is quasiconformal and g analytic.

The proof of Theorem 1.1 is based on Gehring's method, especially Lemma 3 of [3], and a new linear dilatation for quasiregular mappings.

N. Meyers has reported to the author that he has proved a corresponding result. However, his method is different and based on the theory of elliptic partial differential equations.

2. Capacity estimates for quasiregular mappings.

Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping. We shall use the following capacity inequalities, see [4],

$$(2.1) cap E \leq K_I(f) cap E$$

where E is any condenser in G and

(2.2)
$$\operatorname{cap} E \leq K_0(f)N(f,A)\operatorname{cap} fE$$

if E = (A, C) is a normal condenser in G.

Received June 20, 1974.

Let $E_n(t)$ denote the Teichmüller condenser

$$(\mathbb{R}^n \setminus I(-\infty, -t], I[0, 1])$$
,

t>0, in \mathbb{R}^n ,

$$I[a,b] \, = \, \big\{ x \in {\mathbb R}^n : \; x = te_1, \; a \leqq t \leqq b \big\} \; .$$

It is well-known, see e.g. [2], that $\kappa_n(t) = \operatorname{cap} E_n(t)$ is continuous, strictly decreasing, and

$$\lim_{t\to 0+} \varkappa_n(t) = +\infty, \quad \lim_{t\to\infty} \varkappa_n(t) = 0.$$

The following lemma contains the important symmetrization method in \mathbb{R}^n for obtaining significant lower bounds for the capacities of condensers, see [2], [5].

2.3. Lemma. Suppose that E = (A, C) is a condenser in \mathbb{R}^n such that (1) n A is connected and meets $S^{n-1}(x,r)$ for some x and r > 0 and (2) C is connected, $x \in C$, and C meets $S^{n-1}(x,r')$, r' > 0. Then

$$cap E \ge \varkappa_n(r/r') > 0.$$

3. A new dilatation for quasiregular mappings.

Suppose that $f: G \to \mathbb{R}^n$ is non-constant and quasiregular. Let $x \in G$. For $r \in (0, d(x, \partial G))$ set

$$\begin{split} L(x,f,r) &= \sup_{|x-y|=r} |f(y) - f(x)| \ , \\ \tilde{l}(x,f,r) &= \sup \left\{ s > 0 : \ U(x,f,s) \subset B^n(x,r) \right\} \ , \end{split}$$

and for r > 0

$$L^*(x,f,r) = \sup_{y \in \partial U(x,f,r)} |y-x|.$$

We recall that U(x,f,r) denotes the x-component of $f^{-1}B^n(f(x),r)$, see [4, p. 9]. Define $\tilde{H}(x,f,r) = L(x,f,r)/\tilde{l}(x,f,r)$.

3.1. Remark. In the theory of quasiconformal and quasiregular mappings the linear stretching

$$\begin{split} H(x,f) &= \limsup_{r \to 0} H(x,f,r) \\ &= \limsup_{r \to 0} \frac{L(x,f,r)}{\inf_{|y-x| = r} |f(y) - f(x)|} \end{split}$$

is much used. It can be easily shown that

$$H(x,f) = \limsup_{r\to 0} \tilde{H}(x,f,r)$$
.

However, we are interested in the global properties of $\tilde{H}(x,f,r)$ which are better than those of H(x,f,r).

The following lemma is a slightly modified version of [4, Lemma 4.8].

- 3.2. Lemma. Suppose that U(x,f,r), $0 < r < r_0$, is a normal domain of f. Then the mapping $r \mapsto L^*(x,f,r)$ is strictly increasing and continuous from the left for $0 < r \le r_0$.
 - 3.3. Lemma. If $\bar{B}^n(x,r) \subset G$, then $U(x,f,\tilde{l}(x,f,r)) \subset B^n(x,r)$.

PROOF. Let $\tilde{l} = \tilde{l}(x, f, r)$ and $\tilde{l} > \varepsilon > 0$. Clearly $U(x, f, \tilde{l} - \varepsilon) \subset B^n(x, r)$, hence by [4, Lemma 2.5], $U(x, f, \tilde{l} - \varepsilon)$ is a normal domain of f and by Lemma 3.2,

$$L^*(x,f,\tilde{l}) = \lim_{\varepsilon \to 0} L^*(x,f,\tilde{l}-\varepsilon) \leq r$$
.

- 3.4. In the following discussion we fix $x_0 \in G$ and pick $r_0 > 0$ so that for $r \in (0, 4r_0]$
 - (a) $U(x_0,f,r)$ is a normal neighborhood of x_0 ,
 - (b) $\int U(x_0, f, r)$ is connected.

This is possible by [4, pp. 9–11]. Let $U_0 = U(x_0, f, r_0)$ and $d_0 = d(\partial U(x_0, f, 2r_0), U_0) > 0$.

3.5. LEMMA. $\tilde{H}(x,f,r) \leq C$ for all $x \in U_0$ and $r \in (0,d_0]$. Here C depends only on K(f), n, and $i(x_0,f)$.

PROOF. Fix $x \in U_0$ and $r \in (0, d_0]$. Let L = L(x, f, r) and $\tilde{l} = \tilde{l}(x, f, r)$. Denote U = U(x, f, L). Then $U \subseteq U(x_0, f, 4r_0)$. Suppose that $L > \tilde{l}$ and let $0 < \varepsilon < L - \tilde{l}$. Now $U(x, f, \tilde{l} + \varepsilon)$ meets $S^{n-1}(x, r)$. The condenser

$$E = (U, \overline{U}(x,f,\overline{l}+\varepsilon)) = (U,C)$$

is a normal condenser. On the other hand $\int U$ is connected, for if there exists a bounded component F of $\int U$, then by (b), $F \subset U(x_0, f, 4r_0)$. Now $f \partial F \subset f \partial U = \partial f U = S^{n-1}(f(x), L)$, hence there exists $z \in F$ such that $f(z) \in S^{n-1}(f(x), L)$. Pick a line T passing through $f(x_0)$ and f(z) and let T' be the f(z)-component of $T \cap \left(\overline{B}^n(f(x_0), 4r_0) \setminus B^n(f(x), L) \right)$.

Now $f^{-1}T' \subset [U]$, thus the z-component of $f^{-1}T'$, say T_1 , is contained in F. Because $U(x_0, f, 4r_0)$ is a normal domain, T_1 meets $\partial U(x_0, f, 4r_0)$ which is impossible since $F \subset U(x_0, f, 4r_0)$. Since C is connected and both

 $\int U$ and C meet $S^{n-1}(x,r)$, Lemma 2.3 yields cap $E \ge \theta_n > 0$. The inequality (2.2) implies

$$\begin{split} \theta_n \, & \leq \, \operatorname{cap} E \, \leq \, K_0(f) N(f,U) \, \operatorname{cap} f E \\ & \leq \, K(f) i(x_0,f) \omega_{n-1} \ln \big(L/(\tilde{l}+\varepsilon) \big)^{1-n} \; . \end{split}$$

Thus

$$L/(\tilde{l}+\varepsilon) \leq C = C(n,K(f),i(x_0,f))$$
.

Letting $\varepsilon \to 0$ we deduce the result.

4. Proof of Theorem 1.1.

We may assume that f is non-constant. By [3, Lemma 3] it suffices to show that each $x_0 \in G$ has a neighborhood U such that

$$(4.1) m_n(Q)^{-1} \int_Q |f'|^n dm_n \le b(m_n(Q)^{-1} \int_Q |f'| dm_n)^n$$

for each cube $Q \subseteq U$ parallel to the coordinate axis with $b = b(n, K(f), i(x_0, f))$. Fix $x_0 \in G$ and let $r_0 > 0$, U_0 , and d_0 be as in 3.4. Set $U = U_0 \cap B^n(x_0, d_0)$.

Let $Q \subset U$. We may assume that

$$Q = \{x \in \mathbb{R}^n : |x_i| < s, 1 \le i \le n\}$$

and f(0) = 0. Now $s / n \le d_0$. At first we shall show that

$$\tilde{l}(0,f,s/n) \leq C'\tilde{l}(0,f,s)$$

where $C' = C'(n, K(f), i(x_0, f))$.

Let L = L(0, f, s / n) and U' = U(0, f, L). The condenser $E = (U', \bar{B}^n(0, s))$ is a normal condenser in $U(x_0, f, 4r_0)$. Clearly U' meets $S^{n-1}(s / n)$. As in the proof of Lemma 3.5 it can be shown that U' is connected. Lemma 2.3 and (2.2) applied to the condenser E give

$$\begin{split} \varkappa_n(\sqrt{n}) &= \varkappa_n(s\sqrt{n}/s) \leq \operatorname{cap} E \leq K_0(f)N(f,U')\operatorname{cap} f E \\ &\leq K(f)i(x_0,f)\omega_{n-1}\left(\ln\frac{L(0,f,s\sqrt{n})}{L(0,f,s)}\right)^{1-n}. \end{split}$$

This implies $L(0,f,s/n) \leq C''L(0,f,s)$ which, by Lemma 3.5, yields

$$L(0,f,s/n) \leq C''C\tilde{l}(0,f,s) = C'\tilde{l}(0,f,s).$$

Since $\tilde{l}(0,f,s/n) \leq L(0,f,s/n)$, (4.2) follows.

Let $r \in (0, s/\sqrt{n})$ and

$$Q' \ = \ \{x \in {\mathbb R}^n : \ |x_i| \le r, \ 1 \le i \le n \} \ .$$

Then E = (Q, Q') is a condenser in G and

$$\operatorname{cap} E \leq \omega_{n-1} \left(\ln \frac{s}{r | / n} \right)^{1-n}.$$

Define $r' = \sup_{x \in \partial Q'} |f(x)|$, L = L(0, f, s | n), and $\tilde{l} = \tilde{l}(0, f, s)$.

(4.4)
$$\operatorname{cap} fE = \operatorname{cap} (fQ, fQ') \ge \operatorname{cap} (fB^n(s/n), fQ')$$
$$\ge \operatorname{cap} (B^n(L), fQ') \ge \kappa_n(L/r')$$

where Lemma 2.3 is used in the last step. Combining (4.3), (4.4), and (2.1) we get

$$(4.5) \varkappa_n(L/r') \leq \operatorname{cap} f E \leq K_I(f) \operatorname{cap} E \leq K(f) \omega_{n-1} \left(\ln \frac{s}{r/n} \right)^{1-n}.$$

Let $\alpha = \alpha(n, K(f), i(x_0, f)) = \max(C, C')$ where C is given by Lemma 3.5 and C' by (4.2). Choose r so that the right hand side of (4.5) is $= \kappa_n(2\alpha^2)$. Then $s = \gamma r$ where $\gamma = \gamma(n, K(f), i(x_0, f))$. Since κ_n is decreasing, (4.5) gives $L/\alpha \ge 2r'\alpha$ and so

$$\tilde{l}(0,f,s/n) \geq 2r'\alpha \geq 2r'C'$$
.

Now (4.2) yields

$$\tilde{l} \geq 2r'.$$

Let $P: \mathbb{R}^n \to \mathbb{R}^n$ be the projection $P(x) = x - x_n e_n$. For $y \in PQ'$ let J_y be the closed upper segment of $(Q \setminus Q') \cap P^{-1}(y)$. By Fubini's theorem

$$\int_{Q} |f'| \, dm_n \, \geqq \, \int_{PQ'} dm_{n-1}(y) \, \int_{J_y} |f'| \, dm_1 \, ,$$

hence there exists $y \in PQ'$ such that

$$(4.7) \qquad \int_{J_n} |f'| \, dm_1 \leq m_{n-1} (PQ')^{-1} \int_{Q} |f'| \, dm_n = (2r)^{-(n-1)} \int_{Q} |f'| \, dm_n$$

and f is absolutely continuous on J_y . Let $l(fJ_y)$ denote the length of the path $f|J_y$. Observe that $f|J_y$ need not be injective. We claim that

$$(4.8) \tilde{l} - r' \leq l(fJ_u).$$

If not, then $l(fJ_{\boldsymbol{y}}) < \tilde{l} - r'$ and so $fJ_{\boldsymbol{y}} \subset B^n(\tilde{l})$. By [4, Lemma 2.6] the components of $f^{-1}fJ_{\boldsymbol{y}} \cap \overline{U}(0,f,\tilde{l})$ are in $U(0,f,\tilde{l})$ and each of them is mapped onto $fJ_{\boldsymbol{y}}$. Now $J_{\boldsymbol{y}}$ is a part of such a component since $U(0,f,\tilde{l}) \supset Q'$ by (4.6). On the other hand, by Lemma 3.3, $U(0,f,\tilde{l}) \subset B^n(s)$. This implies $J_{\boldsymbol{y}} \subset B^n(s)$, a contradiction.

The inequalities (4.6) and (4.8) give

$$\tilde{l} \ = \ 2\tilde{l} - \tilde{l} \ \le \ 2(\tilde{l} - r') \ \le \ 2l(fJ_y) \ \le \ 2 \ \ \int_{J_y} |f'| \, dm_1 \ \le \ 2(2r)^{-(n-1)} \ \int_Q |f'| \, dm_n \ ,$$

where (4.7) is used in the last step. Lemma 3.5, (4.2), and the relation $s = \gamma r$ now yield

$$\begin{split} m_n(fQ) & \leq \, \Omega_n \, L^n \, \leq \, \Omega_n \, C \overline{l}(0,f,s/n)^n \, \leq \, \Omega_n \, C C'^n \overline{l}(0,f,s)^n \\ & \leq \, \Omega_n \, \alpha^{n+1} \overline{l}^n \, \leq \, \Omega_n \, \alpha^{n+1} \big(2(2r)^{-(n-1)} \mathbf{\hat{\zeta}}_Q |f'| \, dm_n \big)^n \\ & = \frac{q}{K(f) i(x_0,f)} m_n(Q) \, \bigg(\frac{1}{m_n(Q)} \, \, \mathbf{\hat{\zeta}}_Q |f'| \, dm_n \bigg)^n \, . \end{split}$$

Here $q = q(n, K(f), i(x_0, f))$. The integration formula [4, 2.15] and the fact $N(y, f, Q) \le i(x_0, f)$ for $y \in fQ$ with the above inequality imply

$$\begin{split} \frac{1}{m_n(Q)} \int_Q |f'|^n dm_n & \leq \frac{K(f)}{m_n(Q)} \int_Q J(x \ f) dm_n(x) \leq \frac{K(f)}{m_n(Q)} \int_{fQ} N(y,f,Q) dm_n(y) \\ & \leq \frac{K(f) i(x_0,f)}{m_n(Q)} \ m_n(fQ) \leq q \bigg(\frac{1}{m_n(Q)} \int_Q |f'| dm_n \bigg)^n \,. \end{split}$$

This is (4.1). The theorem follows.

REFERENCES

- B. V. Bojarski, Generalized solutions of a system of differential equations of first order and elliptic type with discontinuous coefficients, (in Russian), Mat. Sb. N.S. 43 (85) (1957), 451-503.
- F. Gehring, Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961), 499-519.
- F. Gehring, The L^p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277.
- O. Martio, S. Rickman and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. AI 448 (1969), 1-40.
- J. Sarvas, Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Ser. AI 522 (1972), 1-44.

UNIVERSITY OF HELSINKI HELSINKI, FINLAND