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PERFECT CODES IN
ANTIPODAL DISTANCE-TRANSITIVE GRAPHS

OLOF HEDEN

Let C be a perfect code in an antipodal distance-transitive graph. In
this paper it is shown that if » € C then any vertex at maximum distance
from u also belongs to C. This is a generalisation of a theorem for binary
codes of Roos [1].

1.
A graph is a pair (V(Q),E(G)) where V(Q) is a finite and nonempty
set of elements called vertices and E(G) is a set of unordered pairs of
distinct elements of V(@) called edges.

(v9,%y5- - -, ¥,,) is & path from v, to v, if v;,7=0,1,...,n are vertices and
{v;,v;,1} are distinct edges. A graph is called connected if given any pair
of vertices v,w, there is a path from » to w. In this paper we only consider
connected graphs.

The number of edges in a path is the length of the path. Let d(u,v),
the distance between the vertices  and v, denote the length of the short-
est path from » to v. The function d(u,v) defines a metric on the set of
vertices.

An automorphism ¢ of a graph is a permutation of V(@) such that for
any given pair of vertices » and v it is true that d(e(w),p(v))=d(u,v).

A graph is called distance-transitive if for any given two pairs ot ver-
tices u,v and w,z satisfying d(u,v)=d(w,z) there is an automorphism ¢
for which ¢(u)=w and @(v)=2. All graphs in this paper are distance-
transitive.

Let u € V(@) and
Tyu) = {ve V(@) | du,v)=1}.

Let d be the maximum possible distance between any two vertices. d is
called the diameter of G. A graph is called antipodal if for all vertices
v,w € I'y(u)UT'z(u) either v=w or d(v,w)=d.
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ExampLE. Let Z, be the integers modulo n. Let Z,” be the set of
r-tuples of elements of Z,. Define the distance between r-tuples
§=(8y,...,8,) and i=(t,...,t,) to be

d@3,0) = |{i | s;*t}l .

Z," is a distance-transitive graph where the r-tuples are vertices and
d(3,t) is the distance-function on the vertices. Z," is an antipodal distance-
transitive graph.

A subset C of V(Q) is called a perfect e-error correcting code if for every
vertex v it is true that

{ue V(@) | dv,u)<e}nC| = 1.
Let u be a vertex. Define
Yi = lrz(u)ﬂol i=1,2,... .
Call the d + 1-tuple (y4,%1,- - .,v4) the weight-enumerator of C. The weight
enumerator is not independent of the choice of u. But we shall see in
section 2 that it only depends on d(u,(), the minimum possible distance

between # and any vertex of C. d(u,C) is called the minimum weight of C.
Let w and v be two vertices such that d(u,v)=j. The numbers

k, = |Iy(w)] 1=0,1,...,d

a; = |[I'y(v) n Ly(w)|

b; = |I'y(v) n I';,(u)]  (defined for j<d—1)
¢; = |I'y(v) n I';_;(u)] (defined for j = 1)

are independent of the choices of # and v. They satisfy the following
relations

(].) aj+b]+67 =k1, j=0,1,...,d,
k’lb’i = k'i+lci+1’ 7:=0,1,...,d—1,
(2) ky=by>b = ... 2b3,21, 1=¢;=Sc,=...5¢4.

For a proof of this see [4]. Let

0¢c O 0
by a, Cs
0 b, as
F(G) = bzo..
..cd'_l O
Q2q-1 Cg
0 bg-y ag
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I'(@) is called the intersection matriz of G. If [1,v,(4),. . .,v4(A)]t is an right
eigenvector of I'(G) belonging to the eigenvalue A, then it must satisfy
the relations
(3) v(4) =4,
Ci+1Vi41(A) + (@ — A0i(A) +b,19;4(2) = 0 (vp(4)=1)
1=1,2,...,d—-1.

(4) ba-194-1(A) + (ag—A)v4(4) = 0.

The functions »,(4), i=1,...,d, are polynomials in 4 of degree 3.
Biggs has shown [2] and [3] that the d+1 eigenvalues of I'(G) are
distinct and that they are zeros of the polynomial

A=lk)(1+v,A)+ ... +v4(d)) .

2.

In [3] Biggs shows that if a perfect e-error correcting code exists in
the distance-transitive graph G then the polynomial 1+wv,(A)+ ... +v,(2)
divides the polynomial 1+ v,(4)+ ... +v4(4). It is natural to ask which
polynomial f(A) satisfy

(T4vy(4) + ... +9A)f(A) = 1+v3(A)+ . .. +v4(d) .

We shall prove a lemma saying that if (y4,%1,...,74) is the weight-
enumerator of the code then 1+wv,(1)+ ... +v4(4) divides

(LoD + ... +0,A)) Yo+ v101M ey + - - . + 04D [kg)

Consequently at least d —e eigenvalues of the intersection matrix must be
zeros of the polynomial y,+y,v,(4)/ky+ . . . +y4v4(4)/kz. The solution of
a system of n such linear equations will only depend on g, 94, . -, ¥4-n
as we shall see in lemma 2. Knowing this it will be easy to prove the
theorem of Biggs and to prove that the weight-enumerator of the code
only depends on the minimum weight for the code.

Lemma 1. If C is a perfect code that corrects e errors and (yo,¥y,. - -»¥4)
18 the weight enumerator of C then the polynomial 1+wvy(A)+ ... +vg(d)
divides the polynomial

(140, + . .. +2,A)(vo+ v102(Aor+ - . +yavald)[kg) -

Proor. Let u be an eigenvalue of the intersection matrix, and u a
vertex of G. To every vertex v of G associate the following number

Vi, v)(:u)/ kd(u. v = f (@) .
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Using induction over ¢ and the relations (1), (3) and (4) it is straight-
forward to prove that

v't(:u)f(:u"v) = Zw,d(v,w)-if(/"’w) for ":"'—’0’ 1,... »d .

Consequently if C is a perfect e-error correcting code

(ZUEC'f(:u’v))(l +vl(/")+ o +ve(.“)) = zveV(G)f(.u/U) s
that is,

(vo+yrosm)fks+ . . . +ya0a()[kg)(1+oy(p) + . . . +2,(u))
= 14o(p)+...+v4p).

Since the zeros of 1+v,(1)+ ... +v4(4) are eigenvalues of the intersec-
tion-matrix, it is necessary that the zeros of 1+wv,(A)+ ... +v4(4) are
zeros of

(Yot y1osA) ey + . . . +yeva(A)[kg)(1+0v1(A) + . . . +7,(4)) -

Consequently the lemma 1 is true.

Lemma 2. If Ay,. . .,A; are distinct eigenvalues of the intersection matrix
of @ then
Vg—j+1(A1) va(Ay)
kaju = ka
det | N
Vg-j+1(4y) vg(4;)
ko ka

Proor. Suppose u is an eigenvalue of I'(G) and v4(u)=0. Then we get
by recursion using (3) and (4) that vy(u)=0. This is impossible since
vo(u)=1. We conclude that v;(u)+0. So by dividing by the nonzero
number v;(u) we get an eigenvector

(Y/vg(u)s. . . s V-1 (@) [va(p), va(p)[va(u))
= (Volp),. . . ¥ g(p), 1)

of I'(@) belonging to the eigenvalue u. Now v’;(u), ©=0,1,...,d—1 must
satisfy the relations
ba-1V'a2(p) = p—aq,

Con?'ia(p) + (@ —p) (@) +bs 1" 4(p) = 0 i=12,...,d-1.

Using recursion we see that v’;(u) is a polynomial in x of degree d —i.
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So by elementary determinant calculus

Vg—54+1(A1) va(4y)
kd"f'f‘l kd ) j )‘ ' vld—f+l()'1) PR 1
det : = —-———————H.'”lvd( ) det
' | TEikain , )
Va-gnaldy)  va(dy) V'agealdg) oo 1
kg_ji1 kg
A |
= rdet| : :| for some r=#0.
lij_l DY lj l
Since the A;’s, ¢=1,2,...,j are distinct the last determinant is nonzero

and the lemma is proved.

THEOREM 1 (Biggs). If there exists a perfect e-error correcting code C in
the distance-transitive graph G then the polynomial 1+v,(A)+ ... +v,(4)
divides the polynomial 1+v,(A)+ ... +v4(4).

Proor. For every perfect code C with minimum weight less than e
there exists an automorphism ¢ of @ suchthat p(C)=C" is a perfect code
with minimum weight equal to e. Suppose that the  polynomial
14+ v,(4)+ ... +v,(4) has less than e zeros among the eigenvalues of I'(G).
If yo=...=9,,=0 there exists a perfect code with such a weight-
enumerator, as we saw above. Then by lemma 2 the solutions of the linear
system of equations

Yo+ vk + . . . +yava(dg)kg = 0, A, eigenvalue of I'(G) and
1=1,2,...,d—e+1
should be y;=0, j=e,e+1,...,d. This is impossible.

THEOREM 2. The weight-enumerator of a perfect code in a distance-
transitive graph only depends on the minimum-weight of the code.

Proor. Let (y4,7y,-..,74) be the weight enumerator of the perfect
e-error correcting code C. From lemma 1 we know that there exist d —e
eigenvalues 4,, s=1,2,...,d —e of I'(G) such that

Yo+ Y10iAo)ky+ . . +yava(A)lks = 0. _
Suppose that the minimum weight of C is equal to ¢, that is, yp=... =
Yicar=VYis1=-..=7.=0, y;=1. We then get that
(*) )’¢+1‘v,+1(1,)/kc+1+ oo +‘ydvd()h,)/kd = vi(l“)/ki 8= 1,2, “ee ,d—‘
Math, Soand. 86 — 3
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Since .
Ves1(4y) v4(4;)
ke kg
det %+ 0
ve+l(1d—e) vd(ld—-e)
ben T g

we get that the solutions of the system of linear equations (*) are unique.

3.

The following relations are easy but useful consequences of the defini-
tion of antipodal distance-transitive graph of diameter d.

(5) If d(u,v) <d then I'y(u)nIz(v)=0.

(6) If d(u,v)=d and d(v,w)=1t<d/2 then d(u,w)=d—1.
(7) Ifd(u,v)=d=2n+1 then I',(v)c T, (%)

(8) If d(u,v)=d=2n then I',_ (v)s T, ,(u).

(9) If d=2n+1 then I',,;(u)= U, r 0 n(v).

(10) If d=2n then I, (u)=U, 1y na(®).

We need two lemmas for the proof of theorem 3.

LemmMma 8. If G is an antipodal distance-transitive graph with diameter d
then 1SkySky<...Skj>ksy> ... >k, for some

> n+1l ¢f d=2n+1
S n if d=2n.

Proor. Suppose that k;>k;,,;. Then from relation (1) we get that
¢;+1>b;. So by using relation (2) we see that c,,,>b, if s>j and con-
sequently k,>k,,, if 8>3j. By (7) and (8) is k,<k,,, whend=2n+1 and
k,_y=k,,, when d=2n. It follows that j2n+1if d=2n+1 and j=n if
d=2n.

Lemuma 4. If G is an anttpodal distance-transitive graph with diameter d
then
b = bpfensy f d=2n+1
d bafcn if d=2n
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.. PrROOF, First assume that d=2n+ 1. Let z € I',(u), that is, d(u,2) =n.
By (9) we have

[Tpia(u) N I'y(2)] = Zverd(u){Fn(v) nI'y(z),

that is, b,=k;c,,,, since d(v,2)=n+1. When d=2n=d(u,v) choose z
such that d(u,z)=d(v,2), and use (10) similarly.

THEOREM 3. If C is a perfect code in an antipodal distance-transitive
graph with diameter d then for any vertex w it is that either I'y(u)UI'y(u)<C
or (Fp(w)ulz(u))nC=0.

Proor. Suppose that u € C and that there exists a vertex v € I';(u)\ C.
Since C is perfect and corrects e errors there must be a vertex »' for
which d(v,?")=1Ze.

Let w € I'y(u) and d(w,v’) =d. It is easy to see that such a vertex must
exist. Let ¢ be an automorphism that satisfy p(w)=u and @(u)=w.
If (9,71, - -»¥a) 18 the weight enumerator of ¢(C) then y;=1 and y;2= 1.

But we get from lemma 3 that |I',(u)| 2k, (in the nontrivial cases
e <d/2) and from lemma 4, since b,, < k,, that kg < ky. Let V=U, 10 T;(v).
Then we find, since C is an e-error correcting code, :

ICnV| s |Fg(u)| = kg < ky S |Ty(u)],

that is, |[Cn V| < |Iy(u)]. Observe that I'y(w)< V when w € I'y(u), i Se<d/2.
Hence

ICn Uwen(u) Lyw)| £ 1Cn V]| < |[Ty(w)] .
Since I'y(w,)nIy(w,) =, when w, +w, € I'j(u), we get

Zwen(u) |C n TFy(w)| < [Fyw)|,

and CnIy(w')=0 for some w' € I';(u).
Let ¢’ be an automorphism that satisfy ¢'(w')=u and ¢'(u)=w'. If
(¥o's71’s- - .»74’) i8 the weight enumerator of ¢'(C) then y,=1 and y;'=0.
The perfect codes ¢(C) and ¢'(C) have the same minimum weight, but
their weight enumerators are not equal. Using theorem 2 we see that
this is impossible. Consequently I'y(»)\ C =@ if u € C and the theorem is
preved.

In the antipodal distance-transitive graph 2.0, (see [5]) it is easy to
find a perfect code. 2.0, can not be represented as Z,” for any r. So
theorem 3 is in fact a generalisation of the theorem of Roos.
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In [4] Smith gives an example of an antipodal distance- transxtlve
graph G with intersection-matrix

01 0
301
201
201
g = 202
202
102

103

0 10
If vo(A),v4(4),. . .,v4(4) are defined as in section 1 and v,(1)=1 it is easy

to see that 1+ v,(A)+v,(4) divides 1+v,(A)+ ... +v4(4) where-d=8. This
observation was made by Lindstrém [6]. A

If there exists a perfect 2-error correcting code C in G then |C}=
But, using theorem 3 we see that if u € C then I'(u)uly(u)<sC. The
distance between any vertex of G and I'g(u)Ulg(u) is less or equal to 4
and there can impossibly be any more code vertices of G. Oonsequently
no perfect 2-error correcting code exists in G.

In [4] Smith defines the derived graph G’ of the antipodal distance-
transitive graph G. The vertices of G’ are the sets I'\(u)Uly(u), v € V(G),
and there is an edge between the vertices I'y(u)UI';(u) and I'y(u')UT;(u')
of @ iff there are vertices v € I'g(u)Ul'y(u) and v’ € I'y(w')ul;(u') such
that d(v,v’) = 1. Smith then shows that if & > 2 for the antipodal distance-
transitive graph @, then the derived graph @ is distance-transitive with
diameter [4d].

We show the following corollary of theorem 3.

CoROLLARY. If there exists a perfect e-error correcting code in the anti-
podal distance-transitive graph Q then there exists a perfect e-error correcting
code in the derived graph @Q'.

Proor. Let C be a perfect e-error correcting code of @. Let C' be the
vertices of the derived graph G' that satisfy

Nyu)u Ly(u)e O iff Tyu)ulyu) s C.
I1f .
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and d(c,’,cy’) <2e+1 then it is easy to see that there exist vertices
¢, € I'y(cy)UTg(cy), ¢y’ € I'y(cy) UT4(e,) such that d(c,”,c,”’) < 2e+ 1. Since
C is perfect this is impossible. Using theorem 3 we find that |C'|=
|Cl[ky+kz. Now since |V(G')|=|V(G)|[ky+k,; and

Hve V(@) | d(u,v)Se}| = |{ve V(F)]| du',v)Se}|
for u € V(G) and u’ € V(G'), C' must be a perfect code.

It is ‘well-known that there exists a perfect 3-error correcting code in
the antipodal distance-transitive graph Z,% = @. Consequently there must
exist a perfect 3-error correcting code in the derived graph G'. Perhaps
this is a code that Biggs [3, p. 296] question for.
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