PERFECT CODES IN ANTIPODAL DISTANCE-TRANSITIVE GRAPHS

OLOF HEDEN

Let C be a perfect code in an antipodal distance-transitive graph. In this paper it is shown that if $u \in C$ then any vertex at maximum distance from u also belongs to C. This is a generalisation of a theorem for binary codes of Roos [1].

1.

A graph is a pair (V(G), E(G)) where V(G) is a finite and nonempty set of elements called vertices and E(G) is a set of unordered pairs of distinct elements of V(G) called edges.

 (v_0, v_1, \ldots, v_n) is a path from v_0 to v_n if v_i , $i = 0, 1, \ldots, n$ are vertices and $\{v_i, v_{i+1}\}$ are distinct edges. A graph is called *connected* if given any pair of vertices v, w, there is a path from v to w. In this paper we only consider connected graphs.

The number of edges in a path is the length of the path. Let d(u,v), the distance between the vertices u and v, denote the length of the shortest path from u to v. The function d(u,v) defines a metric on the set of vertices.

An automorphism φ of a graph is a permutation of V(G) such that for any given pair of vertices u and v it is true that $d(\varphi(u), \varphi(v)) = d(u, v)$.

A graph is called distance-transitive if for any given two pairs of vertices u, v and w, z satisfying d(u, v) = d(w, z) there is an automorphism φ for which $\varphi(u) = w$ and $\varphi(v) = z$. All graphs in this paper are distance-transitive.

Let $u \in V(G)$ and

$$\Gamma_i(u) = \{v \in V(G) \mid d(u,v) = i\}.$$

Let d be the maximum possible distance between any two vertices. d is called the *diameter* of G. A graph is called *antipodal* if for all vertices $v, w \in \Gamma_0(u) \cup \Gamma_d(u)$ either v = w or d(v, w) = d.

Received June 20, 1974.

Example. Let Z_n be the integers modulo n. Let Z_n^r be the set of r-tuples of elements of Z_n . Define the distance between r-tuples $\bar{s} = (s_1, \ldots, s_r)$ and $\bar{t} = (t_1, \ldots, t_r)$ to be

$$d(\bar{s},\bar{t}) = |\{i \mid s_i \neq t_i\}|.$$

 Z_n^r is a distance-transitive graph where the r-tuples are vertices and $d(\bar{s},\bar{t})$ is the distance-function on the vertices. Z_2^r is an antipodal distance-transitive graph.

A subset C of V(G) is called a *perfect e-error correcting code* if for every vertex v it is true that

$$|\{u \in V(G) \mid d(v,u) \leq e\} \cap C| = 1$$
.

Let u be a vertex. Define

$$\gamma_i = |\Gamma_i(u) \cap C| \quad i = 1, 2, \dots$$

Call the d+1-tuple $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ the weight-enumerator of C. The weight enumerator is not independent of the choice of u. But we shall see in section 2 that it only depends on d(u,C), the minimum possible distance between u and any vertex of C. d(u,C) is called the *minimum weight* of C.

Let u and v be two vertices such that d(u,v)=j. The numbers

$$\begin{aligned} k_i &= |\varGamma_i(u)| & i = 0, 1, \dots, d \\ a_j &= |\varGamma_1(v) \cap \varGamma_j(u)| \\ b_j &= |\varGamma_1(v) \cap \varGamma_{j+1}(u)| & (\text{defined for } j \leq d-1) \\ c_i &= |\varGamma_1(v) \cap \varGamma_{i-1}(u)| & (\text{defined for } j \geq 1) \end{aligned}$$

are independent of the choices of u and v. They satisfy the following relations

(1)
$$a_j + b_j + c_j = k_1, \quad j = 0, 1, \dots, d,$$
$$k_i b_i = k_{i+1} c_{i+1}, \quad i = 0, 1, \dots, d-1,$$

(2)
$$k_1 = b_0 > b_1 \ge \ldots \ge b_{d-1} \ge 1, \quad 1 = c_1 \le c_2 \le \ldots \le c_d$$

For a proof of this see [4]. Let

$$\varGamma(G) = \begin{pmatrix} 0 & c_1 & 0 & & 0 \\ b_0 & a_1 & c_2 & & & \\ 0 & b_1 & a_2 & & & \\ & & b_2 & \dots & & \\ & & & \ddots c_{d-1} & 0 \\ & & & & a_{d-1} & c_d \\ 0 & & & b_{d-1} & a_d \end{pmatrix}$$

 $\Gamma(G)$ is called the *intersection matrix* of G. If $[1, v_1(\lambda), \ldots, v_d(\lambda)]^t$ is an right eigenvector of $\Gamma(G)$ belonging to the eigenvalue λ , then it must satisfy the relations

(4)
$$b_{d-1}v_{d-1}(\lambda) + (a_d - \lambda)v_d(\lambda) = 0.$$

The functions $v_i(\lambda)$, $i=1,\ldots,d$, are polynomials in λ of degree i.

Biggs has shown [2] and [3] that the d+1 eigenvalues of $\Gamma(G)$ are distinct and that they are zeros of the polynomial

$$(\lambda - k_1)(1 + v_1(\lambda) + \ldots + v_d(\lambda)).$$

2.

In [3] Biggs shows that if a perfect e-error correcting code exists in the distance-transitive graph G then the polynomial $1 + v_1(\lambda) + \ldots + v_e(\lambda)$ divides the polynomial $1 + v_1(\lambda) + \ldots + v_d(\lambda)$. It is natural to ask which polynomial $f(\lambda)$ satisfy

$$(1+v_1(\lambda)+\ldots+v_e(\lambda))f(\lambda) = 1+v_1(\lambda)+\ldots+v_d(\lambda).$$

We shall prove a lemma saying that if $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ is the weight-enumerator of the code then $1 + v_1(\lambda) + \ldots + v_d(\lambda)$ divides

$$(1+v_1(\lambda)+\ldots+v_e(\lambda))(\gamma_0+\gamma_1v_1(\lambda)/k_1+\ldots+\gamma_dv_d(\lambda)/k_d).$$

Consequently at least d-e eigenvalues of the intersection matrix must be zeros of the polynomial $\gamma_0 + \gamma_1 v_1(\lambda)/k_1 + \ldots + \gamma_d v_d(\lambda)/k_d$. The solution of a system of n such linear equations will only depend on $\gamma_0, \gamma_1, \ldots, \gamma_{d-n}$ as we shall see in lemma 2. Knowing this it will be easy to prove the theorem of Biggs and to prove that the weight-enumerator of the code only depends on the minimum weight for the code.

LEMMA 1. If C is a perfect code that corrects e errors and $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ is the weight enumerator of C then the polynomial $1 + v_1(\lambda) + \ldots + v_d(\lambda)$ divides the polynomial

$$\big(1+v_1(\lambda)+\ldots+v_e(\lambda)\big)\big(\gamma_0+\gamma_1v_1(\lambda)/k_1+\ldots+\gamma_dv_d(\lambda)/k_d\big)\;.$$

PROOF. Let μ be an eigenvalue of the intersection matrix, and u a vertex of G. To every vertex v of G associate the following number

$$v_{d(u,v)}(\mu)/k_{d(u,v)} = f(\mu,v)$$
.

Using induction over i and the relations (1), (3) and (4) it is straightforward to prove that

$$v_i(\mu)f(\mu,v) = \sum_{w,d(v,w)=i} f(\mu,w)$$
 for $i = 0,1,...,d$.

Consequently if C is a perfect e-error correcting code

$$\left(\sum_{v\in C} f(\mu,v)\right) \left(1+v_1(\mu)+\ldots+v_e(\mu)\right) \,=\, \sum_{v\in V(G)} f(\mu,v) \;,$$

that is,

$$(\gamma_0 + \gamma_1 v_1(\mu)/k_1 + \dots + \gamma_d v_d(\mu)/k_d)(1 + v_1(\mu) + \dots + v_e(\mu))$$

= 1 + v_1(\mu) + \dots + v_d(\mu).

Since the zeros of $1+v_1(\lambda)+\ldots+v_d(\lambda)$ are eigenvalues of the intersection-matrix, it is necessary that the zeros of $1+v_1(\lambda)+\ldots+v_d(\lambda)$ are zeros of

$$(\gamma_0 + \gamma_1 v_1(\lambda)/k_1 + \ldots + \gamma_0 v_d(\lambda)/k_d)(1 + v_1(\lambda) + \ldots + v_e(\lambda)).$$

Consequently the lemma 1 is true.

LEMMA 2. If $\lambda_1, \ldots, \lambda_j$ are distinct eigenvalues of the intersection matrix of G then

$$\det \begin{bmatrix} \frac{v_{d-j+1}(\lambda_1)}{k_{d-j+1}} & \cdots & \frac{v_d(\lambda_1)}{k_d} \\ \vdots & & \vdots \\ \frac{v_{d-j+1}(\lambda_j)}{k_{d-j+1}} & \cdots & \frac{v_d(\lambda_j)}{k_d} \end{bmatrix} \neq 0$$

PROOF. Suppose μ is an eigenvalue of $\Gamma(G)$ and $v_d(\mu) = 0$. Then we get by recursion using (3) and (4) that $v_0(\mu) = 0$. This is impossible since $v_0(\mu) = 1$. We conclude that $v_d(\mu) \neq 0$. So by dividing by the nonzero number $v_d(\mu)$ we get an eigenvector

$$(1/v_d(\mu), \dots, v_{d-1}(\mu)/v_d(\mu), v_d(\mu)/v_d(\mu))^t$$

= $(v'_0(\mu), \dots, v'_{d-1}(\mu), 1)^t$

of $\Gamma(G)$ belonging to the eigenvalue μ . Now $v'_{i}(\mu)$, $i = 0, 1, \ldots, d-1$ must satisfy the relations

$$b_{d-1}v'_{d-1}(\mu) = \mu - a_d ,$$

$$c_{i+1}v'_{i+1}(\mu) + (a_i - \mu)v'_{i}(\mu) + b_{i-1}v'_{i-1}(\mu) = 0 \quad i = 1, 2, \ldots, d-1 .$$

Using recursion we see that $v'_{i}(\mu)$ is a polynomial in μ of degree d-i.

So by elementary determinant calculus

$$\det \begin{bmatrix} \frac{v_{d-j+1}(\lambda_1)}{k_{d-j+1}} & \cdots & \frac{v_d(\lambda_1)}{k_d} \\ \vdots & & \vdots \\ \frac{v_{d-j+1}(\lambda_j)}{k_{d-j+1}} & \cdots & \frac{v_d(\lambda_j)}{k_d} \end{bmatrix} = \frac{\prod_{i=1}^j v_d(\lambda_i)}{\prod_{i=1}^j k_{d-i+1}} \det \begin{bmatrix} v'_{d-j+1}(\lambda_1) & \cdots & 1 \\ \vdots & & \vdots \\ v'_{d-j+1}(\lambda_j) & \cdots & 1 \end{bmatrix}$$
$$= r \det \begin{bmatrix} \lambda_1^{j-1} & \cdots & \lambda_1 & 1 \\ \vdots & & \vdots \\ \lambda_j^{j-1} & \cdots & \lambda_j & 1 \end{bmatrix} \quad \text{for some } r \neq 0 .$$

Since the λ_i 's, i = 1, 2, ..., j are distinct the last determinant is nonzero and the lemma is proved.

THEOREM 1 (Biggs). If there exists a perfect e-error correcting code C in the distance-transitive graph G then the polynomial $1 + v_1(\lambda) + \ldots + v_e(\lambda)$ divides the polynomial $1 + v_1(\lambda) + \ldots + v_d(\lambda)$.

PROOF. For every perfect code C with minimum weight less than e there exists an automorphism φ of G such that $\varphi(C)=C'$ is a perfect code with minimum weight equal to e. Suppose that the polynomial $1+v_1(\lambda)+\ldots+v_e(\lambda)$ has less than e zeros among the eigenvalues of $\Gamma(G)$. If $\gamma_0=\ldots=\gamma_{e-1}=0$ there exists a perfect code with such a weight-enumerator, as we saw above. Then by lemma 2 the solutions of the linear system of equations

$$\gamma_0 + \gamma_1 v_1(\lambda_i)/k_1 + \ldots + \gamma_d v_d(\lambda_i)/k_d = 0, \quad \lambda_i \text{ eigenvalue of } \Gamma(G) \text{ and } i = 1, 2, \ldots, d - e + 1$$

should be $\gamma_j = 0$, $j = e, e + 1, \dots, d$. This is impossible.

THEOREM 2. The weight-enumerator of a perfect code in a distance-transitive graph only depends on the minimum-weight of the code.

PROOF. Let $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ be the weight enumerator of the perfect e-error correcting code C. From lemma 1 we know that there exist d-e eigenvalues λ_s , $s=1,2,\ldots,d-e$ of $\Gamma(G)$ such that

$$\gamma_0 + \gamma_1 v_1(\lambda_s)/k_1 + \ldots + \gamma_d v_d(\lambda_s)/k_d = 0.$$

Suppose that the minimum weight of C is equal to i, that is, $\gamma_0 = \ldots = \gamma_{i-1} = \gamma_{i+1} = \ldots = \gamma_e = 0$, $\gamma_i = 1$. We then get that

(*)
$$\gamma_{e+1}v_{e+1}(\lambda_s)/k_{e+1}+\ldots+\gamma_dv_d(\lambda_s)/k_d = v_i(\lambda_s)/k_i \quad s=1,2,\ldots,d-s$$
 Math. Scand. 35 — 3

Since

$$\det \begin{bmatrix} \frac{v_{e+1}(\lambda_1)}{k_{e+1}} & \cdots & \frac{v_d(\lambda_1)}{k_d} \\ \vdots & & \vdots \\ \frac{v_{e+1}(\lambda_{d-e})}{k_{e+1}} & \cdots & \frac{v_d(\lambda_{d-e})}{k_d} \end{bmatrix} \neq 0$$

we get that the solutions of the system of linear equations (*) are unique.

3.

The following relations are easy but useful consequences of the definition of antipodal distance-transitive graph of diameter d.

- (5) If d(u,v) < d then $\Gamma_d(u) \cap \Gamma_d(v) = \emptyset$.
- (6) If d(u,v) = d and d(v,w) = i < d/2 then d(u,w) = d i.
- (7) If d(u,v) = d = 2n+1 then $\Gamma_n(v) \subseteq \Gamma_{n+1}(u)$.
- (8) If d(u,v) = d = 2n then $\Gamma_{n-1}(v) \subseteq \Gamma_{n+1}(u)$.
- (9) If d=2n+1 then $\Gamma_{n+1}(u)=\bigcup_{v\in\Gamma_n(u)}\Gamma_n(v)$.
- (10) If d=2n then $\Gamma_{n+1}(u)=\bigcup_{v\in\Gamma_n(u)}\Gamma_{n-1}(v)$.

We need two lemmas for the proof of theorem 3.

Lemma 3. If G is an antipodal distance-transitive graph with diameter d then $1 \le k_1 \le k_2 \le \ldots \le k_j > k_{j+1} > \ldots > k_d$ for some

$$j \, \geqq \, \left\{ \begin{matrix} n+1 & if \ d=2n+1 \\ n & if \ d=2n \ . \end{matrix} \right.$$

PROOF. Suppose that $k_j > k_{j+1}$. Then from relation (1) we get that $c_{j+1} > b_j$. So by using relation (2) we see that $c_{s+1} > b_s$ if s > j and consequently $k_s > k_{s+1}$ if s > j. By (7) and (8) is $k_n \le k_{n+1}$ when d = 2n + 1 and $k_{n-1} \le k_{n+1}$ when d = 2n. It follows that $j \ge n + 1$ if d = 2n + 1 and $j \ge n$ if d = 2n.

LEMMA 4. If G is an antipodal distance-transitive graph with diameter d then

$$k_d = \begin{cases} b_n/c_{n+1} & \text{if } d = 2n+1 \\ b_n/c_n & \text{if } d = 2n \end{cases}$$

PROOF. First assume that d=2n+1. Let $z\in \Gamma_n(u)$, that is, d(u,z)=n. By (9) we have

$$|\Gamma_{n+1}(u) \cap \Gamma_1(z)| = \sum_{v \in \Gamma_d(u)} |\Gamma_n(v) \cap \Gamma_1(z)|$$
,

that is, $b_n = k_d c_{n+1}$, since d(v,z) = n+1. When d = 2n = d(u,v) choose z such that d(u,z) = d(v,z), and use (10) similarly.

THEOREM 3. If C is a perfect code in an antipodal distance-transitive graph with diameter d then for any vertex u it is that either $\Gamma_0(u) \cup \Gamma_d(u) \subseteq C$ or $(\Gamma_0(u) \cup \Gamma_d(u)) \cap C = \emptyset$.

PROOF. Suppose that $u \in C$ and that there exists a vertex $v \in \Gamma_d(u) \setminus C$. Since C is perfect and corrects e errors there must be a vertex v' for which $d(v,v')=i \leq e$.

Let $w \in \Gamma_i(u)$ and d(w, v') = d. It is easy to see that such a vertex must exist. Let φ be an automorphism that satisfy $\varphi(w) = u$ and $\varphi(u) = w$. If $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ is the weight enumerator of $\varphi(C)$ then $\gamma_i = 1$ and $\gamma_d \ge 1$.

But we get from lemma 3 that $|\Gamma_i(u)| \ge k_1$ (in the nontrivial cases $e \le d/2$) and from lemma 4, since $b_n < k_1$, that $k_d < k_1$. Let $V = \bigcup_{v \in \Gamma_d(u)} \Gamma_i(v)$. Then we find, since C is an e-error correcting code,

$$|C \cap V| \leq |\Gamma_d(u)| = k_d < k_1 \leq |\Gamma_i(u)|,$$

that is, $|C \cap V| < |\Gamma_i(u)|$. Observe that $\Gamma_d(w) \subseteq V$ when $w \in \Gamma_i(u)$, $i \le e \le d/2$. Hence

$$|C \cap \bigcup_{w \in \Gamma_i(u)} \Gamma_d(w)| \le |C \cap V| < |\Gamma_i(u)|.$$

Since $\Gamma_d(w_1) \cap \Gamma_d(w_2) = \emptyset$, when $w_1 \neq w_2 \in \Gamma_i(u)$, we get

$$\sum_{w \in \Gamma_i(u)} |C \cap \Gamma_d(w)| < |\Gamma_i(u)|,$$

and $C \cap \Gamma_d(w') = \emptyset$ for some $w' \in \Gamma_i(u)$.

Let φ' be an automorphism that satisfy $\varphi'(w') = u$ and $\varphi'(u) = w'$. If $(\gamma_0', \gamma_1', \ldots, \gamma_d')$ is the weight enumerator of $\varphi'(C)$ then $\gamma_i' = 1$ and $\gamma_d' = 0$.

The perfect codes $\varphi(C)$ and $\varphi'(C)$ have the same minimum weight, but their weight enumerators are not equal. Using theorem 2 we see that this is impossible. Consequently $\Gamma_d(u) \setminus C = \emptyset$ if $u \in C$ and the theorem is proved.

In the antipodal distance-transitive graph 2.0_4 (see [5]) it is easy to find a perfect code. 2.0_4 can not be represented as Z_2^r for any r. So theorem 3 is in fact a generalisation of the theorem of Roos.

In [4] Smith gives an example of an antipodal distance-transitive graph G with intersection-matrix

$$arGamma(G) = egin{pmatrix} 0 & 1 & & & & 0 \ 3 & 0 & 1 & & & & \ 2 & 0 & 1 & & & & \ & 2 & 0 & 2 & & & \ & & 2 & 0 & 2 & & \ & & & 2 & 0 & 2 & \ & & & & 1 & 0 & 3 \ 0 & & & & 1 & 0 \ \end{pmatrix}$$

If $v_0(\lambda), v_1(\lambda), \dots, v_d(\lambda)$ are defined as in section 1 and $v_0(\lambda) = 1$ it is easy to see that $1 + v_1(\lambda) + v_2(\lambda)$ divides $1 + v_1(\lambda) + \dots + v_d(\lambda)$ where d = 8. This observation was made by Lindström [6].

If there exists a perfect 2-error correcting code C in G then |C|=9. But, using theorem 3 we see that if $u \in C$ then $\Gamma_0(u) \cup \Gamma_8(u) \subseteq C$. The distance between any vertex of G and $\Gamma_0(u) \cup \Gamma_8(u)$ is less or equal to 4 and there can impossibly be any more code vertices of G. Consequently no perfect 2-error correcting code exists in G.

In [4] Smith defines the derived graph G' of the antipodal distance-transitive graph G. The vertices of G' are the sets $\Gamma_0(u) \cup \Gamma_d(u)$, $u \in V(G)$, and there is an edge between the vertices $\Gamma_0(u) \cup \Gamma_d(u)$ and $\Gamma_0(u') \cup \Gamma_d(u')$ of G' iff there are vertices $v \in \Gamma_0(u) \cup \Gamma_d(u)$ and $v' \in \Gamma_0(u') \cup \Gamma_d(u')$ such that d(v,v')=1. Smith then shows that if d>2 for the antipodal distance-transitive graph G, then the derived graph G' is distance-transitive with diameter $[\frac{1}{2}d]$.

We show the following corollary of theorem 3.

COROLLARY. If there exists a perfect e-error correcting code in the antipodal distance-transitive graph G then there exists a perfect e-error correcting code in the derived graph G'.

PROOF. Let C be a perfect e-error correcting code of G. Let C' be the vertices of the derived graph G' that satisfy

$$\Gamma_{\mathbf{0}}(u) \cup \Gamma_{d}(u) \in C'$$
 iff $\Gamma_{\mathbf{0}}(u) \cup \Gamma_{d}(u) \subseteq C$.

If

$$c_1' = \Gamma_0(c_1) \cup \Gamma_d(c_1) \in C', \quad c_2' = \Gamma_0(c_2) \cup \Gamma_d(c_2) \in C'$$

and $d(c_1',c_2') < 2e+1$ then it is easy to see that there exist vertices $c_1'' \in \Gamma_0(c_1) \cup \Gamma_d(c_1), \ c_2'' \in \Gamma_0(c_2) \cup \Gamma_d(c_2)$ such that $d(c_1'',c_2'') < 2e+1$. Since C is perfect this is impossible. Using theorem 3 we find that $|C'| = |C|/k_0 + k_d$. Now since $|V(G')| = |V(G)|/k_0 + k_d$ and

$$|\{v \in V(G) \mid d(u,v) \leq e\}| = |\{v \in V(G') \mid d(u',v) \leq e\}|$$

for $u \in V(G)$ and $u' \in V(G')$, C' must be a perfect code.

It is well-known that there exists a perfect 3-error correcting code in the antipodal distance-transitive graph $Z_2^{23} = G$. Consequently there must exist a perfect 3-error correcting code in the derived graph G'. Perhaps this is a code that Biggs [3, p. 296] question for.

ACKNOWLEDGEMENT. I wish to express my sincere gratitude to Dr. B. Lindström whose kind advices have been a very fine help in writing this paper.

REFERENCES

- J. E. Roos, An algebraic study of group and nongroup error-correcting codes, Information and Control 8 (1965), 195-214.
- N. Biggs, Finite Groups of Automorphisms, London Mathematical Society Lecture Notes Series 6, Cambridge University Press, Cambridge 1971.
- 3. N. Biggs, Perfect codes in graphs, J. Combinatorial Theory Ser. B 15 (1973), 289-296.
- D. H. Smith, Primitive and imprimitive graphs, Quart. J. Math. Oxford Ser. (2), 22 (1971), 551-557.
- 5. D. H. Smith, Distance-transitive graphs, unpublished.
- 6. B. Lindström, private communication.

UNIVERSITY OF STOCKHOLM SWEDEN