PERFECT CODES IN
ANTIPODAL DISTANCE-TRANSITIVE GRAPHS

OLOF HEDEN

Let \(C \) be a perfect code in an antipodal distance-transitive graph. In this paper it is shown that if \(u \in C \) then any vertex at maximum distance from \(u \) also belongs to \(C \). This is a generalisation of a theorem for binary codes of Roos [1].

1.

A graph is a pair \((V(G), E(G))\) where \(V(G) \) is a finite and nonempty set of elements called vertices and \(E(G) \) is a set of unordered pairs of distinct elements of \(V(G) \) called edges.

\((v_0, v_1, \ldots, v_n)\) is a path from \(v_0 \) to \(v_n \) if \(v_i, i = 0, 1, \ldots, n \) are vertices and \(\{v_i, v_{i+1}\} \) are distinct edges. A graph is called connected if given any pair of vertices \(v, w \), there is a path from \(v \) to \(w \). In this paper we only consider connected graphs.

The number of edges in a path is the length of the path. Let \(d(u, v) \), the distance between the vertices \(u \) and \(v \), denote the length of the shortest path from \(u \) to \(v \). The function \(d(u, v) \) defines a metric on the set of vertices.

An automorphism \(\varphi \) of a graph is a permutation of \(V(G) \) such that for any given pair of vertices \(u \) and \(v \) it is true that \(d(\varphi(u), \varphi(v)) = d(u, v) \).

A graph is called distance-transitive if for any given two pairs of vertices \(u, v \) and \(w, z \) satisfying \(d(u, v) = d(w, z) \) there is an automorphism \(\varphi \) for which \(\varphi(u) = w \) and \(\varphi(v) = z \). All graphs in this paper are distance-transitive.

Let \(u \in V(G) \) and

\[
\Gamma_i(u) = \{v \in V(G) \mid d(u, v) = i\}.
\]

Let \(d \) be the maximum possible distance between any two vertices. \(d \) is called the diameter of \(G \). A graph is called antipodal if for all vertices \(v, w \in \Gamma_0(u) \cup \Gamma_d(u) \) either \(v = w \) or \(d(v, w) = d \).

Received June 20, 1974.
Example. Let \mathbb{Z}_n be the integers modulo n. Let \mathbb{Z}_n^r be the set of r-tuples of elements of \mathbb{Z}_n. Define the distance between r-tuples $\bar{s}=(s_1,\ldots,s_r)$ and $\bar{t}=(t_1,\ldots,t_r)$ to be
\[
d(\bar{s},\bar{t}) = |\{i \mid s_i \neq t_i\}|.
\]
\mathbb{Z}_n^r is a distance-transitive graph where the r-tuples are vertices and $d(\bar{s},\bar{t})$ is the distance-function on the vertices. \mathbb{Z}_2^r is an antipodal distance-transitive graph.

A subset C of $V(G)$ is called a perfect e-error correcting code if for every vertex v it is true that
\[
|\{u \in V(G) \mid d(v,u) \leq e\} \cap C| = 1.
\]
Let u be a vertex. Define
\[
\gamma_i = |\Gamma_i(u) \cap C| \quad i=1,2,\ldots.
\]
Call the $d+1$-tuple $(\gamma_0,\gamma_1,\ldots,\gamma_d)$ the weight-enumerator of C. The weight enumerator is not independent of the choice of u. But we shall see in section 2 that it only depends on $d(u,C)$, the minimum possible distance between u and any vertex of C. $d(u,C)$ is called the minimum weight of C.

Let u and v be two vertices such that $d(u,v)=j$. The numbers
\[
\begin{align*}
k_i &= |\Gamma_i(u)| \quad i=0,1,\ldots,d \\
 a_j &= |\Gamma_1(v) \cap \Gamma_j(u)| \\
b_j &= |\Gamma_1(v) \cap \Gamma_{j+1}(u)| \quad \text{(defined for } j \leq d-1) \\
c_j &= |\Gamma_1(v) \cap \Gamma_{j-1}(u)| \quad \text{(defined for } j \geq 1)
\end{align*}
\]
are independent of the choices of u and v. They satisfy the following relations
\begin{align}
(1) \quad a_j + b_j + c_j &= k_1, \quad j=0,1,\ldots,d, \\
 k_i b_i &= k_{i+1} c_{i+1}, \quad i=0,1,\ldots,d-1,
\end{align}
(2) $k_1 = b_0 > b_1 \geq \ldots \geq b_{d-1} \geq 1, \quad 1 = c_1 \leq c_2 \leq \ldots \leq c_d$.

For a proof of this see [4]. Let
\[
\Gamma(G) = \begin{pmatrix}
0 & c_1 & 0 \\
b_0 & a_1 & c_2 \\
0 & b_1 & a_2 \\
& b_2 & \ldots & c_{d-1} & 0 \\
& & \ldots & a_{d-1} & c_d \\
0 & & & b_{d-1} & a_d
\end{pmatrix}
\]
$\Gamma(G)$ is called the intersection matrix of G. If $[1,v_1(\lambda),\ldots,v_d(\lambda)]^t$ is an right eigenvector of $\Gamma(G)$ belonging to the eigenvalue λ, then it must satisfy the relations

\begin{equation}
\begin{aligned}
 v_i(\lambda) &= \lambda, \\
 c_{i+1}v_{i+1}(\lambda) + (a_i - \lambda)v_i(\lambda) + b_{i-1}v_{i-1}(\lambda) &= 0 \quad (v_0(\lambda) = 1) \\
 i &= 1, 2, \ldots, d - 1.
\end{aligned}
\end{equation}

\begin{equation}
 b_{d-1}v_{d-1}(\lambda) + (a_d - \lambda)v_d(\lambda) = 0.
\end{equation}

The functions $v_i(\lambda)$, $i = 1, \ldots, d$, are polynomials in λ of degree i.

Biggs has shown [2] and [3] that the $d + 1$ eigenvalues of $\Gamma(G)$ are distinct and that they are zeros of the polynomial

\begin{equation}
 (\lambda - k_1)(1 + v_1(\lambda) + \ldots + v_d(\lambda)).
\end{equation}

2.

In [3] Biggs shows that if a perfect e-error correcting code exists in the distance-transitive graph G then the polynomial $1 + v_1(\lambda) + \ldots + v_e(\lambda)$ divides the polynomial $1 + v_1(\lambda) + \ldots + v_d(\lambda)$. It is natural to ask which polynomial $f(\lambda)$ satisfy

\begin{equation}
 (1 + v_1(\lambda) + \ldots + v_e(\lambda))f(\lambda) = 1 + v_1(\lambda) + \ldots + v_d(\lambda).
\end{equation}

We shall prove a lemma saying that if $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ is the weight-enumerator of the code then $1 + v_1(\lambda) + \ldots + v_d(\lambda)$ divides

\begin{equation}
 (1 + v_1(\lambda) + \ldots + v_e(\lambda))(\gamma_0 + \gamma_1v_1(\lambda)/k_1 + \ldots + \gamma_dv_d(\lambda)/k_d).
\end{equation}

Consequently at least $d - e$ eigenvalues of the intersection matrix must be zeros of the polynomial $\gamma_0 + \gamma_1v_1(\lambda)/k_1 + \ldots + \gamma_dv_d(\lambda)/k_d$. The solution of a system of n such linear equations will only depend on $\gamma_0, \gamma_1, \ldots, \gamma_{d-n}$ as we shall see in lemma 2. Knowing this it will be easy to prove the theorem of Biggs and to prove that the weight-enumerator of the code only depends on the minimum weight for the code.

Lemma 1. If C is a perfect code that corrects e errors and $(\gamma_0, \gamma_1, \ldots, \gamma_d)$ is the weight enumerator of C then the polynomial $1 + v_1(\lambda) + \ldots + v_d(\lambda)$ divides the polynomial

\begin{equation}
 (1 + v_1(\lambda) + \ldots + v_e(\lambda))(\gamma_0 + \gamma_1v_1(\lambda)/k_1 + \ldots + \gamma_dv_d(\lambda)/k_d).
\end{equation}

Proof. Let μ be an eigenvalue of the intersection matrix, and u a vertex of G. To every vertex v of G associate the following number

\begin{equation}
 v_{d(u,v)}(\mu)/k_{d(u,v)} = f(\mu, v).
\end{equation}
Using induction over \(i \) and the relations (1), (3) and (4) it is straightforward to prove that
\[
v_i(\mu)f(\mu, v) = \sum_{w, d(\sigma, w) = i} f(\mu, w) \quad \text{for} \quad i = 0, 1, \ldots, d.
\]
Consequently if \(C \) is a perfect \(e \)-error correcting code
\[
(\sum_{v \in C} f(\mu, v))(1 + v_1(\mu) + \ldots + v_e(\mu)) = \sum_{v \in V(G)} f(\mu, v),
\]
that is,
\[
(\gamma_0 + \gamma_1 v_1(\mu)/k_1 + \ldots + \gamma_d v_d(\mu)/k_d)(1 + v_1(\mu) + \ldots + v_e(\mu)) = 1 + v_1(\mu) + \ldots + v_d(\mu).
\]
Since the zeros of \(1 + v_1(\lambda) + \ldots + v_d(\lambda) \) are eigenvalues of the intersection matrix, it is necessary that the zeros of \(1 + v_1(\lambda) + \ldots + v_d(\lambda) \) are zeros of
\[
(\gamma_0 + \gamma_1 v_1(\lambda)/k_1 + \ldots + \gamma_d v_d(\lambda)/k_d)(1 + v_1(\lambda) + \ldots + v_e(\lambda)).
\]
Consequently the lemma 1 is true.

Lemma 2. If \(\lambda_1, \ldots, \lambda_j \) are distinct eigenvalues of the intersection matrix of \(G \) then

\[
\begin{vmatrix}
\frac{v_{d-j+1}(\lambda_1)}{k_{d-j+1}} & \ldots & \frac{v_d(\lambda_1)}{k_d} \\
\vdots & \ddots & \vdots \\
\frac{v_{d-j+1}(\lambda_j)}{k_{d-j+1}} & \ldots & \frac{v_d(\lambda_j)}{k_d}
\end{vmatrix} \neq 0
\]

Proof. Suppose \(\mu \) is an eigenvalue of \(I(G) \) and \(v_d(\mu) = 0 \). Then we get by recursion using (3) and (4) that \(v_0(\mu) = 0 \). This is impossible since \(v_0(\mu) = 1 \). We conclude that \(v_d(\mu) \neq 0 \). So by dividing by the nonzero number \(v_d(\mu) \) we get an eigenvector
\[
(1/v_d(\mu), \ldots, v_{d-1}(\mu)/v_d(\mu), v_d(\mu)/v_d(\mu))^t
\]
\[
= (v'_0(\mu), \ldots, v'_{d-1}(\mu), 1)^t
\]
of \(I(G) \) belonging to the eigenvalue \(\mu \). Now \(v'_i(\mu) \), \(i = 0, 1, \ldots, d - 1 \) must satisfy the relations
\[
b_{d-i} v'_{d-i}(\mu) = \mu - a_d,
\]
\[
c_{i+1} v'_{i+1}(\mu) + (a_i - \mu)v'_i(\mu) + b_{i-1} v'_{i-1}(\mu) = 0 \quad i = 1, 2, \ldots, d - 1.
\]
Using recursion we see that \(v'_i(\mu) \) is a polynomial in \(\mu \) of degree \(d - i \).
So by elementary determinant calculus

\[
\det \begin{bmatrix}
v_{d-j+1}(\lambda_1) & \cdots & v_d(\lambda_1) \\
k_{d-j+1} & \cdots & k_d \\
\vdots & & \vdots \\
v_{d-j+1}(\lambda_j) & \cdots & v_d(\lambda_j) \\
k_{d-j+1} & \cdots & k_d
\end{bmatrix} = \frac{\prod_{i=1}^{j} v_d(\lambda_i)}{\prod_{i=1}^{j} k_{d-i+1}} \det \begin{bmatrix}
v'_{d-j+1}(\lambda_1) & \cdots & 1 \\
\vdots & & \vdots \\
v'_{d-j+1}(\lambda_j) & \cdots & 1
\end{bmatrix}
\]

\[
= r \det \begin{bmatrix}
\lambda_1^{i-1} & \cdots & \lambda_1 & 1 \\
\vdots & & \vdots & \vdots \\
\lambda_j^{i-1} & \cdots & \lambda_j & 1
\end{bmatrix} \quad \text{for some } r \neq 0.
\]

Since the \(\lambda_i\)'s, \(i = 1, 2, \ldots, j\) are distinct the last determinant is nonzero and the lemma is proved.

Theorem 1 (Biggs). *If there exists a perfect e-error correcting code \(C\) in the distance-transitive graph \(G\) then the polynomial \(1 + v_1(\lambda) + \cdots + v_e(\lambda)\) divides the polynomial \(1 + v_1(\lambda) + \cdots + v_d(\lambda)\).*

Proof. For every perfect code \(C\) with minimum weight less than \(e\) there exists an automorphism \(\varphi\) of \(G\) such that \(\varphi(C) = C'\) is a perfect code with minimum weight equal to \(e\). Suppose that the polynomial \(1 + v_1(\lambda) + \cdots + v_e(\lambda)\) has less than \(e\) zeros among the eigenvalues of \(\Gamma(G)\). If \(\gamma_0 = \ldots = \gamma_{e-1} = 0\) there exists a perfect code with such a weight-enumerator, as we saw above. Then by lemma 2 the solutions of the linear system of equations

\[
\gamma_0 + \gamma_1 v_1(\lambda_i)/k_1 + \cdots + \gamma_d v_d(\lambda_i)/k_d = 0, \quad \lambda_i \text{ eigenvalue of } \Gamma(G) \text{ and } i = 1, 2, \ldots, d - e + 1
\]

should be \(\gamma_j = 0, j = e, e + 1, \ldots, d\). This is impossible.

Theorem 2. The weight-enumerator of a perfect code in a distance-transitive graph only depends on the minimum-weight of the code.

Proof. Let \((\gamma_0, \gamma_1, \ldots, \gamma_d)\) be the weight enumerator of the perfect \(e\)-error correcting code \(C\). From lemma 1 we know that there exist \(d - e\) eigenvalues \(\lambda_s, s = 1, 2, \ldots, d - e\) of \(\Gamma(G)\) such that

\[
\gamma_0 + \gamma_1 v_1(\lambda_s)/k_1 + \cdots + \gamma_d v_d(\lambda_s)/k_d = 0.
\]

Suppose that the minimum weight of \(C\) is equal to \(i\), that is, \(\gamma_0 = \ldots = \gamma_{i-1} = \gamma_{i+1} = \ldots = \gamma_e = 0, \gamma_i = 1\). We then get that

\[
(*) \quad \gamma_{e+1} v_{e+1}(\lambda_s)/k_{e+1} + \cdots + \gamma_d v_d(\lambda_s)/k_d = v_i(\lambda_s)/k_i \quad s = 1, 2, \ldots, d - e
\]

\[\text{Math. Scand. 35 — 3}\]
Since
\[
\det \begin{pmatrix}
v_{e+1}(\lambda_1) & \cdots & v_d(\lambda_1) \\
\frac{k_{e+1}}{} & \cdots & \frac{k_d}{k_d} \\
\vdots & & \vdots \\
v_{e+1}(\lambda_{d-e}) & \cdots & v_d(\lambda_{d-e}) \\
\frac{k_{e+1}}{} & \cdots & \frac{k_d}{k_d}
\end{pmatrix} + 0
\]
we get that the solutions of the system of linear equations (*) are unique.

3.

The following relations are easy but useful consequences of the definition of antipodal distance-transitive graph of diameter \(d\).

(5) If \(d(u, v) < d\) then \(\Gamma_d(u) \cap \Gamma_d(v) = \emptyset\).

(6) If \(d(u, v) = d\) and \(d(v, w) = i < d/2\) then \(d(u, w) = d - i\).

(7) If \(d(u, v) = d = 2n + 1\) then \(\Gamma_n(v) \subseteq \Gamma_{n+1}(u)\).

(8) If \(d(u, v) = d = 2n\) then \(\Gamma_n^{-1}(v) \subseteq \Gamma_{n+1}(u)\).

(9) If \(d = 2n + 1\) then \(\Gamma_{n+1}(u) = \bigcup_{v \in \Gamma_d(u)} \Gamma_n(v)\).

(10) If \(d = 2n\) then \(\Gamma_{n+1}(u) = \bigcup_{v \in \Gamma_d(u)} \Gamma_{n-1}(v)\).

We need two lemmas for the proof of theorem 3.

Lemma 3. If \(G\) is an antipodal distance-transitive graph with diameter \(d\) then \(1 \leq k_1 \leq k_2 \leq \ldots \leq k_j > k_{j+1} > \ldots > k_d\) for some

\[j \geq \begin{cases} n+1 & \text{if } d = 2n+1 \\ n & \text{if } d = 2n. \end{cases}\]

Proof. Suppose that \(k_j > k_{j+1}\). Then from relation (1) we get that \(c_{j+1} > b_j\). So by using relation (2) we see that \(c_{s+1} > b_s\) if \(s > j\) and consequently \(k_s > k_{s+1}\) if \(s > j\). By (7) and (8) is \(k_n \leq k_{n+1}\) when \(d = 2n + 1\) and \(k_{n-1} \leq k_{n+1}\) when \(d = 2n\). It follows that \(j \geq n + 1\) if \(d = 2n + 1\) and \(j \geq n\) if \(d = 2n\).

Lemma 4. If \(G\) is an antipodal distance-transitive graph with diameter \(d\) then

\[k_d = \begin{cases} b_n/c_{n+1} & \text{if } d = 2n+1 \\ b_n/c_n & \text{if } d = 2n. \end{cases}\]
Proof. First assume that \(d = 2n + 1 \). Let \(z \in \Gamma_n(u) \), that is, \(d(u, z) = n \). By (9) we have

\[
|\Gamma_{n+1}(u) \cap \Gamma_1(z)| = \sum_{v \in \Gamma_d(u)} |\Gamma_n(v) \cap \Gamma_1(z)| ,
\]

that is, \(b_n = c_{n+1} \), since \(d(v, z) = n + 1 \). When \(d = 2n = d(u, v) \) choose \(z \) such that \(d(u, z) = d(v, z) \), and use (10) similarly.

Theorem 3. If \(C \) is a perfect code in an antipodal distance-transitive graph with diameter \(d \) then for any vertex \(u \) it is that either \(\Gamma_0(u) \cup \Gamma_d(u) \subseteq C \) or \((\Gamma_0(u) \cup \Gamma_d(u)) \cap C = \emptyset \).

Proof. Suppose that \(u \in C \) and that there exists a vertex \(v \in \Gamma_d(u) \setminus C \). Since \(C \) is perfect and corrects \(e \) errors there must be a vertex \(v' \) for which \(d(v, v') = i \leq e \).

Let \(w \in \Gamma_t(u) \) and \(d(w, v') = d \). It is easy to see that such a vertex must exist. Let \(\varphi \) be an automorphism that satisfy \(\varphi(w) = u \) and \(\varphi(u) = w \).

If \((\gamma_0, \gamma_1, \ldots, \gamma_d) \) is the weight enumerator of \(\varphi(C) \) then \(\gamma'_t = 1 \) and \(\gamma'_d \geq 1 \).

But we get from lemma 3 that \(|\Gamma_t(u)| \geq k_1 \) (in the nontrivial cases \(e \leq d/2 \)) and from lemma 4, since \(b_n < k_1 \), that \(k_d < k_1 \). Let \(V = \bigcup_{v \in \Gamma_d(u)} \Gamma_t(v) \).

Then we find, since \(C \) is an \(e \)-error correcting code,

\[
|C \cap V| \leq |\Gamma_d(u)| = k_d < k_1 \leq |\Gamma_t(u)| ,
\]

that is, \(|C \cap V| < |\Gamma_t(u)| \). Observe that \(\Gamma_d(w) \subseteq V \) when \(w \in \Gamma_t(u) \), \(i \leq e \leq d/2 \). Hence

\[
|C \cap \bigcup_{w \in \Gamma_t(u)} \Gamma_d(w)| \leq |C \cap V| < |\Gamma_t(u)| .
\]

Since \(\Gamma_d(w_1) \cap \Gamma_d(w_2) = \emptyset \), when \(w_1 \neq w_2 \in \Gamma_t(u) \), we get

\[
\sum_{v \in \Gamma_t(u)} \left| C \cap \Gamma_d(w) \right| < |\Gamma_t(u)| ,
\]

and \(C \cap \bigcup \Gamma_d(w') = \emptyset \) for some \(w' \in \Gamma_t(u) \).

Let \(\varphi' \) be an automorphism that satisfy \(\varphi'(w') = u \) and \(\varphi'(u) = w' \). If \((\gamma'_0, \gamma'_1, \ldots, \gamma'_d) \) is the weight enumerator of \(\varphi'(C) \) then \(\gamma'_t = 1 \) and \(\gamma'_d = 0 \).

The perfect codes \(\varphi(C) \) and \(\varphi'(C) \) have the same minimum weight, but their weight enumerators are not equal. Using theorem 2 we see that this is impossible. Consequently \(\Gamma_d(u) \setminus C = \emptyset \) if \(u \in C \) and the theorem is proved.

In the antipodal distance-transitive graph \(2.0_4 \) (see [5]) it is easy to find a perfect code. \(2.0_4 \) can not be represented as \(Z_2^r \) for any \(r \). So theorem 3 is in fact a generalisation of the theorem of Roos.
In [4] Smith gives an example of an antipodal distance-transitive graph \(G \) with intersection-matrix

\[
\Gamma(G) = \begin{pmatrix}
0 & 1 & 0 \\
3 & 0 & 1 \\
2 & 0 & 1 \\
2 & 0 & 2 \\
2 & 0 & 2 \\
1 & 0 & 2 \\
0 & 1 & 0
\end{pmatrix}
\]

If \(v_0(\lambda), v_1(\lambda), \ldots, v_d(\lambda) \) are defined as in section 1 and \(v_0(\lambda) = 1 \) it is easy to see that \(1 + v_1(\lambda) + v_2(\lambda) \) divides \(1 + v_1(\lambda) + \ldots + v_d(\lambda) \) where \(d = 8 \). This observation was made by Lindström [6].

If there exists a perfect 2-error correcting code \(C \) in \(G \) then \(|C| = 9 \). But, using theorem 3 we see that if \(u \in C \) then \(\Gamma_0(u) \cup \Gamma_8(u) \subseteq C \). The distance between any vertex of \(G \) and \(\Gamma_0(u) \cup \Gamma_8(u) \) is less or equal to 4 and there can impossibly be any more code vertices of \(G \). Consequently no perfect 2-error correcting code exists in \(G \).

In [4] Smith defines the derived graph \(G' \) of the antipodal distance-transitive graph \(G \). The vertices of \(G' \) are the sets \(\Gamma_0(u) \cup \Gamma_d(u) \), \(u \in V(G) \), and there is an edge between the vertices \(\Gamma_0(u) \cup \Gamma_d(u) \) and \(\Gamma_0(u') \cup \Gamma_d(u') \) of \(G' \) iff there are vertices \(v \in \Gamma_0(u) \cup \Gamma_d(u) \) and \(v' \in \Gamma_0(u') \cup \Gamma_d(u') \) such that \(d(v, v') = 1 \). Smith then shows that if \(d > 2 \) for the antipodal distance-transitive graph \(G \), then the derived graph \(G' \) is distance-transitive with diameter \(\lceil \frac{d}{2} \rceil \).

We show the following corollary of theorem 3.

Corollary. If there exists a perfect \(e \)-error correcting code in the antipodal distance-transitive graph \(G \) then there exists a perfect \(e \)-error correcting code in the derived graph \(G' \).

Proof. Let \(C \) be a perfect \(e \)-error correcting code of \(G \). Let \(C' \) be the vertices of the derived graph \(G' \) that satisfy

\[
\Gamma_0(u) \cup \Gamma_d(u) \in C' \quad \text{iff} \quad \Gamma_0(u) \cup \Gamma_d(u) \subseteq C.
\]

If

\[
c_1' = \Gamma_0(c_1) \cup \Gamma_d(c_1) \in C', \quad c_2' = \Gamma_0(c_2) \cup \Gamma_d(c_2) \in C'
\]

Then
and \(d(c_1', c_2') < 2e + 1 \) then it is easy to see that there exist vertices \(c_1'' \in \Gamma_0(c_1) \cup \Gamma_d(c_1), c_2'' \in \Gamma_0(c_2) \cup \Gamma_d(c_2) \) such that \(d(c_1'', c_2'') < 2e + 1 \). Since \(C \) is perfect this is impossible. Using theorem 3 we find that \(|C'| = |C|/k_o + k_d \). Now since \(|V(G')| = |V(G)|/k_o + k_d \) and

\[
|\{v \in V(G) \mid d(u, v) \leq e\}| = |\{v \in V(G') \mid d(u', v) \leq e\}|
\]

for \(u \in V(G) \) and \(u' \in V(G') \), \(C' \) must be a perfect code.

It is well-known that there exists a perfect 3-error correcting code in the antipodal distance-transitive graph \(Z_2^{23} = G \). Consequently there must exist a perfect 3-error correcting code in the derived graph \(G' \). Perhaps this is a code that Biggs [3, p. 296] question for.

Acknowledgement. I wish to express my sincere gratitude to Dr. B. Lindström whose kind advices have been a very fine help in writing this paper.

References

University of Stockholm

Sweden