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REMARKS ON RELATIONS BETWEEN MAXIMAL
LATTICES AND RELATIVELY MINIMAL MODELS

J. BRZEZINSKI

In [4] we have proved that if 4 is a Dedekind ring of characteristic 2
with perfect residue fields (i.e. 4/p is a perfect field for every maximal
ideal p in A4), E[/F a regular extension of transcendence degree 1 and
genus 0 of the field of fractions of A then there is a regular quadratic
space (V,Q) over F and a lattice L on V such that L defines a relatively
minimal Spec(A4)-model M (L) of E. The aim of this paper is to charac-
terize those lattices which define relatively minimal models in the way
described in [4]. The main result says that every relatively minimal
model can be defined by an a-maximal lattice (see [5, § 82 H]) where a
is an ideal in 4 which depends only on the extension E/F and A (Theo-
rem 1).

1. The discriminant of a lattice.

Let (V,Q) be a regular quadratic space over the field of fractions F
of a discrete valuation ring 4 of characteristic 2 and dim V=3. Let n
be a generator of the maximal ideal of 4. If L is a lattice on V then L=
Aey+ Ae;+ Ae, and this lattice defines a quadratic form

fr = (ar) 3% in0 Blene) X X; = Dociziza 43 X X;

where B is the bilinear form defined by @, a;,=(1/n")B(ese,), ay=
2+ (1/n")B(e,,¢;) for ij and (n7)=nL is the norm of L (see [5] for the no-
tion of norm, in [4] the form which corresponds to L is

(1/a") Sosisise Blee) X X;

where (n7)=8L is the scale of L. But it will be clear that the present
definition of f; is more convenient). Since nL is generated by B(e,,¢;)
and 2B(e;,¢;) the coefficientes of the form f;, belong to 4. Now if

= Dosisiss 4 X X;
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then the determinant
2ag0 @y Qpe
dif) = )| an 2a,; ap
Gz Gy 2059

is called the discriminant of f (see [6, p. 2]). It is easy to check that if
a;; € A then d(f) e 4.
If f, is the form which corresponds to L then

Bley,€9) Bleg,e;) Bley,ez)
d(fr) = 4(1/7%7) | Bley,e;) Bleg,eq) Bleg,ez)| = 4(1/a3")d(ey,e;,65)
B(ey,e5) Bley,e,) Bley,ep)

where d(ey,eq,€,) is the discriminant of the base eg,eq,e, of V over F
(see [5, p. 87]). But d(e,,e,,e,) generates the volume vL of L (see [5, p.
229]) and the last equality in the global case gives the following result:

Lemwma 1. Let A be a Dedekind ring and L a lattice on a regular quad-
ratic space (V,Q) over the field of fractions F of A. Then

(1) 4oL = (nL)3bL

where VL is the volume of L, nL the norm of L and dL a fractional ideal
which is locally defined by (bL),=(d fL )) where fL is the quadratic form
corresponding to L. Since d( fL )ed, for every pmme ideal p in A the
ideal DL is mtegml

DerFintTION 1. The ideal L will be called the discriminant of L.

Remark. We have defined 5L only for lattices on three dimensional
spaces. It is clear that this definition can be generalized according to
the usual definition of the discriminant of a quadratic form (e.g. [6, p. 2]).

LemMA 2. Let f=3)<;<j<20: X X; be a quadratic form with coefficients
in a field F of an arbitrary characteristic (it can be equal 2). The form f is
reductible in some extension of F if and only if d(f)=0.

REmaRrk. If char(F)=2 then

— 2 2 2
A(f) = 4800@11322 + A1309%12 — Tgo@i2 — T11 %2 — Bl

— 2 2 2

= Gg1%geR1p + Agolyp + A110gp + Aoy, -

Proor. If char(F)+2 then the result is well-known. If char(F)=2
and f=(ayxy+ a2, + ag%s)(byy + b1, + byy) then it is easy to check that
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d(f)=0. Let d(f)=0. Then (a,y,a9s,a,) is a zero of f. If a;;=0 for i+j
then the form is reducible in some extension of F. Let a,,+0. Then the
transformation

Ty = Q1Ys Xy = QoolYot Y1, Ty = Q1Yo+ Y2

has determinant not equal to 0 and maps the form f on the form a,,y,®+
+ Agolfs% + A15Y1Ys. This form is reducible in some extension of F.

2. Lattices which define models.

We shall assume that 4 is a Dedekind ring with perfect residue fields
such that the characteristic of A is 2. E is a regular extension of tran-
scendence degree 1 and genus 0 of F where F is the field of fractions of 4.

DerintTION 2. We shall denote by ag 4 the ideal of 4 which is equal
to the product of all maximal ideals p in 4 such that the fiber above p
of a relatively minimal model M of E over Spec(A4) is a form of two
intersecting copies of P(A/p) (the projective line over 4/p). This ideal
is independent of the relatively minimal model by the Theorem 1 in [2].

LeMMA 3. Let L be a lattice on a reqular quadratic space (V,Q) over F.
a) If M(L) is @ model of E then dL is square-free.
b) If M(L) is a relatively minimal model of K then bL=ag 4.

Proor. If M(L) is a model then by Theorem 2 in [3] v,(d( pr)) =0orl
where v, is the valuation corresponding to 4,. Hence dbL is square-free.
Now if M(L) is a relatively minimal model then the last case takes place
if and only if the fiber of this model above p is a form of two intersecting
copies of PX(4[p). In fact, v (d(fr,))=1 if and only if d(pr)=0 where
pr is the image of pr under the homomorphism

Alzg, x1,25] > (A[P)[%4,%1,2,] -

By the Lemma 2, d(f;, )=0 if and only if _)"_Lp is reducible in some exten-
sion of 4/p, i.e. the fiber of M(L) above p is a form of two intersecting
copies of Pl(A4/[p).

THEOREM 1. Let M be a model of E over Spec(A) such that for every
mazimal ideal p in A the fiber M, above p is either a form of PY(4 [p) or a
form of two intersecting copies of PY(A[p). Then there is a quadratic space
(V,Q) and a lattice L on V such that M is Spec(d4)-isomorphic with M (L)
and L is dL-maximal. Hence if M is a relatively minimal model then L
18 g 4-maximal.
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Proor. We know that there is a quadratic space (V,Q) and a lattice
L on V such that M is Spec(4)-isomorphic to M(L). For relatively
minimal M this is proved in [4, Theorem 2). If M is a model of £ then
we get L if we apply Theorem 1 in [3] and the same construction as in
the proof of Theorem 2 in [4].

Since vL defines the neutral element in C1(4)/Cl(4)% where Cl(4) de-
notes the class group of A (by the definition of bL — see [5, p. 229])
hence by (1) we get that L and nL define the same element in the group
Cl(4)/C1(A)%. We know that n(aL)=a*nL) and nL*=«(nk) (see [5,
p- 228 and p. 238]). This means that we can choose a lattice L'=(aL)*
on a quadratic space V* such that the model defined by L’ is equal to
the model defined by L and nL’'=5bL’. We shall assume that L is such
lattice and we shall prove that this lattice is dL-maximal.

Let K be a lattice such that nK <dL=nL and K 2 L. These inclusions
give nK=nL and vL=a2K) where a is an ideal in 4 (see [5, § 82 E,
82:11]). Hence by (1)

= (nL)-*4vL = (nK)-*4a2vK = a2bK .

But bL is integral, square-free (Lemma 3) and 5K is integral. Hence
a=A and vL=vK. Since K2 L we get K=L (by [5, § 82 E, 82:11a}).
This proves that L is dL-maximal.
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