REMARKS ON RELATIONS BETWEEN MAXIMAL LATTICES AND RELATIVELY MINIMAL MODELS

J. BRZEZINSKI

In [4] we have proved that if A is a Dedekind ring of characteristic $\neq 2$ with perfect residue fields (i.e. A/p is a perfect field for every maximal ideal p in A), E/F a regular extension of transcendence degree 1 and genus 0 of the field of fractions of A then there is a regular quadratic space (V, Q) over F and a lattice L on V such that L defines a relatively minimal $\text{Spec}(A)$-model $M(L)$ of E. The aim of this paper is to characterize those lattices which define relatively minimal models in the way described in [4]. The main result says that every relatively minimal model can be defined by an α-maximal lattice (see [5, § 82 H]) where α is an ideal in A which depends only on the extension E/F and A (Theorem 1).

1. The discriminant of a lattice.

Let (V, Q) be a regular quadratic space over the field of fractions F of a discrete valuation ring A of characteristic $\neq 2$ and $\dim V = 3$. Let π be a generator of the maximal ideal of A. If L is a lattice on V then $L = Ae_0 + Ae_1 + Ae_2$ and this lattice defines a quadratic form

$$f_L = (1/\pi^r) \sum_{i,j=0}^2 B(e_i, e_j)X_iX_j = \sum_{0 \leq i \leq j \leq 2} a_{ij} X_iX_j$$

where B is the bilinear form defined by Q, $a_{ii} = (1/\pi^r)B(e_i, e_i)$, $a_{ij} = 2 \cdot (1/\pi^r)B(e_i, e_j)$ for $i \neq j$ and $(\pi^r) = nL$ is the norm of L (see [5] for the notion of norm, in [4] the form which corresponds to L is

$$(1/\pi^r) \sum_{0 \leq i \leq j \leq 2} B(e_i, e_j)X_iX_j$$

where $(\pi^r) = sL$ is the scale of L. But it will be clear that the present definition of f_L is more convenient). Since nL is generated by $B(e_i, e_i)$ and $2B(e_i, e_j)$ the coefficients of the form f_L belong to A. Now if

$$f = \sum_{0 \leq i \leq j \leq 2} a_{ij} X_iX_j$$

Received December 7, 1973.
then the determinant
\[
\det(f) = \begin{vmatrix} 2a_{00} & a_{01} & a_{02} \\ a_{01} & 2a_{11} & a_{12} \\ a_{02} & a_{12} & 2a_{22} \end{vmatrix}
\]
is called the discriminant of \(f \) (see [6, p. 2]). It is easy to check that if \(a_{ij} \in \mathbb{A} \) then \(\det(f) \in \mathbb{A} \).

If \(f_L \) is the form which corresponds to \(L \) then
\[
\det(f_L) = 4(1/\pi^3) \begin{vmatrix} B(e_0,e_0) & B(e_0,e_1) & B(e_0,e_2) \\ B(e_0,e_1) & B(e_1,e_1) & B(e_1,e_2) \\ B(e_0,e_2) & B(e_1,e_2) & B(e_2,e_2) \end{vmatrix} = 4(1/\pi^3) \det(e_0,e_1,e_2)
\]
where \(\det(e_0,e_1,e_2) \) is the discriminant of the base \(e_0,e_1,e_2 \) of \(V \) over \(F \) (see [5, p. 87]). But \(\det(e_0,e_1,e_2) \) generates the volume \(vL \) of \(L \) (see [5, p. 229]) and the last equality in the global case gives the following result:

Lemma 1. Let \(\mathbb{A} \) be a Dedekind ring and \(L \) a lattice on a regular quadratic space \((V, Q)\) over the field of fractions \(F \) of \(A \). Then
\[
4vL = (vL)^3 bL
\]
where \(vL \) is the volume of \(L \), \(nL \) the norm of \(L \) and \(bL \) a fractional ideal which is locally defined by \(bL = (d(f_L)) \) where \(f_L \) is the quadratic form corresponding to \(L \). Since \(d(f_L) \in \mathbb{A} \) for every prime ideal \(\mathfrak{p} \) in \(\mathbb{A} \) the ideal \(bL \) is integral.

Definition 1. The ideal \(bL \) will be called the discriminant of \(L \).

Remark. We have defined \(bL \) only for lattices on three dimensional spaces. It is clear that this definition can be generalized according to the usual definition of the discriminant of a quadratic form (e.g. [6, p. 2]).

Lemma 2. Let \(f = \sum_{0 \leq i \leq j \leq 2} a_{ij} x_i x_j \) be a quadratic form with coefficients in a field \(F \) of an arbitrary characteristic (it can be equal 2). The form \(f \) is reducible in some extension of \(F \) if and only if \(\det(f) = 0 \).

Remark. If \(\text{char}(F) = 2 \) then
\[
\det(f) = 4a_{00}a_{11}a_{22} + a_{01}a_{02}a_{12} - a_{00}a_{12}^2 - a_{11}a_{02}^2 - a_{22}a_{01}^2
= a_{01}a_{02}a_{12} + a_{00}a_{12}^2 + a_{11}a_{02}^2 + a_{22}a_{01}^2.
\]

Proof. If \(\text{char}(F) = 2 \) then the result is well-known. If \(\text{char}(F) = 2 \) and \(f = (a_0x_0 + a_1x_1 + a_2x_2)(b_0x_0 + b_1x_1 + b_2x_2) \) then it is easy to check that
\[d(f) = 0. \text{ Let } d(f) = 0. \text{ Then } (a_{12}, a_{02}, a_{01}) \text{ is a zero of } f. \text{ If } a_{ij} = 0 \text{ for } i \neq j \text{ then the form is reducible in some extension of } F. \text{ Let } a_{12} \neq 0. \text{ Then the transformation}
\begin{align*}
x_0 &= a_{12}y_0, \quad x_1 = a_{02}y_0 + y_1, \quad x_2 = a_{01}y_0 + y_2
\end{align*}
has determinant not equal to 0 and maps the form \(f \) on the form \(a_{11}y_1^2 + a_{22}y_2^2 + a_{12}y_1y_2 \). This form is reducible in some extension of \(F \).

2. Lattices which define models.

We shall assume that \(A \) is a Dedekind ring with perfect residue fields such that the characteristic of \(A \) is \(\neq 2 \). \(E \) is a regular extension of transcendence degree 1 and genus 0 of \(F \) where \(F \) is the field of fractions of \(A \).

Definition 2. We shall denote by \(a_{E/A} \) the ideal of \(A \) which is equal to the product of all maximal ideals \(\mathfrak{p} \) in \(A \) such that the fiber above \(\mathfrak{p} \) of a relatively minimal model \(M \) of \(E \) over \(\text{Spec}(A) \) is a form of two intersecting copies of \(P^1(A/\mathfrak{p}) \) (the projective line over \(A/\mathfrak{p} \)). This ideal is independent of the relatively minimal model by the Theorem 1 in [2].

Lemma 3. Let \(L \) be a lattice on a regular quadratic space \((V, Q)\) over \(F \).

a) If \(M(L) \) is a model of \(E \) then \(\mathfrak{d}L \) is square-free.

b) If \(M(L) \) is a relatively minimal model of \(E \) then \(\mathfrak{d}L = a_{E/A} \).

Proof. If \(M(L) \) is a model then by Theorem 2 in [3] \(v_\mathfrak{p}(d(f_{L_\mathfrak{p}})) = 0 \) or 1 where \(v_\mathfrak{p} \) is the valuation corresponding to \(A_\mathfrak{p} \). Hence \(\mathfrak{d}L \) is square-free. Now if \(M(L) \) is a relatively minimal model then the last case takes place if and only if the fiber of this model above \(\mathfrak{p} \) is a form of two intersecting copies of \(P^1(A/\mathfrak{p}) \). In fact, \(v_\mathfrak{p}(d(f_{L_\mathfrak{p}})) = 1 \) if and only if \(d(\bar{f}_{L_\mathfrak{p}}) = 0 \) where \(\bar{f}_{L_\mathfrak{p}} \) is the image of \(f_{L_\mathfrak{p}} \) under the homomorphism
\[A[x_0, x_1, x_2] \rightarrow (A/\mathfrak{p})[x_0, x_1, x_2]. \]

By the Lemma 2, \(d(\bar{f}_{L_\mathfrak{p}}) = 0 \) if and only if \(\bar{f}_{L_\mathfrak{p}} \) is reducible in some extension of \(A/\mathfrak{p} \), i.e. the fiber of \(M(L) \) above \(\mathfrak{p} \) is a form of two intersecting copies of \(P^1(A/\mathfrak{p}) \).

Theorem 1. Let \(M \) be a model of \(E \) over \(\text{Spec}(A) \) such that for every maximal ideal \(\mathfrak{p} \) in \(A \) the fiber \(M_\mathfrak{p} \) above \(\mathfrak{p} \) is either a form of \(P^1(A/\mathfrak{p}) \) or a form of two intersecting copies of \(P^1(A/\mathfrak{p}) \). Then there is a quadratic space \((V, Q)\) and a lattice \(L \) on \(V \) such that \(M \) is \(\text{Spec}(A) \)-isomorphic with \(M(L) \) and \(L \) is \(\mathfrak{d}L \)-maximal. Hence if \(M \) is a relatively minimal model then \(L \) is \(a_{E/A} \)-maximal.
Proof. We know that there is a quadratic space \((V, Q)\) and a lattice \(L\) on \(V\) such that \(M\) is Spec\((A)\)-isomorphic to \(M(L)\). For relatively minimal \(M\) this is proved in [4, Theorem 2]. If \(M\) is a model of \(E\) then we get \(L\) if we apply Theorem 1 in [3] and the same construction as in the proof of Theorem 2 in [4].

Since \(\nu L\) defines the neutral element in \(\text{Cl}(A)/\text{Cl}(A)^2\) where \(\text{Cl}(A)\) denotes the class group of \(A\) (by the definition of \(\nu L\) — see [5, p. 229]) hence by (1) we get that \(bL\) and \(nL\) define the same element in the group \(\text{Cl}(A)/\text{Cl}(A)^2\). We know that \(n(aL) = \alpha^2(nL)\) and \(nL^2 = \alpha(nL)\) (see [5, p. 228 and p. 238]). This means that we can choose a lattice \(L' = (aL)^*\) on a quadratic space \(V^*\) such that the model defined by \(L'\) is equal to the model defined by \(L\) and \(nL' = bL'\). We shall assume that \(L\) is such lattice and we shall prove that this lattice is \(bL\)-maximal.

Let \(K\) be a lattice such that \(nK \subseteq bL = nL\) and \(K \supseteq L\). These inclusions give \(nK = nL\) and \(\nu L = \alpha^2(\nu K)\) where \(\alpha\) is an ideal in \(A\) (see [5, § 82 E, 82:11]). Hence by (1)

\[bL = (nL)^{-3}4\nu L = (nK)^{-3}4\alpha^2\nu K = \alpha^2 bK.\]

But \(bL\) is integral, square-free (Lemma 3) and \(bK\) is integral. Hence \(\alpha = A\) and \(\nu L = \nu K\). Since \(K \supseteq L\) we get \(K = L\) (by [5, § 82 E, 82:11a]). This proves that \(L\) is \(bL\)-maximal.

REFERENCES

5. O. T. O'Meara, Introduction to quadratic forms (Grundlehren Math. Wissensc. 117), Springer-Verlag, Berlin · Göttingen · Heidelberg, 1963.

MATHEMATICAL INSTITUTE, UNIVERSITY OF GOTHENBURG

AND

CHALMER'S INSTITUTE OF TECHNOLOGY, GOTHENBURG, SWEDEN