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ON MENSHOFF’S SET OF MULTIPLICITY

R. KAUFMAN*

In 1916 Menshoff obtained the first example of a closed set of multi-
plicity for trigonometric series, of Lebesgue measure 0 [1, 7]. The scope
of Menshoff’s process was greatly expanded by Bary [1, 2]. Verblunsky
then attempted to verify a conjecture of Bary [9], but an error was
found by Civen and Chrestenson, who also presented a variant of Mens-
hoff’s process [3]. Finally, Pyateckii-Sapiro ingeniously disproved
Bary’s conjecture with the discovery of a new class of sets of uniqueness
[8]. For an exposition of these matters, see [1, pp. 366-387].

In this note we observe that Menshoff’s set P carries a probability
measure u with the following property: for any function ¢ in C*(— oo, c0)
with ¢’ >0, we have

lim § exp 2riug(t)- u(dt) = 0, |u| - .

We do not give a detailed proof of this, because we use Menshoff’s process
to obtain much more subtle examples. Let C!, be the class of functions
defined above, and let A, be the set of increasing functions on R1,
with y and 1 locally Lipschitzian. The property claimed for Menshoff’s
set we call CY(M). In a similar way we can define AYM) sets, but

AYM) sets have positive Lebesgue measure .

Clearly, this assertion merely expresses a property of singular measures;
in fact we prove a much stronger property in the last paragraph. The
next statement, therefore, cannot be much improved.

THEOREM. To each Hausdorff measure-function h there is a closed set
P <[0,1] of h-measure 0, so that p(P) is CY(M), for each p in A1,.

Basic facts about Hausdorff measures are presented in [5 II], and
related problems are treated in [4, 6]. In most constructions concerning
Hausdorff measures and a qualitative property like CY(M), the argu-
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ment for an arbitrary A is the same as that for A(u)=ut, say. However,
Menshoff’s set has Hausdorff dimension 1 no matter how the parameters
are chosen, and the same appears to be true for its variant [2].

I.1. P is the intersection of a decreasing sequence

Po2P,2...P,2...,

n =

with P,=[0,1]; P, is composed of disjoint closed intervals I,*, and in
passing from P, to P, ,, we operate only on a single interval I,*, retain-
ing its end-points. Let 7, be the length of the smallest interval occurring
in P,, and r, the length of the largest open interval removed in passing
from P, to P,,,. We require that r,=0(n"%7,) and that the largest
interval in P, tends to 0 in length. Each set y(P), with ¢ in A, differs
from some set P* by at most an affine transformation, whence y(P) has
all the properties we are going to verify for P itself.

The measure y is a w*-limit of measures u, carried by P, , with primi-
tives F,. As usual, u, is Lebesgue measure on [0,1]. To transform pu,
into u,., we operate only on the part carried by the dissected interval
I,k Let then J,,...,J, be the open intervals removed from I,%, let
Y1- - - -»Y, be their left end-points, while a,b are the end points of I,k
Now F, ., is to be linear on each of the intervals formed from I,*, con-
stant across each J, and

Fn+1(yp) = F'n(yp)s l=p=sr
Fn+1(a/) = Fn(a’)! Fn+1( )=F ( ) -

By this process F, will already be linear on Ik, so that F,—F, ., at-
tains its extreme values at points where its derivative is discontinuous
or at a or b. Thus

b

an_Fn+1| = r’n/[Inkl
and for the norm in L(0,1) we have
“Fn"'Fn+1”1 STy
Writing F and p for the corresponding limits we obtain
1Fy—Flly = o(n,)

and of course u(P)=1. Moreover, the convergence of ¥, is uniform, as
r,/1,*=0(n-2). Thus the sequence F, is equicontinuous, whence

“zu'n au"n+1“ 2:un(I k) = 0(1)
because the length |I,*|=0(1).
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2. Let ¢ belong to C,!, with ¢’ 2¢>0 on [0,1], and let A be a large
number. Henceforth e(x)=e?"*. We shall show that

S e(up)du| < 2(mdc)?

for large u, so the property CY(M) will be proved for P. To do this we
take n=mn(u) to be the largest solution of the inequality #,, > A1, whence
Nns1 = Au~? for large u. Then an integration by parts leads to

IS e(ug)dp —§e(up)dpn| < llptn— pinsall+ 20 max |¢'| - [|F g — Fl, .
Now we saw that ||u, — 1]l = o(1), while
IFpi1—Flly = 0(0p4q) = o(u™),

so the bound is o(1) as u -~ co. Now F,, is piecewise linear and the seg-
ments J, on which ' > 0, have length at least 4u~1. We shall prove that

I\se(up)da| < 2|J|(mAc)?
for all these intervals J, so that
§e(up)du,| < 2(nde).

Let A, be a large number, and suppose that 4du-1=|J| <A, Au"1. The
secant line to ¢ over J, say @, fulfills the inequality

lup—ug| = ulJ|suplg’—¢'| = Ad,o(1) = o(1)

as w — oo, because ¢’ is uniformly continuous on [0,1]. For any number
0<r<s<1 we have
1§ 2e(ug)da| < (mou)?,

when & is linear on [r,s] with derivative at least ¢. Since |J| = Au~!, we
have
I§,1 = (mde)21J] .

For intervals J of length |J|>A4,4u"!, we divide J into intervals of
length exactly Au~! and a remainder J' of length |J'| < du-1<4,~1J]|.
Thus, for large 4, and large u, we obtain

1§ e(up)da| < 2(mdc)2|J|, whenever |J|=Au-1.

3. To complete the proof of this theorem we explain how to construct
P s0 that P has h-measure 0; for definiteness we specify A(¢)>¢ for all
t>0, and of course h(0+)=0. To each ¢>0 and >0, and each interval
[a,b], it is easy to remove open, disjoint intervals of length at most r
from [a,b], so that the remaining subset of [a,b] is covered by intervals
I,,, where 3h(|1,,|) <e. In particular, each |I,|<e. At a certain stage in
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the construction of P, the set P, consists of ¢ intervals I,*. We apply
the dissection just outlined to each I,* in turn, taking &' =¢/q, and using
successively smaller values of r. By this procedure, repeated with differ-
ent values of ¢, we construct P of h-measure 0.

The proof that Menshoff’s set P has property C(M) involves only
minor changes in his proof that P is an M -set, because there are no
exceptional intervals I, *. From the present standpoint, however, this
simplification has the limitation that only rather massive sets are ob-
tained.

A set P with property CY(M) has the property that each transform
@(P), ¢ in O, is an M -set; we conjecture that the second property is
in fact weaker than CYM).

II.4. Henceforth A is a continuous, singular probability measure on
(—o00,00); (7)Y is a sequence of positive numbers tending to + co. Also
c¢>1 is fixed and f=p8(c)>0 is a constant depending only on ¢>1; a
value of § is given below.

THEOREM. There exists anm absolutely continuous function v, with
12y’ = c almost everywhere and the following property: the set of w*-limit
points of the sequence e(v,y), in the space L™(1), contains the ball of radius
g in L=(A).

In the proof we apply Baire’s Theorem to the set Y of functions named
above, with the additional properties y(0)=0 and (%, |¢' — 1|dx < . The
metric in Y is |y;" —w,’|l;. It is convenient to write S, for the ball of
radius 7 in L*(1). In the next few sections, some isolated facts are as-
sembled.

a) There is an absolutely continuous function &,, with derivative
1<&) Scy<c, such that e(&,)=e* is periodic and has mean value

B = plc) = 2(cy—1)[n(c;+1) > 0.
In fact e(&,) is periodic with period L if
@+ L)—¢y(x) =1,

and the mean value of e(&,) can be made positive by adding a constant
to &,, if necessary. If u is a finite, continuous measure on the line, it is
familiar that

I§ e(&o(vt))p(dt) — Bu(R)|2
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has mean value 0 as a function of the real variable ». Indeed ¢(£) can be
approximated uniformly by sums of exponentials; for b0 it is known
that |{e(bvt)u(dt)|? has mean value 0.

b) We describe a collection of open sets I" in §,, such that any wealk*-
closed subset of S, , intersecting each I', contains §,. Each neighborhood
I' is determined by an 7 >0, disjoint intervals I,,...,I,, and numbers

.,¢g of modulus §. Then I'is just

{g ESI’ ISImgdl_cm}“(Im)I <7 1§m_.<=8} .

In choosing the numbers c,, of modulus exactly §, we make use of the
continuity of the measure 4; moreover, any complex number of modulus
< p is the average of two numbers of modulus exactly . Thus the neigh-
borhoods can be chosen in the special form indicated. Each neighbor-
hood I' contains a smaller one, I, in which the intervals I, have total
length ¥'|1,.| smaller than any assigned bound, and moreover 0 ¢ UI, .
The first assertion is a consequence of the singularity of A, the second,
of its continuity. In the next two sections we show that every neighbor-
hood W in Y contains a function &, such that e(v, &) € I" for some number
v, in the sequence. Since the metric of Y is stronger than the uniform
metric, we have e(v,&*) € I" for &* in an open subset W*c W.

c) Let 6>0 be so small that (1+0d)c,<c¢ and observe that the set of
real numbers », such that

IS 1,,e(Eo(vt))Adt) — PAL,)| <, 1SmSs,

has density 1; for large k there is such a number v, in each interval
v, <v<(1+08)v,. Let vy be chosen in this way; beginning with a member
yw of W< Y, we change » on UI,,, so that the new function p, has the
property

v p1(t) — &y(vet) = const. on each I,
This becomes

P (8) = v 0o (vel)

whence 1<y,'<c. Now y,' =9’ except on UI,,, hence

Iy =l £ ¢ 3 Ll

and this can be made as small as we please.

d) The function p, has the property that |{; e(v,y,)A(d?)| differs from
pA(I,,) by at most 7. In order to approximate the value c,,A(1,,), we must
define y, so that

VpWo—Vp¥; = 8, (modulol) onl],,,
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for certain real numbers s,,. Moreover, we have required o,(0)=0. This
can be accomplished by adjusting y,” between the intervals I,,, while
preserving the inequality 1 =<y’=<c. When v, is large, we can attain the
estimate

llwe —41lly = O(vy™2) .

Since ||y," —v’|l; can also be made as small as necessary, we get p, € W,
e(vyp,) € I'. Thus the set of functions y named in the theorem, is a dense
Gy-set in Y.

We conclude that AYM) sets — defined after C1(M) sets — have posi-
tive Lebesgue measure, because

e(uy)di + o(1)

for a certain v, if A contains a discrete component, or if 4 is singular and
continuous.
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