ON MENSHOFF'S SET OF MULTIPLICITY

R. KAUFMAN*

In 1916 Menshoff obtained the first example of a closed set of multiplicity for trigonometric series, of Lebesgue measure 0 [1, 7]. The scope of Menshoff's process was greatly expanded by Bary [1, 2]. Verblunsky then attempted to verify a conjecture of Bary [9], but an error was found by Civen and Chrestenson, who also presented a variant of Menshoff's process [3]. Finally, Pyateckii-Šapiro ingeniously disproved Bary's conjecture with the discovery of a new class of sets of uniqueness [8]. For an exposition of these matters, see [1, pp. 366–387].

In this note we observe that Menshoff's set P carries a probability measure μ with the following property: for any function φ in $C^1(-\infty,\infty)$ with $\varphi'>0$, we have

$$\lim \int \exp 2\pi i u \varphi(t) \cdot \mu(dt) = 0, \quad |u| \to \infty.$$

We do not give a detailed proof of this, because we use Menshoff's process to obtain much more subtle examples. Let C^1_+ be the class of functions defined above, and let Λ^1_+ be the set of increasing functions on R^1 , with ψ and ψ^{-1} locally Lipschitzian. The property claimed for Menshoff's set we call $C^1(M)$. In a similar way we can define $\Lambda^1(M)$ sets, but

 $\Lambda^1(M)$ sets have positive Lebesgue measure .

Clearly, this assertion merely expresses a property of singular measures; in fact we prove a much stronger property in the last paragraph. The next statement, therefore, cannot be much improved.

THEOREM. To each Hausdorff measure-function h there is a closed set $P \subseteq [0,1]$ of h-measure 0, so that $\psi(P)$ is $C^1(M)$, for each ψ in Λ^1_+ .

Basic facts about Hausdorff measures are presented in [5 II], and related problems are treated in [4, 6]. In most constructions concerning Hausdorff measures and a qualitative property like $C^1(M)$, the argu-

^{*} A. P. Sloan Fellow.

Received September 10, 1973.

236 R. KAUFMAN

ment for an arbitrary h is the same as that for $h(u) = u^{\frac{1}{2}}$, say. However, Menshoff's set has Hausdorff dimension 1 no matter how the parameters are chosen, and the same appears to be true for its variant [2].

I.1. P is the intersection of a decreasing sequence

$$P_0 \supseteq P_1 \supseteq \dots P_n \supseteq \dots$$

with $P_0 = [0,1]$; P_n is composed of disjoint closed intervals $I_n{}^k$, and in passing from P_n to P_{n+1} we operate only on a single interval $I_n{}^k$, retaining its end-points. Let η_n be the length of the smallest interval occurring in P_n , and r_n the length of the largest open interval removed in passing from P_n to P_{n+1} . We require that $r_n = O(n^{-2}\eta_n)$ and that the largest interval in P_n tends to 0 in length. Each set $\psi(P)$, with ψ in Λ^1_+ , differs from some set P^* by at most an affine transformation, whence $\psi(P)$ has all the properties we are going to verify for P itself.

The measure μ is a w^* -limit of measures μ_n carried by P_n , with primitives F_n . As usual, μ_0 is Lebesgue measure on [0,1]. To transform μ_n into μ_{n+1} we operate only on the part carried by the dissected interval $I_n{}^k$. Let then J_1, \ldots, J_r be the open intervals removed from $I_n{}^k$, let y_1, \ldots, y_r be their left end-points, while a, b are the end points of $I_n{}^k$. Now F_{n+1} is to be linear on each of the intervals formed from $I_n{}^k$, constant across each J, and

$$\begin{split} F_{n+1}(y_p) &= F_n(y_p), \quad 1 \leq p \leq r \;, \\ F_{n+1}(a) &= F_n(a), \quad F_{n+1}(b) = F_n(b) \;. \end{split}$$

By this process F_n will already be linear on $I_n{}^k$, so that $F_n - F_{n+1}$ attains its extreme values at points where its derivative is discontinuous or at a or b. Thus

$$|F_n - F_{n+1}| \leq r_n/|I_n^k|$$

and for the norm in $L^1(0,1)$ we have

$$||F_n - F_{n+1}||_1 \leq r_n$$
.

Writing F and μ for the corresponding limits we obtain

$$||F_n - F||_1 = o(\eta_n)$$

and of course $\mu(P)=1$. Moreover, the convergence of F_n is uniform, as $r_n/I_n{}^k=O(n^{-2})$. Thus the sequence F_n is equicontinuous, whence

$$\|\mu_n - \mu_{n+1}\| \le 2\mu_n(I_n^k) = o(1)$$
,

because the length $|I_n{}^k| = o(1)$.

2. Let φ belong to C_+^1 , with $\varphi' \ge c > 0$ on [0,1], and let A be a large number. Henceforth $e(x) \equiv e^{2\pi ix}$. We shall show that

$$|\int e(u\varphi)\,d\mu|\ <\ 2(\pi Ac)^{-1}$$

for large u, so the property $C^1(M)$ will be proved for P. To do this we take n = n(u) to be the largest solution of the inequality $\eta_n > Au^{-1}$, whence $\eta_{n+1} \leq Au^{-1}$ for large u. Then an integration by parts leads to

$$|\int e(u\varphi)d\mu - \int e(u\varphi)d\mu_n| \le ||\mu_n - \mu_{n+1}|| + 2\pi u \max |\varphi'| \cdot ||F_{n+1} - F||_1$$
.

Now we saw that $\|\mu_n - \mu_{n+1}\| = o(1)$, while

$$\|F_{n+1} - F\|_1 = o(\eta_{n+1}) = o(u^{-1})$$
,

so the bound is o(1) as $u \to \infty$. Now F_n is piecewise linear and the segments J, on which $F_n' > 0$, have length at least Au^{-1} . We shall prove that

$$|\textstyle \int_J e(u\varphi)\, dx| \ < \ 2|J|(\pi Ac)^{-1}$$

for all these intervals J, so that

$$|\int e(u\varphi)d\mu_n| < 2(\pi Ac)^{-1}.$$

Let A_1 be a large number, and suppose that $Au^{-1} \leq |J| \leq A_1 Au^{-1}$. The secant line to φ over J, say $\tilde{\varphi}$, fulfills the inequality

$$|u\varphi - u\tilde{\varphi}| \le u|J| \sup |\varphi' - \tilde{\varphi}'| \le AA_1 o(1) = o(1)$$

as $u \to \infty$, because φ' is uniformly continuous on [0,1]. For any number 0 < r < s < 1 we have

$$|\int_r^s e(u\tilde{\varphi}) dx| \leq (\pi c u)^{-1} ,$$

when $\tilde{\varphi}$ is linear on [r,s] with derivative at least c. Since $|J| \ge Au^{-1}$, we have

$$|\int_J| \leq (\pi Ac)^{-1}|J|.$$

For intervals J of length $|J| > A_1 A u^{-1}$, we divide J into intervals of length exactly $A u^{-1}$ and a remainder J' of length $|J'| \le A u^{-1} < A_1^{-1} |J|$. Thus, for large A_1 and large u, we obtain

$$|\textstyle \int_J e(u\varphi)\, dx| \, < \, 2(\pi Ac)^{-1}|J|, \quad \text{ whenever } \, |J| \, {\textstyle \geqq} \, Au^{-1} \, .$$

3. To complete the proof of this theorem we explain how to construct P so that P has h-measure 0; for definiteness we specify h(t) > t for all t > 0, and of course h(0+) = 0. To each $\varepsilon > 0$ and r > 0, and each interval [a,b], it is easy to remove open, disjoint intervals of length at most r from [a,b], so that the remaining subset of [a,b] is covered by intervals I_m , where $\sum h(|I_m|) < \varepsilon$. In particular, each $|I_m| < \varepsilon$. At a certain stage in

238 R. KAUFMAN

the construction of P, the set P_n consists of q intervals $I_n{}^k$. We apply the dissection just outlined to each $I_n{}^k$ in turn, taking $\varepsilon' = \varepsilon/q$, and using successively smaller values of r. By this procedure, repeated with different values of ε , we construct P of h-measure 0.

The proof that Menshoff's set P has property $C^1(M)$ involves only minor changes in his proof that P is an M_0 -set, because there are no exceptional intervals $I_n{}^k$. From the present standpoint, however, this simplification has the limitation that only rather massive sets are obtained.

A set P with property $C^1(M)$ has the property that each transform $\varphi(P)$, φ in C^1_+ , is an M_0 -set; we conjecture that the second property is in fact weaker than $C^1(M)$.

II.4. Henceforth λ is a continuous, singular probability measure on $(-\infty,\infty)$; $(v_k)_1^{\infty}$ is a sequence of positive numbers tending to $+\infty$. Also c>1 is fixed and $\beta=\beta(c)>0$ is a constant depending only on c>1; a value of β is given below.

THEOREM. There exists an absolutely continuous function ψ , with $1 \leq \psi' \leq c$ almost everywhere and the following property: the set of w^* -limit points of the sequence $e(v_k \psi)$, in the space $L^{\infty}(\lambda)$, contains the ball of radius β in $L^{\infty}(\lambda)$.

In the proof we apply Baire's Theorem to the set Y of functions named above, with the additional properties $\psi(0) = 0$ and $\int_{-\infty}^{\infty} |\psi' - 1| dx < \infty$. The metric in Y is $\|\psi_1' - \psi_2'\|_1$. It is convenient to write S_r for the ball of radius r in $L^{\infty}(\lambda)$. In the next few sections, some isolated facts are assembled.

a) There is an absolutely continuous function ξ_0 , with derivative $1 \le \xi_0' \le c_2 < c$, such that $e(\xi_0) = e^{2\pi i \xi_0}$ is periodic and has mean value

$$\beta \, = \, \beta(c) \, = \, 2(c_2-1)\big/\pi(c_2+1) \, \, > \, 0 \, \, .$$

In fact $e(\xi_0)$ is periodic with period L if

$$\xi_0(x+L)-\xi_0(x) \equiv 1 ,$$

and the mean value of $e(\xi_0)$ can be made positive by adding a constant to ξ_0 , if necessary. If μ is a finite, continuous measure on the line, it is familiar that

$$|\int e(\xi_0(vt))\mu(dt) - \beta\mu(\mathsf{R})|^2$$

has mean value 0 as a function of the real variable v. Indeed $e(\xi)$ can be approximated uniformly by sums of exponentials; for $b \neq 0$ it is known that $|\int e(bvt)\mu(dt)|^2$ has mean value 0.

b) We describe a collection of open sets Γ in S_1 , such that any weak*-closed subset of S_1 , intersecting each Γ , contains S_{β} . Each neighborhood Γ is determined by an $\eta > 0$, disjoint intervals I_1, \ldots, I_s , and numbers c_1, \ldots, c_s of modulus β . Then Γ is just

$$\left\{g \in S_1, \ |\textstyle \int_{I_m} g d\lambda - c_m \lambda(I_m)| \ < \ \eta, \ 1 \leqq m \leqq s \right\}.$$

In choosing the numbers c_m of modulus exactly β , we make use of the continuity of the measure λ ; moreover, any complex number of modulus $<\beta$ is the average of two numbers of modulus exactly β . Thus the neighborhoods can be chosen in the special form indicated. Each neighborhood Γ contains a smaller one, Γ' , in which the intervals I_m' have total length $\sum |I_m'|$ smaller than any assigned bound, and moreover $0 \notin \bigcup I_m'$. The first assertion is a consequence of the singularity of λ , the second, of its continuity. In the next two sections we show that every neighborhood W in Y contains a function ξ , such that $e(v_k \xi) \in \Gamma$ for some number v_k in the sequence. Since the metric of Y is stronger than the uniform metric, we have $e(v_k \xi^*) \in \Gamma$ for ξ^* in an open subset $W^* \subseteq W$.

c) Let $\delta > 0$ be so small that $(1+\delta)c_2 < c$ and observe that the set of real numbers v, such that

$$|\int_{I_m} e(\xi_0(vt))\lambda(dt) - \beta\lambda(I_m)| < \eta, \quad 1 \leq m \leq s$$

has density 1; for large k there is such a number v_0 in each interval $v_k < v < (1+\delta)v_k$. Let v_0 be chosen in this way; beginning with a member ψ of $W \subseteq Y$, we change ψ on $\bigcup I_m$, so that the new function ψ_1 has the property

$$v_k \psi_1(t) - \xi_0(v_0 t) \, = \, {\rm const.} \quad \text{ on each } I_m \; . \label{eq:const.}$$

This becomes

$$\psi_1'(t) = v_k^{-1} v_0 \xi_0'(v_0 t)$$
,

whence $1 \le \psi_1' \le c$. Now $\psi_1' = \psi'$ except on $\bigcup I_m$, hence

$$||{\psi_1}' - {\psi}'||_1 \le c \sum |I_m|$$

and this can be made as small as we please.

d) The function ψ_1 has the property that $|\int_{I_m} e(v_k \psi_1) \lambda(dt)|$ differs from $\beta \lambda(I_m)$ by at most η . In order to approximate the value $c_m \lambda(I_m)$, we must define ψ_2 so that

$$v_k \psi_2 - v_k \psi_1 \equiv s_m \text{ (modulo 1)} \quad \text{ on } I_m \text{ ,}$$

240 R. KAUFMAN

for certain real numbers s_m . Moreover, we have required $\psi_2(0) = 0$. This can be accomplished by adjusting ψ_1 between the intervals I_m , while preserving the inequality $1 \le \psi' \le c$. When v_0 is large, we can attain the estimate

$$\|\psi_2' - \psi_1'\|_1 = O(v_0^{-1})$$
.

Since $||\psi_1' - \psi'||_1$ can also be made as small as necessary, we get $\psi_2 \in W$, $e(v_k \psi_2) \in \Gamma$. Thus the set of functions ψ named in the theorem, is a dense G_{δ} -set in Y.

We conclude that $A^1(M)$ sets — defined after $C^1(M)$ sets — have positive Lebesgue measure, because

$$\int e(u\psi)d\lambda + o(1)$$

for a certain ψ , if λ contains a discrete component, or if λ is singular and continuous.

ACKNOWLEDGEMENT. We thank the referee for his helpful corrections, and the Universities of Washington and Nantes for their hospitality.

REFERENCES

- N. K. Bary, A treatise on Trigonometric Series, II, Pergamon Press, London, 1964.
 (Translated from Russian edition of 1961).
- N. K. Bary, Sur l'unicité du développement trigonométrique, Fund. Math. 9 (1972), 62-118.
- P. Civin and H. E. Chrestenson, The multiplicity of a class of perfect sets, Proc. Amer. Math. Soc. 4 (1953), 260-263.
- O. S. Ivashev-Musatov, M-sets and h-measures, (Russian) Mat. Zametki 3 (1968), 441-447.
- J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris. 1963.
- R. Kaufman, Kronecker sets and metric properties of M₀-sets, Proc. Amer. Math. Soc. 36 (1972), 519-524.
- D. E. Menshoff, Sur l'unicité du développement trigonométrique, C. R. Acad. Sci. Paris Sér. A 163 (1916), 433-436.
- I. I. Pyateckii-Šapiro, On the question of expansion of functions in trigonometric series (Russian), Doklady Akad. Nauk 85 (1952), 497-500.
- 9. S. Verblunsky, On a class of perfect sets, Acta Math. 35 (1935), 283-305.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS, U.S.A.