A SIMPLE PROOF OF THE DAUNS-HOFMANN THEOREM

GEORGE A. ELLIOTT and DORTE OLESEN

A theorem of Dauns and Hofmann (III, 5.2 and 8.16 of [5]) asserts that every bounded continuous scalar-valued function on the spectrum of a C*-algebra multiplies the algebra (see 3 below for a more precise statement). Previously this result had been obtained by Kaplansky for the special case of a liminary C*-algebra with separated spectrum (Theorem 3.3 of [9]). Subsequently a somewhat different proof than that of [5] appeared in [7], based on the decomposition theorem of Størmer [11] for the positive part of a sum of closed two-sided ideals. Later a quite different proof was given in [10], as an application of a theory of general (i.e. noncentral) multipliers.

Alfsen and Andersen proved in [3] a generalization of the C^* -algebra theorem stating that the Banach space of real-valued continuous affine functions on a compact convex set K is a module over the facially continuous functions on the extreme points of K. (For a definition of the facial topology see [1] or [3].) This theorem was further generalized by Alfsen and Effros in their work on the structure of real Banach spaces (theorem 4.9 of [4]).

The purpose of the present note is to give a proof of the Dauns-Hofmann theorem which is sufficiently simple that it in fact also proves the Alfsen-Effros theorem referred to above. The argument of the note follows closely the lines of the proof of Dauns and Hofmann, but instead of using approximate bounded decompositions of a sum of ideals it uses exact bounded decompositions. In the C*-algebra setting the possibility of bounded decomposition is already known (it follows e.g. from Størmer's theorem) and in fact with a better bound (1 instead of 3) than is given in lemma 1 below. The merit of our proof of existence of bounded decompositions (see lemma 1 below) is that it is simple, and moreover uses only a very weak property of two-sided ideals, which can be decribed as orthogonality in the sense of the norm, modulo intersections. A further investigation of this property will be carried out in a subsequent publication [8].

Received September 13, 1973; in revised form November 12, 1973.

1. Lemma. Let A be a normed linear space. Let J_0, \ldots, J_n be closed subspaces of A such that for each $k = 1, \ldots, n$ the canonical linear isomorphism

$$(J_0 + \ldots + J_k)/(J_0 + \ldots + J_k) \cap J_{k+1} \to (J_0 + \ldots + J_{k+1})/J_{k+1}$$

is an isometry. Let x be an element of $J_0 + \ldots + J_n$. Then there exist $x_0 \in J_0, \ldots, x_n \in J_n$ such that $x = x_0 + \ldots + x_n$ and for each $i = 0, \ldots, n$, $||x_i|| \le 3||x||$.

PROOF. We shall prove by induction the stronger version of the statement obtained by replacing the estimates $||x_i|| \le 3||x||$ by

$$||x_i|| \leq (2+\varepsilon)||x||,$$

where $\varepsilon > 0$ is fixed but arbitrary.

The conclusion is trivial for n=0. Suppose that $k=0,1,\ldots$ and the strengthened conclusion is known for n=k, and suppose that the hypotheses are satisfied for n=k+1. Denote by φ the canonical linear map $A \to A/J_{k+1}$. Then

$$\varphi(J_0+\ldots+J_{k+1})=\varphi(J_0+\ldots+J_k)\;,$$

so there exists $y \in J_0 + \ldots + J_k$ such that $\varphi(y) = \varphi(x)$, that is, $x - y \in J_{k+1}$. Moreover, since the canonical isomorphism of $(J_0 + \ldots + J_{k+1})/J_{k+1}$ with

$$(J_0 + \ldots + J_k)/(J_0 + \ldots + J_k) \cap J_{k+1}$$

is isometric, y may be chosen with norm less than $(1+\varepsilon')||\varphi(x)||$, where $\varepsilon'>0$ will be specified later. By the inductive assumption, $y=x_0+\ldots+x_k$ with $x_0\in J_0,\ldots,x_k\in J_k$ and

$$||x_0|| \le (2 + \varepsilon'')||y||, \ldots, ||x_k|| \le (2 + \varepsilon'')||y||,$$

where $\varepsilon^{\prime\prime} > 0$ will be specified. Moreover, with $x_{k+1} = x - y$,

$$x_{k+1} \in J_{k+1}$$
 and $||x_{k+1}|| \le ||x|| + ||y||$.

Thus, $x = y + (x - y) = x_0 + \ldots + x_{k+1}$, and

$$||x_0|| \le (2 + \varepsilon'')(1 + \varepsilon')||x||, \ldots, ||x_k|| \le (2 + \varepsilon'')(1 + \varepsilon')||x||,$$

 $||x_{k+1}|| \le (2 + \varepsilon')||x||.$

With ε' and ε'' sufficiently small that $2\varepsilon' + \varepsilon'' + \varepsilon''\varepsilon' \le \varepsilon$, it follows that x_0, \ldots, x_{k+1} verify the strengthened conclusion for n = k+1.

2. PROBLEM. The case in which A is two-dimensional with unit ball a parallelogram shows that the bounds $||x_i|| \le 3||x||$ (actually $||x_i|| \le (2+\varepsilon)||x||$)

cannot be made sharper than $||x_i|| \le 2||x||$. Can these "best possible" bounds be realized? If the orthogonality hypothesis is strengthened to be symmetric in J_0, \ldots, J_n , it seems reasonable to ask for the bounds $||x_i|| \le ||x||$ (or at least $||x_i|| \le (1+\varepsilon)||x||$).

3. Theorem (Dauns-Hofmann). Let A be a C^* -algebra, let x be an element of A, and let f be a bounded continuous scalar-valued function on Prim A, the space of primitive ideals of A endowed with Jacobson topology (3.1 of [6]). Then there exists a unique element fx of A such that

$$(fx)(t) = f(t)x(t), \quad t \in \operatorname{Prim} A$$

where x(t) for $t \in \text{Prim } A$ denotes the canonical image of x in A/t.

PROOF. We may suppose that $0 \le f \le 1$. Fix $n = 1, 2, \ldots$ Let

$$f^{-1}\!\!\left(](i-1)n^{-1},(i+1)n^{-1}[\right) = \,U_i, \quad i \,=\, 0, \, \ldots, n \,\,.$$

Set Prim A = X. Set

$$\bigcap_{t \in X \setminus U_i} t = J_i, \quad i = 0, \dots, n.$$

Then, since $\bigcup_{i=0}^n U_i = X$, we have $\sum_{i=0}^n J_i = A$ (if $\sum_{i=0}^n J_i \neq A$ then by 1.8.4 and 2.9.7 (ii) of [6] there exists $t \in X$ such that $\sum_{i=0}^n J_i \subseteq t$; that is, $t \in \bigcap_{i=0}^n X \setminus U_i = \emptyset$). Hence by lemma 1 (in which J_0, \ldots, J_n satisfy the orthogonality condition by 1.8.4 of [6]), $x = \sum_{i=0}^n x_i$ with $||x_i|| \le 3||x||$, $i = 0, \ldots, n$. Set

$$\sum_{i=0}^{n} i n^{-1} x_i = y_n .$$

Fix $t \in X$. Then for each i = 0, ..., n, either $t \in U_i$, in which case $|f(t) - in^{-1}| \le n^{-1}$, or $t \in X \setminus U_i$, in which case $x_i(t) = 0$. Moreover, the first possibility can happen for at most $i = i_0$ and $i = i_0 + 1$ for some $i_0 = 0, ..., n$. Hence

$$\begin{split} \|f(t)x(t)-y_n(t)\| &= \|\sum_{i=0}^n \left(f(t)-in^{-1}\right)x_i(t)\| \\ &\leq \sum_{i=0}^n |f(t)-in^{-1}| \, \|x_i(t)\| \\ &\leq n^{-1} \sum_{i=i_0}^{i_0+1} \|x_i(t)\| \leq 6n^{-1} \|x\| \; . \end{split}$$

Since $||y|| = \sup_{t \in X} ||y(t)||$ for any y in A (2.7.3 of [6]), the sequence y_n is Cauchy, and by the preceding inequality the limit satisfies the requirements for fx.

4. Theorem (Alfsen-Effros). Let A be a real Banach space, let x be an element of A, and let f be a bounded continuous scalar-valued function on Prim A, the space of primitive M-ideals of A (see II, section 3 of [4])

endowed with the structure topology (II, proposition 3.2 of [4]). Then there exists a unique element fx of A such that

$$(fx)(t) = f(t)x(t), t \in \operatorname{Prim} A$$

where x(t) for t in Prim A denotes the canonical image of x in A/t.

Proof. (For notation, the reader is referred to [4]). The proof is a word-to-word translation of the preceding one. That the intersection of M-primitives forming a closed set $(X \setminus U_i)$ is an M-ideal follows from the fact that each M-ideal is an intersection of M-primitives (use II, proposition 3.5a of [4] and the observation made directly from the definition of a primitive M-ideal that the norm of an element is the supremum of its norm in primitive quotients). Thus the J_i 's are in fact M-ideals, and it follows from (II, corollary 2.4 of [4]) that their sum is also an M-ideal and that they satisfy the orthogonality condition of lemma 1.

REFERENCES

- E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik N.F. 57, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- E. M. Alfsen and T. B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. 21 (1970), 415-442.
- E. M. Alfsen and T. B. Andersen, On the concept of centre in A(K), J. London Math. Soc. (2), 4 (1972), 411-417.
- E. M. Alfsen and E. G. Effros, Structure in real Banach spaces, Part I and II. Ann. of Math. 96 (1972), 98-173.
- J. Dauns and K. H. Hofmann, Representations of rings by continuous sections, Mem. Amer. Math. Soc. 83 (1968).
- 6. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- 7. J. Dixmier, Ideal center of a C*-algebra, Duke Math. J. 35 (1968), 375-382.
- G. A. Elliott, An abstract Dauns-Hofmann-Kaplansky multiplier theorem, Canadian J. Math., to appear.
- I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
- G. K. Pedersen, Applications of weak*-semicontinuity in C*-algebra theory, Duke Math. J. 39 (1972), 431–450.
- 11. E. Størmer, Two-sided ideals in C*-algebras, Bull. Amer. Math. Soc. 73 (1967), 254-257.

UNIVERSITY OF COPENHAGEN, DENMARK

AND

UNIVERSITY OF ODENSE, DENMARK