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ON GROUPS OF AUTOMORPHISMS OF
THE TENSOR PRODUCT OF VON NEUMANN ALGEBRAS

J. MOFFAT

1. Introduction.

Let G be a group of automorphisms of a von Neumann algebra £
(throughout this paper, automorphism will always mean *-automor-
phism). In [2] and [3], an equivalence relation ~, between projections
in # was introduced, which reduces to the usual Murray—von Neumann
equivalence on projections when @ is the group consisting of the identity
automorphism. Stermer, in [3], introduced the concepts of ~ g -abelian
projection and ~g-finite projection. He also defined, following the class-
ical situation, the idea of a ~,-finite and a ~ ;-semifinite von Neumann
algebra. In particular he proved that # is ~ g -semifinite if and only if
there is a G-invariant faithful normal semifinite trace on #Z. We shall
say # is ~g-type 111 if Z contains no ~ -finite projections.

Let Z (respectively &%) be a von Neumann algebra and G (respectively
H) be a group of automorphisms of # (respectively &). If ge G, he H,
then g®~ is an automorphism of 2R (see [1, p. 56. Proposition 2])
and the map (g,%) > g®*~ is a group homomorphism identifying the direct
product G x H of G and H as a group of automorphisms of ZQ%. We
shall show that if either # is ~,-type III or & is ~pg-type III then
ARFL i8 ~gyg-type III. Our notation will be as used in [2]. In partic-
ular,

CC={AeRnR; gA)=A4 (ge@)}.
(This set is denoted by Z in [3]).

ReEMARK. If # has a ~g-abelian projection, then Lemmas 6 and 9 of
[3] show that there is a projection P € C¢ such that ZP has a G-invariant
faithful normal semifinite trace, and hence by Theorem 2 of [3], #ZP is
~g-semifinite. If # has no ~g-abelian projections, yet contains a ~ -
finite projection E, then by considering a subprojection of £ we may
assume F is countably decomposable. The proof of Lemma 10 in [3]
now shows that there is a projection @ € C¢ such that #Q is ~-semi-
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finite. Conversely, if #@ is ~g-semifinite for some projection @ € C¢
let E be a ~g-finite projection in %@, then E is a ~g-finite projection
in #. The above comments show that # is ~g-type III if and only if
ZQ is not ~ g -semifinite for any non zero projection @ € C%,
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2. The crossed product algebra.

We shall now give a description of the crossed product algebra, as
defined in [2], using tensor product notation. Let £ be a von Neumann
algebra acting on a Hilbert space #, and G a group of automorphisms
of #. Denote by {e,; g€ G} the usual orthonormal basis for I¥@&). If
g€ @, xe s, define

Un(xQ¢,) = 2Q@¢eg1, (he@),
D(A)(xQ¢,) = g(A)xQse,, (A€, ge@).
Then U, extends to a unitary operator on £ ®I*(G), and
UpUp(x®¢ey) = Up(x@egp1) = 2Qey 51 = Upi(2®s,) -
Also, @(4) extends to a bounded linear operator on #®I%(G) and
U, P(A)U,_(xQ¢,) = U, D(4)(xRe,)

Un(gh(A)xQ¢y) = gh(d)zQe,
= g(M(A))xQ¢e, = D(h(A))(xR¢,) .

So g - U, is a unitary representation of G on #’®QI*J) with
U, @A) U, = D(g(4)) (ge@, Ae).

It is also easy to see that @ is an ultraweakly continuous *-isomorphism
of Z. We define # x G to be the von Neumann algebra generated by

{P(A),U,; AeZ, geC}.
Since (BAU,)* = U, 1D(4*) = B(g-(A*)U,

g-1>

finite sums ¥, P(4,)U,, form a *-algebra weakly dense in # x G. We call
this *-algebra (% x @),. Suppose % is a von Neumann algebra acting
on a Hilbert space J¢, then denote by ¥, (respectively W, ;) the corre-
sponding group of unitaries in the crossed product algebra & xH
(respectively 2% x (G x H)).
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3. The main result.

LeEMMA. Let Z# (respectively &) be a von Neumann algebra acting on a
Hilbert space S (respectively ") and G (respectively H) be a group of
automorphisms of X (respectively F). Then (% x )Q(SL x H) is spatially
*-isomorphic to (AQF x (G x H)).

Proor. Let (x,), (y5) be orthonormal bases of 5#°, /" respectively, and
{80; geG’}, {eh; hEH}, {e(g,h); (gah)EGXH}
the usual orthonormal bases for I3(G), I*(H) and I*(G x H) respectively.

Define
V((*,Qup)Q¢e4,1m) = (2,06,)(y;R¢e;) (g€ @, he H).

Then V extends to a unitary transformation between (5 Q. )QI2(G x H)
and (' QUIHAF))R(H QI H)).
IfAeR Be &, v, eH, yye X and (g,h),(k,l) € G x H, we have

VHD(A)U,D(B) V) V((%,8Y5) Dew, n)
VHD(A)U,@D(B)V,)((%, Q) 2(¥28))
VYD(A)(2,Q¢15-1) P(B) (Y5 Q645-1))

VY (kg A)2,e,1) (-1 (B)ys@en-1))
= (kg~(A)x,QUh~YB)y,)®egpg—1, -1,

= &4 ®B)((xa®yﬂ)®e(kg—1, lh—l))

= O(ARB)W, 1((%,Y5) Q¢ 1) -

I

]

Since linear combinations of elements (x,®y;)®¢y,; are dense in
H RH QG x H), the following identity gives rise to a mapping from
(Z % 3)yR(F x H)y onto (ZRQF x (G x H)):

V-YD(A)U,QD(B)V,)V = P(AQB)YW, 1) -

This map then extends to the required spatial *-isomorphism.

THEOREM. Let # and & be von Neumann algebras acting on Hilbert
spaces K and A~ respectively. Let G (respectively H) be a group of auto-
morphisms of A& (respectively &F). If either R 18 ~g-type 11l or & is ~y-
type 111 then AR S 18 ~ gup-type III.

Proor. Let
{vy5 e (L xH),}

be the projections of Sakai from (2 x G)Q (& x H) onto (Z x G) (see [4,
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proof of Theorem 2.6.4]), and suppose Z is ~g-type I1I. Denote by £
the *-isomorphism of the previous lemma. Let £ be a ~g,y-finite pro-
jection in ZR.¥. We have to prove E =0. Suppose E +0 then 0+ D(E)
is a finite projection in (ZQ ¥ x (G x H)) by [2, Theorem 4.1], so F=
02-1P(F) is a finite projection in (% x G)Q (S x H). Since P(E)eD(ZRQS),
@(E) is the ultraweak limit of elements of the form &(4,), with

A4, =3,1,0,8D; (C;e#, D;ed).
Now
Q1P(4) = 3, 2,2719(C,0D,)
= 2 LD(C)RD(D;) € DR)RD(L) ,

and F =ultraweak limit of 2-1®(4,) so F € D(Z)RD(¥).
Iffe@xQ)y, pe(F xH)y, Ac D), Be D), then

f(¥,(A®B)) = (fR¢)(ARB) = f(Ad)p(B) = f(p(B)4) .
So y (AQB)=¢(B)A.
Suppose now B, - F ultraweakly, with B, of the form B, =31,M,QN,
(M; e D), N;e D(F)), then y (F)=ultraweak limit of y(B,) since
each y_ is normal, and

Vo(B,) = 2 L (M;QN;) = 3; L, p(N)M; .
Thus y,(B,) € D(ZX), and s0 y,(F) € D(Z) for all p € (& x H), .

Choose ¢, with y,(F)+0. The argument now parallels that of [4,
Lemma 2.6.5]. Let P be a spectral projection of y, (F), with 0 <AP <
Ygo(F) for some 4> 0, then P is a projection in @(Z). Let A, be a net in
P(RxG)P with [|4,|<1, 45— 0 ultrastrongly, then A F — 0 ultra-
strongly (we identify # x G with

(ZxNRI < (BxHR(F xH)).

Hence, since F is finite, (4,F)*=FA;* - 0 ultrastrongly ([4, p. 97,
Theorem 2.5.6]). Thus since each v, is ultrastrongly continuous,

Yoo (FA*) =y, (F)A* - 0  ultrastrongly .
Thus

Ag* = {Py,(F)P+1-P} 1Py, (F)A;* >0 ultrastrongly .

This shows that the *-operation is continuous on bounded spheres of
P(Z# x )P, so P is a finite projection in £ x G (see [4, p. 97, Theorem
2.5.6]). Hence @-1(P) is a ~4-finite projection in Z (by [2, Theorem 4.1]),
a contradiction since & is ~g-type III. It follows that £ =0 and 2%
is ~gug-type IIL.
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