ON GROUPS OF AUTOMORPHISMS OF THE TENSOR PRODUCT OF VON NEUMANN ALGEBRAS

J. MOFFAT

1. Introduction.

Let G be a group of automorphisms of a von Neumann algebra \mathscr{R} (throughout this paper, automorphism will always mean *-automorphism). In [2] and [3], an equivalence relation \sim_G between projections in \mathscr{R} was introduced, which reduces to the usual Murray-von Neumann equivalence on projections when G is the group consisting of the identity automorphism. Størmer, in [3], introduced the concepts of \sim_G -abelian projection and \sim_G -finite projection. He also defined, following the classical situation, the idea of a \sim_G -finite and a \sim_G -semifinite von Neumann algebra. In particular he proved that \mathscr{R} is \sim_G -semifinite if and only if there is a G-invariant faithful normal semifinite trace on \mathscr{R} . We shall say \mathscr{R} is \sim_G -type III if \mathscr{R} contains no \sim_G -finite projections.

Let \mathscr{R} (respectively \mathscr{S}) be a von Neumann algebra and G (respectively H) be a group of automorphisms of \mathscr{R} (respectively \mathscr{S}). If $g \in G$, $h \in H$, then $g \otimes h$ is an automorphism of $\mathscr{R} \otimes \mathscr{S}$ (see [1, p. 56. Proposition 2]) and the map $(g,h) \to g \otimes h$ is a group homomorphism identifying the direct product $G \times H$ of G and H as a group of automorphisms of $\mathscr{R} \otimes \mathscr{S}$. We shall show that if either \mathscr{R} is \sim_{G} -type III or \mathscr{S} is \sim_{H} -type III then $\mathscr{R} \otimes \mathscr{S}$ is $\sim_{G \times H}$ -type III. Our notation will be as used in [2]. In particular,

$$C^G \,=\, \{A\in \mathcal{R}\cap \mathcal{R}'\;;\;\; g(A)\,{=}\,A\;\;(g\in G)\}\;.$$

(This set is denoted by \mathcal{D} in [3]).

REMARK. If \mathscr{R} has a \sim_G -abelian projection, then Lemmas 6 and 9 of [3] show that there is a projection $P \in C^G$ such that $\mathscr{R}P$ has a G-invariant faithful normal semifinite trace, and hence by Theorem 2 of [3], $\mathscr{R}P$ is \sim_G -semifinite. If \mathscr{R} has no \sim_G -abelian projections, yet contains a \sim_G -finite projection E, then by considering a subprojection of E we may assume E is countably decomposable. The proof of Lemma 10 in [3] now shows that there is a projection $Q \in C^G$ such that $\mathscr{R}Q$ is \sim_G -semi-

Received July 10, 1973.

finite. Conversely, if $\mathcal{R}Q$ is \sim_G -semifinite for some projection $Q \in C^G$ let E be a \sim_G -finite projection in $\mathcal{R}Q$, then E is a \sim_G -finite projection in \mathcal{R} . The above comments show that \mathcal{R} is \sim_G -type III if and only if $\mathcal{R}Q$ is not \sim_G -semifinite for any non zero projection $Q \in C^G$.

ACKNOWLEDGEMENT. It is a great pleasure to thank my supervisor, Professor J. R. Ringrose, for all his help. I am also grateful to the Carnegie Trust for the Universities of Scotland for their financial assistance.

2. The crossed product algebra.

We shall now give a description of the crossed product algebra, as defined in [2], using tensor product notation. Let \mathcal{R} be a von Neumann algebra acting on a Hilbert space \mathcal{H} , and G a group of automorphisms of \mathcal{R} . Denote by $\{\varepsilon_g : g \in G\}$ the usual orthonormal basis for $l^2(G)$. If $g \in G$, $x \in \mathcal{H}$, define

$$U_h(x \otimes \varepsilon_g) = x \otimes \varepsilon_{gh-1}, \qquad (h \in G),$$

$$\Phi(A)(x \otimes \varepsilon_g) = g(A)x \otimes \varepsilon_g, \qquad (A \in \mathcal{R}, g \in G).$$

Then U_h extends to a unitary operator on $\mathcal{H} \otimes l^2(G)$, and

$$U_h U_k(x \otimes \varepsilon_g) = U_h(x \otimes \varepsilon_{gk-1}) = x \otimes \varepsilon_{gk-1h-1} = U_{hk}(x \otimes \varepsilon_g) .$$

Also, $\Phi(A)$ extends to a bounded linear operator on $\mathscr{H} \otimes l^2(G)$ and

$$\begin{array}{ll} U_h \varPhi(A) U_{h-1}(x \otimes \varepsilon_g) &= U_h \varPhi(A) (x \otimes \varepsilon_{gh}) \\ &= U_h (gh(A) x \otimes \varepsilon_{gh}) = gh(A) x \otimes \varepsilon_g \\ &= g(h(A)) x \otimes \varepsilon_g = \varPhi(h(A)) (x \otimes \varepsilon_g) \;. \end{array}$$

So $g \to U_g$ is a unitary representation of G on $\mathscr{H} \otimes l^2(G)$ with

$$U_a\Phi(A)U_{a-1}=\Phi(g(A)) \quad (g\in G,\ A\in \mathcal{R}).$$

It is also easy to see that Φ is an ultraweakly continuous *-isomorphism of \mathcal{R} . We define $\mathcal{R} \times G$ to be the von Neumann algebra generated by

$$\{\Phi(A), U_g; A \in \mathcal{R}, g \in G\}$$
.

Since

$$(\Phi(A)U_a)^* = U_{a-1}\Phi(A^*) = \Phi(g^{-1}(A^*))U_{a-1}$$
,

finite sums $\sum_i \Phi(A_i) U_{g_i}$ form a *-algebra weakly dense in $\mathcal{R} \times G$. We call this *-algebra $(\mathcal{R} \times G)_0$. Suppose \mathcal{S} is a von Neumann algebra acting on a Hilbert space \mathcal{K} , then denote by V_h (respectively $W_{(g,h)}$) the corresponding group of unitaries in the crossed product algebra $\mathcal{S} \times H$ (respectively $\mathcal{R} \otimes \mathcal{S} \times (G \times H)$).

228 J. MOFFAT

3. The main result.

LEMMA. Let \mathcal{R} (respectively \mathcal{S}) be a von Neumann algebra acting on a Hilbert space \mathcal{H} (respectively \mathcal{K}) and G (respectively H) be a group of automorphisms of \mathcal{R} (respectively \mathcal{S}). Then $(\mathcal{R} \times G) \otimes (\mathcal{S} \times H)$ is spatially *-isomorphic to $(\mathcal{R} \otimes \mathcal{S} \times (G \times H))$.

PROOF. Let (x_{α}) , (y_{β}) be orthonormal bases of \mathcal{H} , \mathcal{K} respectively, and

$$\{\varepsilon_{\mathbf{g}}; \ \mathbf{g} \in G\}, \quad \{\varepsilon_{\mathbf{h}}; \ \mathbf{h} \in H\}, \quad \{\varepsilon_{(\mathbf{g}, \mathbf{h})}; \ (\mathbf{g}, \mathbf{h}) \in G \times H\}$$

the usual orthonormal bases for $l^2(G)$, $l^2(H)$ and $l^2(G \times H)$ respectively. Define

$$V((x_{\alpha} \otimes y_{\beta}) \otimes \varepsilon_{(g,h)}) = (x_{\alpha} \otimes \varepsilon_{g}) \otimes (y_{\beta} \otimes \varepsilon_{h}) \quad (g \in G, h \in H).$$

Then V extends to a unitary transformation between $(\mathcal{H} \otimes \mathcal{K}) \otimes l^2(G \times H)$ and $(\mathcal{H} \otimes l^2(G)) \otimes (\mathcal{K} \otimes l^2(H))$.

If $A \in \mathcal{R}$, $B \in \mathcal{S}$, $x_{\alpha} \in \mathcal{H}$, $y_{\beta} \in \mathcal{K}$ and $(g,h), (k,l) \in G \times H$, we have

$$\begin{split} &V^{-1}(\varPhi(A)U_g\otimes\varPhi(B)V_h)V\big((x_\alpha\otimes y_\beta)\otimes\varepsilon_{(k,\,l)}\big)\\ &=V^{-1}(\varPhi(A)U_g\otimes\varPhi(B)V_h)\big((x_\alpha\otimes\varepsilon_k)\otimes(y_\beta\otimes\varepsilon_l)\big)\\ &=V^{-1}(\varPhi(A)(x_\alpha\otimes\varepsilon_{kg^{-1}})\otimes\varPhi(B)(y_\beta\otimes\varepsilon_{lh^{-1}})\big)\\ &=V^{-1}\big((kg^{-1}(A)x_\alpha\otimes\varepsilon_{kg^{-1}})\otimes(lh^{-1}(B)y_\beta\otimes\varepsilon_{lh^{-1}})\big)\\ &=(kg^{-1}(A)x_\alpha\otimes lh^{-1}(B)y_\beta)\otimes\varepsilon_{(kg^{-1},\,lh^{-1})}\\ &=\varPhi(A\otimes B)\big((x_\alpha\otimes y_\beta)\otimes\varepsilon_{(kg^{-1},\,lh^{-1})}\big)\\ &=\varPhi(A\otimes B)W_{(g,\,h)}((x_\alpha\otimes y_\beta)\otimes\varepsilon_{(k,\,h)}\big)\;. \end{split}$$

Since linear combinations of elements $(x_{\alpha} \otimes y_{\beta}) \otimes \varepsilon_{(k,l)}$ are dense in $\mathcal{H} \otimes \mathcal{H} \otimes l^2(G \times H)$, the following identity gives rise to a mapping from $(\mathcal{R} \times G)_0 \otimes (\mathcal{S} \times H)_0$ onto $(\mathcal{R} \otimes \mathcal{S} \times (G \times H))_0$:

$$V^{-1}(\Phi(A)U_{q}\otimes\Phi(B)V_{h})V = \Phi(A\otimes B)W_{(q,h)}.$$

This map then extends to the required spatial *-isomorphism.

THEOREM. Let $\mathcal R$ and $\mathcal S$ be von Neumann algebras acting on Hilbert spaces $\mathcal H$ and $\mathcal K$ respectively. Let G (respectively H) be a group of automorphisms of $\mathcal R$ (respectively $\mathcal S$). If either $\mathcal R$ is \sim_{G} -type III or $\mathcal S$ is \sim_{H} -type III then $\mathcal R\otimes \mathcal S$ is $\sim_{G\times H}$ -type III.

Proof. Let

$$\{\psi_{\varphi}\;;\;\varphi\in(\mathcal{S}\times H)_{\pmb{\ast}}\}$$

be the projections of Sakai from $(\mathcal{R} \times G) \otimes (\mathcal{S} \times H)$ onto $(\mathcal{R} \times G)$ (see [4,

proof of Theorem 2.6.4]), and suppose \mathscr{R} is \sim_G -type III. Denote by Ω the *-isomorphism of the previous lemma. Let E be a $\sim_{G\times H}$ -finite projection in $\mathscr{R}\otimes\mathscr{S}$. We have to prove E=0. Suppose $E\neq 0$ then $0\neq \Phi(E)$ is a finite projection in $(\mathscr{R}\otimes\mathscr{S}\times(G\times H))$ by [2, Theorem 4.1], so $F=\Omega^{-1}\Phi(E)$ is a finite projection in $(\mathscr{R}\times G)\otimes(\mathscr{S}\times H)$. Since $\Phi(E)\in\Phi(\mathscr{R}\otimes\mathscr{S})$, $\Phi(E)$ is the ultraweak limit of elements of the form $\Phi(A_v)$, with

$$A_{\nu} = \sum_{i} \lambda_{i} C_{i} \otimes D_{i} \quad (C_{i} \in \mathcal{R}, \ D_{i} \in \mathcal{S}) \ .$$

Now

$$\begin{split} \mathcal{Q}^{-1} \varPhi(A_{\gamma}) &= \sum_{i} \lambda_{i} \mathcal{Q}^{-1} \varPhi(C_{i} \otimes D_{i}) \\ &= \sum_{i} \lambda_{i} \varPhi(C_{i}) \otimes \varPhi(D_{i}) \in \varPhi(\mathscr{R}) \otimes \varPhi(\mathscr{S}) \;, \end{split}$$

and $F = \text{ultraweak limit of } \Omega^{-1}\Phi(A_{\gamma}) \text{ so } F \in \Phi(\mathcal{R}) \otimes \Phi(\mathcal{S}).$ If $f \in (\mathcal{R} \times G)_*$, $\varphi \in (\mathcal{S} \times H)_*$, $A \in \Phi(\mathcal{R})$, $B \in \Phi(\mathcal{S})$, then

$$f\big(\psi_{\varphi}(A\otimes B)\big) \,=\, (f\otimes\varphi)(A\otimes B) \,=\, f(A)\varphi(B) \,=\, f\big(\varphi(B)A\big)\;.$$

So $\psi_{\alpha}(A \otimes B) = \varphi(B)A$.

Suppose now $B_{\gamma} \to F$ ultraweakly, with B_{γ} of the form $B_{\gamma} = \sum \lambda_i M_i \otimes N_i$ $(M_i \in \Phi(\mathscr{B}), \ N_i \in \Phi(\mathscr{S}))$, then $\psi_{\varphi}(F) = \text{ultraweak limit of } \psi_{\varphi}(B_{\gamma})$ since each ψ_{φ} is normal, and

$$\psi_{\varphi}(B_{\nu}) \, = \, \sum_{i} \lambda_{i} \psi_{\varphi}(M_{i} \otimes N_{i}) \, = \, \sum_{i} \lambda_{i} \varphi(N_{i}) M_{i} \, .$$

Thus $\psi_{\varphi}(B_{\gamma}) \in \Phi(\mathcal{R})$, and so $\psi_{\varphi}(F) \in \Phi(\mathcal{R})$ for all $\varphi \in (\mathcal{S} \times H)_*$.

Choose φ_0 with $\psi_{\varphi_0}(F) \neq 0$. The argument now parallels that of [4, Lemma 2.6.5]. Let P be a spectral projection of $\psi_{\varphi_0}(F)$, with $0 < \lambda P < \psi_{\varphi_0}(F)$ for some $\lambda > 0$, then P is a projection in $\Phi(\mathcal{R})$. Let A_β be a net in $P(R \times G)P$ with $||A_\beta|| \leq 1$, $A_\beta \to 0$ ultrastrongly, then $A_\beta F \to 0$ ultrastrongly (we identify $\mathcal{R} \times G$ with

$$(\mathscr{R} \times G) \otimes I \subset (\mathscr{R} \times G) \otimes (\mathscr{S} \times H)) .$$

Hence, since F is finite, $(A_{\beta}F)^* = FA_{\beta}^* \to 0$ ultrastrongly ([4, p. 97, Theorem 2.5.6]). Thus since each ψ_{φ} is ultrastrongly continuous,

$$\psi_{\varphi_0}(FA_{\beta}^*) = \psi_{\varphi_0}(F)A_{\beta}^* \to 0$$
 ultrastrongly.

Thus

$$A_{\beta}{}^{\textstyle *} = \{P\psi_{\varphi_0}(F)P + 1 - P\}^{-1}P\psi_{\varphi_0}(F)A_{\beta}{}^{\textstyle *} \rightarrow 0 \quad \text{ ultrastrongly }.$$

This shows that the *-operation is continuous on bounded spheres of $P(\mathcal{R} \times G)P$, so P is a finite projection in $\mathcal{R} \times G$ (see [4, p. 97, Theorem 2.5.6]). Hence $\Phi^{-1}(P)$ is a \sim_G -finite projection in \mathcal{R} (by [2, Theorem 4.1]), a contradiction since \mathcal{R} is \sim_G -type III. It follows that E = 0 and $\mathcal{R} \otimes \mathcal{S}$ is $\sim_{G \times H}$ -type III.

230 J. MOFFAT

REFERENCES

- J. Dixmier, Les algebrès d'operateurs dans l'espace Hilbertien, (Cahiers Scientifiques 25)
 2º edition, Gauthier-Villars, Paris, 1969.
- G. K. Pedersen and E. Størmer, Automorphisms and equivalence in von Neumann algebras II, to appear.
- E. Størmer, Automorphisms and equivalence in von Neumann algebras, Pacific J. Math. 44 (1973), 371-383.
- S. Sakai, C*-algebras and W*-algebras (Ergebnisse der Mathematik N.F. 60), Springer-Verlag, Berlin, Heidelberg, New York, 1971.

UNIVERSITY OF NEWCASTLE UPON TYNE, ENGLAND